
 
Advances in Materials 
2018; 7(2): 34-43 
http://www.sciencepublishinggroup.com/j/am 
doi: 10.11648/j.am.20180702.14 
ISSN: 2327-2503 (Print); ISSN: 2327-252X (Online)  

 

Simulation for Texture Formation of Both 
Face-Centered-Cubic Metals and Body-Centered-Cubic 
Ones Based on Rotational Symmetry among Principal Axes 

Hiroaki Masui 

Department of Engineering, Teikyo University, Utsunomiya-shi, Japan 

Email address: 

 

To cite this article: 
Hiroaki Masui. Simulation for Texture Formation of Both Face-Centered-Cubic Metals and Body-Centered-Cubic Ones Based on Rotational 
Symmetry among Principal Axes. Advances in Materials. Special Issue: Academic Research for Multidisciplinary.  
Vol. 7, No. 2, 2018, pp. 34-43. doi: 10.11648/j.am.20180702.14 

Received: May 10, 2018; Accepted: May 30, 2018; Published: July 11, 2018 

 

Abstract: Based on the rotational symmetry of the principal axes of X [100], Y [010] and Z [001], in fcc metal 24 possible 
combinations of the five slips on {111} planes on <110> direction while in bcc metal 72 possible combinations of the five slips 
on {110} planes on <111> direction by intersection of two kinds of {110} planes from the three ones composed of {110}, {101} 
and {011} are respectively chosen both based on Taylor’s formidable restriction rule of the five slips. In fcc metal, orientation at 
onset (minimum) of Taylor factor M value, i.e. the minimum total slip amount, shows the cube {100}<001> and the M value 
gradually increases by way of {100}<001>→ {100}<016>→ {100}<013>→ {100}<012>→ {100}<023> → {100}<0,9,11> 
with decrease of φ1 or does {100}<001>→ {016}<100>→{013}<100> →{0,6,13}<100> with increase of φ2, most of which 
were experimentally reported as indiscrete recrystallized orientations with lowest dislocation density named the cluster 
composed of cube and cube-family in fcc metal. In bcc metal, crystal rotation is carried out by only one solution among the 72 by 
the minimum total slip amount at every strain and simulates properly lengthy of accumulated researcher’s experimental results 
such as the three stable orientations of bcc metal in rolling {112}<110>, {11 11 8}<44 11> and {100}<011>. 
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1. Introduction 

The principal axes of X [100], Y [010] and Z [001] are 
perpendicular to each other as the three orbits of 
����, ���� and ����  by a rotational symmetry of 
mathematical group theory in such way that component X is 
not related to Y or Z one another whichever [1].There is a 
conservation quantity in the symmetry [2]. For example, a 
small ball at the top of Mexican hat may drop down on the 
bottom everywhere equally and symmetrically within 
360°around the top due to existence of potential energy of the 
ball as a conservation quantity. Once the hat inclined, the ball 
would lose both the quantity and symmetry. As Taylor proved, 
crystal rotates so that slips occur associating themselves with 
the minimum total slip amount [3]. The minimum total slip 
amount in crystal by Taylor corresponds to both the 
conservation quantity in the rotational symmetry of cubic 
crystal and even Taylor factor M value itself of the material. 

These approaches will be useful for both face centered cubic 
(fcc) metal and body centered cubic (bcc) metal. 

2. Model 

2.1. Fcc Metal 

Here, dXi and dYi mean pair glides with common glide 
direction on neighbor planes in fcc metal and a, b, c, d are 
synthetic glide of them respectively. Figure 1 shows eight 
shears in four pairs of <110> direction on {111} plane around 
principal axis Z [001] in fcc metal. Similarly there are another 
eight shears in four pairs on both {111} planes around X [100] 
and Y [010] axes, which consequently satisfy the twelve glide 
systems of fcc metal equally. Relation among the eight shears 
dX1, dY1, dX2, dY2, dX3, dY3, dX4, dY4 and both of strain 
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tensor components dε11, dε22, dε33, dε12, dε13, dε23 and rotation 
dφ1, dφ2, dφ3 around the principal axes X [100], Y [010] and Z 
[001] noted as 1, 2 and 3 respectively can be deduced as 

shown in (1) for Z [001] group from geometrical relation in 
Figure 1. 

 

Figure 1. Illustration of the {111}<110> glide systems in theＺ ( [001]) group and the principal axes for fcc metal in the present model. 

dX1 = (√6/8) (dε33 －(dε22－dε11 )＋2dε12＋4dε13＋2dε23 －2dφ3＋2dφ1 ) 

dX2 = (√6/8) ( dε33 ＋(dε22－dε11 )－2dε12－2dε13＋4dε23 －2dφ3＋2dφ2 )  

dX3= (√6/8) (dε33 －(dε22－dε11 )＋2dε12－4dε13－2dε23 －2dφ3－2dφ1 )  

dX4 = (√6/8) ( dε33 ＋(dε22－dε11 )－2dε12＋2dε13－4dε23 －2dφ3－2dφ2 ) 

dY1 = (√6/8) (dε33 －(dε22－dε11 )－2dε12－4dε13＋2dε23 ＋2dφ3＋2dφ1) 

dY2 = (√6/8) (dε33 ＋(dε22－dε11 )＋2dε12－2dε13－4dε23 ＋2dφ3＋2dφ2)  

dY3= (√6/8) (dε33 －(dε22－dε11 )－2dε12＋4dε13－2dε23 ＋2dφ3－2dφ1) 

dY4 = (√6/8) (dε33 ＋(dε22－dε11 )＋2dε12＋2dε13＋4dε23 ＋2dφ3－2dφ2)                 (1) 

There are another similar relations for X [100] and Y [010] 
groups. 

To be remarked in relation of (1), rotation dφ1, dφ2 and dφ3 
can be directly deduced by putting either of three components 
from the eight shears dX1, dY1, dX2, dY2, dX3, dY3, dX4, dY4 
to zero which coincides with Taylor’s five shears theory [3] as 
more concretely demonstrated in 2.2 ( bcc metal). 

The theory calculates sum of total shears by (2) each in 
these three groups of Z [001], X [100] and Y [010] and 
chooses minimum of them based on Taylor’s theory [3] as the 
minimum total slip amount Γ and resultantly selects glide 
group which achieves maximum work satisfying yield surface 
of material. 

Γ = a + b + c + d 

= 2
4

2
4

2
3

2
3

2
2

2
2

2
1

2
1 dYdXdYdXdYdXdYdX +++++++     (2) 

Taylor factor M value has been also obtained as total shears, 
i.e., the minimum total slip amount Γ as shown in (2). In (2), it 
shall be remarked that if angle between plane whereon dX and 
one whereon dY is θ, there exists, on the other hand, also 
supplementary angle 180 °–θ owing to equivalent reverse slip 
on opposite side. Therefore if we ask average synthetic shear 
for both, their cosine terms cancel each other in average of the 
cosine theorem and finally there leaves only dX2 + dY2 term in 
the average irrespective of angle in fcc, bcc or NaCl whatever. 

It may be important to understand that the M value depends 
solely both on crystal structure (fcc, bcc, NaCl) and 
deformation style, and doesn’t depend on a degree of 
deformation. Thus, distribution (isosurface map) of Taylor 
factor M value in 3D ODF coordinates can be drawn in 
rolling. 

2.2. Bcc Metal 

There are three kinds of �110� planes having a common 
glide axis �111� in bcc crystal such as those illustrated on 
Figure 2 in case around Z [001] axis. 

 

Figure 2. Three kinds of �110�  planes composed of �110� , �101�  and 
�011� ones around the principal Z [001] axis with a common slip direction 

�111� in bcc crystal. 



36 Hiroaki Masui:  Simulation for Texture Formation of Both Face-Centered-Cubic Metals and Body-Centered-Cubic   
Ones Based on Rotational Symmetry among Principal Axes 

 

 

Figure 3. Example of an intersection between {101} and {011} in Figure 2. 

(a) Eight slips in bcc cubic metal wherefrom five slips are needed for deformation and crystal rotation. 
(b)Two possible combinations of the five slips (○) and two impossible ones (×) in the model by the rule of the Taylor’s formidable restriction of the five slips, 
“all of which must be chosen so that two shears occur on each of two planes, one on the third and none on the fourth”, are exemplified in case of dX1=dY1=0 
(dX2=0 or dY4=0 is possible). 

Calculation method is exemplified as follows. 

Firstly, an intersection of two kinds of �110� planes from 
the three ones composed of �110� , �101�  and �011�  as 
illustrated on Figure 2 is chosen. As example, an intersection 
between �101� and �011� in Figure 2 is chosen and shears 
on �101�  group planes on four �111� directions in case 
around Z [001] axis are named by turns dX1, dX2, dX3 and dX4 
and those on �011� group planes are done dY1, dY2, dY3 and 
dY4 correspondently as shown in Figure 3. These are 
geometrically correlated to strain components dε11, dε22, dε33, 
dε12, dε13 and dε23 and crystal rotation dφ1, dφ2 and dφ3 around 
the principal axes X, Y and Z noted as 1, 2 and 3 respectively 
as demonstrated in (3) and accordingly a crystal rotation and 
texture formation can be calculated for the bcc crystal during 
any of compression, elongation, rolling and others by putting 
three of the eight shears to zero. 

Second the eight slips, however, must be reduced to five 
shears according to Taylor’s formidable combination 
(restriction) rule of the five slips as follows [3]. The 
geometrical condition rule for a given strain cannot be 
satisfied if the five shears are chosen so that two are taken 
from one group, i.e. one slip plane, and the remaining three are 
chosen one from each of the three remaining groups, in other 
words, all of which must be chosen so that two shears occur on 
each of two planes, one on the third and none on the fourth. 
This rule was properly applied to the present model as 
exemplified in Figure 3. By the Taylor’s restriction rule of the 
five, Figure 3 in case of dX1 = dY1 = 0 shows two possible 
combinations（○）of the five slips and two impossible ones (×). 

This phenomenon of two possible combinations on Figure 3 
appears in each case of dXi = dYi = 0 for four �111� 
directions (i=1~4), and furthermore every for each group 
around X, Y and Z axes. 

This shows 24(=2×4×3) possible combinations in the 
intersection of two groups of �110�  planes (in this case 
�101� and �011�
 from the three ones. There are three kinds 
of intersections of two �110� planes as illustrated on Figure 2 
and the model accordingly provides with 72(=24×3) possible 
combinations of the five slips as a whole. 

In this case of the example between �101�  and �011� 
from the three kinds of intersections around Z [001] axis in 
Figure 2, there are relations as demonstrated in (3) among the 
shears dX1, dX2, dX3 and dX4 on �101� group planes on four 
�111� directions as well as dY1, dY2, dY3 and dY4 on �011� 
group planes, and strain components, crystal rotations. Similar 
equations exist also in each case around X [100] and Y [010] 
cases. Further, applied to (3), a calculation is carried out for 
crystal rotation in the possible case (○) of dX1=dY1=0, dX2=0 
on Figure 3 according to the Taylor’s restriction rule of the 
five slips and its solution is introduced as in (4). The above 
example is only one of total 72 possible combinations of the 
five slips by the three kinds of intersections of two �110� 
planes on �111� directions in bcc metal and each of the 72 
has respectively similar equations as (4). Third an actual 
crystal rotation by (4) proceeds only for the case of which the 
total slip amount Γ (gamma) defined by (2) is minimum 
among the 72 cases. Calculation of (2) is performed by 
inserting both equation (3) and (4) to (2). Suppose one of the 
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72 cases is selected in the model. 

dX1 = (√6/4)( dε11 + dε12 +dε13－2 dε23 + dφ2－dφ3) 

dX2 = (√6/4)(－dε11 + dε12－dε13－2 dε23 －dφ2－dφ3) 

dX3 = (√6/4)( dε11 + dε12 －dε13 + 2 dε23 － dφ2－dφ3) 

dX4= (√6/4)(－dε11 + dε12+ dε13+ 2 dε23 +dφ2－dφ3)  (3) 

dY1= (√6/4)(dε22 + dε12－2dε13+ dε23 －dφ1+dφ3 ) 

dY2 = (√6/4)(－dε22 + dε12＋2dε13＋dε23 －dφ1+dφ3 ) 

dY3 = (√6/4)(dε22 + dε12＋2dε13－dε23 +dφ1+dφ3 ) 

dY4 = (√6/4)(－dε22 + dε12－2dε13－dε23 +dφ1+dφ3 ) 

An actual crystal rotation is carried out as follows. 

dφ1 = dε22 + 2 dε12 －2dε13－dε23 

dφ2 = －dε11－dε13                 (4) 

dφ3 = dε12 －2 dε23 

3. Experimental Results 

3.1. Fcc Metal 

According to the model in 2.1, Taylor factor M value is 
calculated as Γ itself, i.e. the minimum total slip amount in (2). 
Figure 4 shows onset (minimum) isosurface of the M value in 
the ODF of fcc metal under cold rolling. Figure 5(1) is 
isosurface of M =1.81 in the ODF coordinates and Figure 5(2) 
shows 2D perspective of it through Φ axis where band of 
�001
�01�0� is apparent, and other spots are all {100}<001> 
cube. Thus in fcc metal onset (minimum) isosurface of Taylor 
factor M value under cold rolling solely indicates the cube 
orientation. 

 

M=1.75(fcc) 

 

M=1.77 

 

M=1.81(fcc) 

Figure 4. Initial (Minimum) isosurface of Taylor factor M value in the ODF 

coordinates of fcc metal under cold rolling. 

 

M=1.81(fcc). 
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M=1.81(fcc) (perspective). 

Figure 5. Isosurface of Taylor factor M=1.81 in the ODF coordinates of fcc 

metal under cold rolling. 

3.2. Bcc Metal 

According to the model, Figure 6 demonstrates how final 
stable rolling orientation in bcc �11 11 8
 �4� 4� 11� is derived 
from initial orientation �1 1 2
�1� 1� 1� with increase of strain. 
At each strain the model selects one solution among the 72 
cases composed of 24 ones each belonging to any one of X, Y 
and Z group. In this Figure, it may be noted i) how the model 
gains the orientation with strain by way of selecting one of the 
partitions ����, ���� and ���� independently in the 
rotational symmetrical system and ii) how it holds a 
continuous value of Γ (gamma), the minimum total slip 
amount by way of (2) through the three X, Y and Z group, so 
smoothly as not to give such a fatal discontinuity in the value 
of Γ (gamma) at each strain as to lose the symmetry in the 
system. This is in reasonable accord with an expectation that 
amount of the external work by applied force to material shall 
be continuously changed with strain. 
 

 

Figure 6. Simulation results by the model how a final stable rolling orientation �11 11 8
�4� 4� 11� of bcc metal is derived from initial 

orientation �1 1 2
�1� 1� 1� with increase of strain. 
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As shown in Figure 6, due to symmetry [1], crystal selects 

one of X [100], Y [010] and Z [001] groups (mode) in each 
strain, holding a continuous value of Γ (gamma), the 
minimum total slip amount by way of (2) which is a 
conservation quantity [2] in the three X, Y and Z symmetry 
group and even Taylor factor M value itself of the material. 
In the column of “mode” in Figure 6, it is cleared how the 
model selects one solution among the 72 cases composed of 
24 ones each belonging to any one of X, Y and Z group at 

each strain. 
Figure 7 illustrates by the model dynamically how 

orientations in ODFs map at rolling ratio of (a)6%, (b)38%, 
(c)62% and (d)95% are rigorously accumulated from initial 
random ones with strain in rolling by the present model and 
consequently the three stable orientations of bcc metal in 
rolling [4]- [9] such as �112��110�, �11 11 8��4 4 11� and 
�100��011�are attained as drawn on Figure 7(d). 
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Figure 7. A visible demonstration by the model how and when the rolling orientation in bcc metal changes and appears in the ODFs map which shows the 

orientations at rolling ratio of (a)6%,(b)38%,(c)62% and (d)95%. 

4. Discussion 

4.1. Fcc Metal 

As shown in Figure 4 and Figure 5 the isosurface of 

distribution of Taylor factor M value in the ODF coordinates of 
fcc metal under cold rolling is characterized by existence of the 
cube structure at onset (minimum) of the isosurface. The cube 
structure gradually develops and forms a skeleton of 
distribution of the M value in cold rolling of fcc metal. This 
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cube M value may be plausibly related with the cube structure 
in recrystallized fcc metal. Figure 5(1) shows notation A, B and 
C of representative {100}<001> spots at the onset of Taylor 
factor M = 1.81 in fcc metal and Figure 5(2) shows details of the 
M value by 2D perspective of it through Φ axis. From those 

figures, Figure 8 is plotted for orientation change from the cube 
{100}<001> where orientation changes gradually 
{100}<001>→{100}<016>→{100}<013>→{100}<012>→{
100}<023>→ {100}<0, 9, 11> with decrease of φ1 at spot “B” 
in Figure 5(1). 

 

Figure 8. Change of Taylor factor M value with decrease of φ1 from cube structure {100}<001> at point B in the ODF coordinates of Figure 5(1) of fcc metal 

under cold rolling. 

 

Figure 9. Change of Taylor factor M value with increase of φ2 from cube structure{100}<001> at point C in the ODF coordinates of Figure 5(1) of fcc metal 

under cold rolling. 

Figure 9 is plotted for orientation change from the cube 
{100}<001> where orientation changes gradually 
{100}<001>→{016}<100>→{013}<100>→{0, 6, 13}<100> 
with increase of φ2 at spot “C” in Figure 5(1). 

Interesting is the reports [10]- [20] that there were many 
observed recrystallized grains of indiscrete orientations in fcc 
metal after cold rolling such as {100}<013>, {100}<012> and 
{015}<100>, {013}<100>, {012}<100>, {034}<100>, etc. 
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other than the cube {100}<001> orientation. These coincide 
with orientations in range of Figure 8 and Figure 9. Recently 
with development of observation with EBSD, the cube-family 
orientation grains are known to grow in clusters around the 
cube grain [12-14]. 

On the other hand, similar hypothesis [19] that “the 
minimum possible” Taylor factor M value of fcc metal in cold 
rolling at cube orientation with lowest dislocation density, 
shall encourage recovering from cold state more easily, could 
be linked with the present study. The present study may 
plausibly explain why the cube and the cube-family coexist in 
fcc recrystallized metal by means of low Taylor factor in 
addition to a fact that the {100}<0kl> grains in hot band 
inevitably rotate toward the cube by cold rolling [12]- [15]. 

4.2. Bcc Metal 

According to the model, Figure 6 illustrates how final stable 
rolling orientation in bcc �11 11 8
 [4� 4� 11] is derived from 
initial orientation  �1 1 2
[1� 1� 1] with increase of strain 
sequentially selecting one among the 72 cases composed of 24 
ones each belonging to any one of X, Y and Z group. By the 
model, it has been already shown that stable �112
[1�10] of 
bcc metal is derived from initial orientation �111
[1�10] in 
similar way [21], but at that time other stable orientation had 
not been ascertained yet. 

As in Figure 6, Γ (gamma), i.e. the minimum total slip 
amount, by way of (2) in the three X, Y and Z group, is not 
constant and changes but so gradually as not to give such a 
fatal discontinuity in the value of Γ (gamma) as to lose the 
symmetry in the system. As generally known, even in the 
stable system composed of extreme symmetry, it can lose the 
symmetry immediately and transiently when exposed to 
external forces or other physical energy. Even in this case, 
however, as it is still the orthodoxy accepted by the majority, if 
a break of symmetry is so small where the symmetry recovers 
immediately and sustain still continuously the original 
symmetric state that the symmetry may still give birth to 
forceful analytical means to the phenomenon [22]-[24]. 
Besides example of Figure 6, it is supposed that such 
phenomena by the model may happen through the whole 
orientation as shown in Figure 7. 

Similar model on fcc metal as described in model 2.1 
requires 24 cases in total for one solution where two 
combinations of five slips are accepted by the Taylor’s 
formidable restriction rule of the five slips similarly as in 
Figure 3 on �111� planes on every four directions of 
�110� for each group of X, Y and Z principal axes [25]- [27]. 
A ratio of the 24(=2×4×3) of fcc metal to the 72 of bcc metal 
which has three intersections of �110� planes, implies a ratio 
of one �111� slip plane on direction �110� of fcc metal to at 
least three slip planes �110�, �112� and �123� on direction 
of �111� in the pencil glide theory of bcc metal [4] [28] [29]. 

5. Conclusion 

The principal axes of X [100], Y [010] and Z [001] are 
perpendicular to each other as the three orbits of 

�±��, �±�� and �±��  by a rotational symmetry of 
mathematical group theory in such way that component X is 
not related to Y or Z one another whichever. There is a 
conservation quantity in the symmetry. As Taylor proved, 
crystal rotates so that slips occur associating themselves with 
the minimum total slip amount. The minimum total slip 
amount in crystal by Taylor corresponds to both the 
conservation quantity in the rotational symmetry of cubic 
crystal and even Taylor factor M value itself of the material. It 
will be demonstrated in this study that these approaches are 
useful for both face centered cubic (fcc) metal and body 
centered cubic (bcc) metal. 

1. In fcc metal, distributions in 3D ODF coordinates for 
Taylor factor M value, i.e. the minimum total slip amount under 
cold rolling was calculated based on Taylor’s formidable 
restriction rule of the five slips. Main results are as follows. In 
fcc metal, orientation at onset (minimum) of the M value shows 
the cube {100}<001> and the M value increases gradually 
{100}<001>→{100}<016>→{100}<013>→{100}<012>→
{100}<023>→{100}<0, 9, 11> with decrease of φ1 or 
{100}<001> → {016}<100>→ {013}<100> → {0, 6, 13} 
<100> with increase of φ2, most of which were experimentally 
reported as indiscrete recrystallized orientations with lowest 
dislocation density named the cluster composed of cube and 
cube-family in fcc metal. 

2. In bcc metal, an intersection of two kinds of �110� 
planes from the three ones composed of �110�, �101� and 
�011� is chosen. Based on the rotational symmetry of the 
principal axes of X [100], Y [010] and Z [001], 72 possible 
combinations of the five slips on �110� planes based on 
Taylor’s formidable restriction rule of the five slips are 
calculated among three kinds of intersections of 
two �110� planes on �111� direction in bcc metal. Crystal 
rotation is carried out by only one solution among the 72 by 
the minimum total slip amount at every strain and simulates 
properly lengthy of accumulated researcher’s experimental 
results such as the three stable orientations of bcc metal in 
rolling �112��110�, �11 11 8��4 4 11� and �100��011�.  
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