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Abstract: In this paper, the existence of the solution of the parabolic partial fractional differential equation is studied and the 

solution bound estimate which are used to prove the existence of the solution of the optimal control problem in a Banach space 

is also studied, then apply the classical control theory to parabolic partial differential equation in a bounded domain with 

boundary problem. An expansion formula for fractional derivative, optimal conditions and a new solution scheme is proposed.  
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1. Introduction 

In an optimal control problem, one adjusts control in a 

dynamic system to achieve a goal. The underlying system 

can have a variety of types of equations such as ordinary 

differential equations (see [1], [2]), partial differential 

equations [3], fractional differential equations (see [4], [5] 

and [6]), stochastic differential equations (see [7], [8], [9] and 

[10]) or Integra-partial differential equations. 

Many processes in physics and engineering are described 

by systems of equations in which derivatives of arbitrary 

order appear (not necessarily integer). mention problems of 

describing behavior of viscoelastic diffusion – wave 

problems. As a matter of fact, if one wants to include 

memory effects, i.e., the influence of the part on the behavior 

of the system at present time one may use fractional 

derivative to describe such an effect. In principle, there are 

two different approaches to “fractionalization” of the 

dynamic of a system (see [11], [12] and [13]). In the Fust 

procedure, integer order derivatives are simply replaced by 

derivatives of real order. 

In the second approach, considered to be more 

fundamental from the physical point of view, 

Functionalization is made on the level of Hamilton’s 

principle (see [14], [15] and [16]). 

This approach, however, leads to differential equations of 

the process involving both left and right fractional and partial 

fractional derivatives, thus making the effective solution 

procedure more difficult. For more results concerning 

fractional calculus and variational principles with fractional 

derivatives, (see [17], [18], [19] and [20]). 

In this paper, considering systems of fractional partial 

differential equation. denoting A (α, t), B(α, t), 

 (t) and (t) π µ  are controls. denoting u(x, t) as the state. The 

state function u(x, t), satisfy the following partial differential 

fractional equation: 

0 x 0 t

2 2

2

D D  u(x,t)  A( , t) D(x, ) u(x,t) - 

B( , t) E( , ) =  A( , t)f( , )   
u u

x x
x t x

β α α β

α β α β

−

∂ ∂
∂ ∂ ∂

         (1) 

For (x, t) ∈ RT = {(x, t): x ∈ δ = [0, 1]; 0<t<T},  

A (α, t), B (α, t), E(x, β ), D (x, β ) and  

F (x, β ) ∈ C
1
 [0, 1] with conditions 

0

u (0, t) u (1, t)
= (t) , = (t) ,

x x

 

u(x,0)  u ( )                              x

π µ∂ ∂
∂ ∂

=

          (2) 
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Such that (t)π , (t)µ , A (α, t) and B (α, t) are called 

control parameters. 

Note that, 

t

0 t

0

1 ( , )
D  u(x,t)     d

(1 - ) ( )

d u x

dt t

α
α

τ τ
α τ

=
Γ −∫     (3) 

And,  

x

0 x

0

1 ( , )
D  u(x,t)     dy

(1 - ) ( )

d u y t

dx t y

β
ββ

=
Γ −∫     (4) 

The control variables and the state function affect the goal 

which is called the objective functional. 

T

2 2

0

2 2

d

1
 ( , ,  , )   [ ( )  (t) 

2

                      (t)  (t)] dt

1
   [ ( , ) - u (x)] dx                 

2

A B

u

J A B A t B

u x T

π µ

δ

π µ ω ω

ω π ω µ

ω

= +

+ +

+

∫

∫

     (5) 

using k to expand the formula for the left fractional 

derivative, then prove the existence of the control variables 

and corresponding state that achieve the maximum (or 

minimum) of our objective functional in Banach space. This 

paper is organized in the following way. In section 2 

introducing an expansion formula for fractional derivatives. 

In section 3 studying the solution bounded estimates which 

are used to show the existence of optimal control.  

2. The Expansion Formulas for the Left 

Fractional Derivative 

The expansion formula for fractional derivative, without 

reference to the distribution theory Let Vn(g
(p)

) (see [21]), 

n∈N, denote the n-th moment of the function g
(p)

, where g
(p)

, 

p ∈ N is the p-th derivative of g, i.e. 

Vn g
(p)

 (x, t) = 

t

( ) n

0

( , )  d
p

g x τ τ τ∫               (6) 

In the following procedure, it is assumed that u ∈C
2
 [0, b] 

such that u, u
(1)

 are continuous on [0, b] and u
(2)

 ∈L
1
(0, b). 

By partial integration in (3)  

(1) 1-
0 t 0 0

t

1 (2)

0

1 1
D  (x,t)    u  (x)   u  (x)t

(1 - ) (2 - )

1
                    ( )  u  (x, ) dt

(2 - )

                                                            

u

t

α α

α

α α

τ τ
α

−

= +
Γ Γ

+ −
Γ ∫  (7) 

where, 0  t b.< ≤

 

 By using the binomial formula  
p p

p 0 p 0

( 1)  (p - )
(1 + z)   =  z    z ,

(- ) p!

where, z 1.

p

p

γ γ γ
γ

∞ ∞

= =

  − Γ=  Γ 

<

∑ ∑
  (8) 

Expression (8), holds also for z = 1 if and only if γ > 1 and 

z = -1, γ ≠ 0 if and only of γ > 0 (see [22]).  

Also it is well known that:  

1  

1
  C   ,    -1, -2, .... and p

p p γ
γ

γ+
 

≤ ≠ → ∞ 
 

    (9) 

From (8), put (γ = 1 - α) the equation (7) becomes  

(1)- 1-
0 t 0 0

t

1- (2)

p 10

1 1
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Integrate series in (10) term by term. Also, by using the 

relation  

t t

(2) p p (1) (1) 1

0 0

( , )  d   t  u  (t) - p   d ,

    where  p 1.

pu x uτ τ τ τ τ−=

≥
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Using equation (10), and by using the equation (6) obtains, 

-
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By integrating by parts in (11) and rearranging the result, 

obtains  

{

-

0 t
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Where it is established from equation (6) 

t

1

0

  -(p - 1)  g(x, ) d ,

,  p  2,3,...

pVp

where

τ τ τ−=

=

∫ɶ

 

Note that the moments  Vpɶ , p = 2, 3,… are solutions to 

the following system of differential equations. 

Vpɶ  (x, t) = - (p – 1) t
p-2

 u (x, t), 

Vpɶ  (x, 0) = 0, p = 2, 3, … 

Now the equation (12) become  
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To keep on the functions B, A, C are continuous functions. 

Must be using (13) with finite number of terms. (replace ∞ 

by N) and the equation (13) become 

0 t

(1)

D  (x,t)  A ( ,t) u (x,t) 

                   B( ,t) u (x,t)  C( ,t)   

uα α

α α

≈

+ −
    (14) 

Now  

β β
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Obviously; 

β
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          + B ( , t) D (x, β) u

u
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Such that D, E, A, F ∈ C
1
 (0, 1) 

Then, 

β
0 x 0 t

2

(1)

D  D  u(x, t) - A ( , t) D (x, β) u(x, t)

u
          - B ( , t) E (x, β) = 

x t

u
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x
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α α

α

α

α

∂
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∂
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From equation (1) the equation (16) becomes  

(1)

2

2

u
A ( , t) E (x, β)  + B ( , t) D (x, β) u

x

u
          - F (x, β) = A ( , t) f (x, β)   

x
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α

∂
∂
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Such that; 

N
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Where it is established from equation (6), 

x

P-1
P

0

M  = - (P - 1) y  g(y, t) dy,       p = 2,3,...∫
⌢

 

Note that; PM
⌢

 is a solution to the following system of 

differential equations  

P-2
PM  (x, t) = -(P - 1) x  u(x,t),

x

∂
∂
⌢

 

(o, t) = 0, P = 2, 3,… PM
⌢

 

Now the equation (17) can be write on the form 

2

2

u u
 = (α, t) N (x, β)  

t x

u
      + (α, t) Z (x, β)  

x

      + K(x, β) H ( , t)α

∂ ∂
∂ ∂

∂
∂

ℓ
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Such that; 
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A (α, t)
(α, t) =  

B (α, t)

E (x, β)
N (x, β) =

D (x, β)

f (x, β)
Z (x, β) =

D (x, β)

F (x, β) 1
K (x, β) =  , H( , t) = 

D (x, β) β ( , t)
α

α

ℓ

 

Suppose that 

N(x, ) =  Z (x, β)
x

β ∂
∂  

Then 

u u
 =   (α, t) Z (x, β)  

t x x

      + K (x, β)  H ( , t)α

∂ ∂ ∂ 
 ∂ ∂ ∂ 
ℓ

 

noting that the dynamic system in (1) replace to the 

following class of linear parabolic partial differential 

equations. 

T

u u
 (x, t) =   ( , t) Z (x, β) 

t

               + K (x, β) H ( ,  t) R       

x x
α

α

∂ ∂ ∂ 
 ∂ ∂ ∂ 
ℓ

     (18) 

For (x, t) ∈ TR , {(x, t): x ∈ δ = [0, 1]; 0 < t < T} 

with condition  

u u
 (0, t) = (t) ,  (1, t) = (t)   

x x
π µ∂ ∂

∂ ∂
 

u (x, 0) = u0 (x) 

Where K(x, β) are positive geometry parameters and the 

controls H (α, t), ℓ (α, t), π(t) and µ (t) represent the 

diffusivity, interior and (Neumann) boundary controls. (see 

[23], [24], [25] and [26]) 

3. Existence of Time Optimal Control for 

a Class of Partial Fractional 

Differential Equations 

Consider the control system in (18) and the state function 

u(x, t) affect the goal, which is called the objective functional  

T

2 2
µ

0

2 2
A B

2
d

1
J( ,  , A, B) =  ω  γ (t) +  µ (t) 

2

                                 + ω  A ( , t) + ω  B ( , t) 

1
                                 +  ω  u (x, T) - u (x)  dx 

2
u

γ

δ

π µ ω

α α

∫

∫

 

Now seeking to prove the existence of the control variable 

and corresponding state that achieve the maximum (or 

minimum) of our objective functional in Banach space. 

Let the optimal controls λ = 
T( ,  , A, B)π µ  as follows: 

Let {γn}, {µn}, {An}, and {Bn} be four minimizing 

sequences, such that 

n n n n
n γ,µ,A,B
lim  J (  , µ  , A , B ) = inf  J ( , µ, A, B)π π
→∞

 

Assume that un = u (γn, µn, An, Bn) be corresponding a 

solution of system (18) 

This system existence and satisfies the bound estimate 

T

2 2
2 n n

n 2

R

u u
u  +  +  dx dt  M

x t
′

 ∂ ∂
  ≤
 ∂ ∂ 
∫  

Where M2 is a constant independent of n (see [27] and 

[28]). By the week convergence theory [29], can extract 

weakly convergent sequences. 

n
n

u u
   , u   u , 

t t

∂ ∂→ →
∂ ∂

 

(πn, µn, An, Bn) → (π, µ, A, B) 

Weakly in L2 (0, T; (H2 (δ))\), L2 (0, T; H2 (δ)) and L∞ 

(0, T) respectively. Then the sequence {un} admits a 

subsequence which converges strongly in (L2 (δ)). 

Therefore it possible to show the existence of the optimal 

controls, 

( )

*
n

n
n

T

2 2 2 2
γ n n A n B n

n
0

n
n n

J (λ )  i n f   (x, T) dx 

  + i n f ω  γ  + ω  µ  + ω  A  + ω  B  dt 

   lim  i n f  J (λ )

u

δ

µ

→∞

≤

≤

∫

∫  

4. Conclusion 

In this paper, explaining the formula for fractional 

derivative, introducing a new solution scheme for the partial 

fractional optimal control. 

This paper is organized in the following way. In section 2 

introduced an expansion formula for fractional derivatives. In 

section 3 studied the existence of the solution of the parabolic 

partial differential equation and studied the solution bounded 

estimate of the optimal control problem in a Banach space. 

5. New Research 

We will work on deducing necessary conditions for a state 

/ control / terminal time triplet to be optimal in stochastic 

fractional optimal control problems, such that the dynamic 

control system involves stochastic and fractional order 
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derivative and the terminal time is free or constant. We will 

do that by solving typical problems using these conditions. 

 

References 

[1] A. Debbouche and M. M. El-Borai, "Weak almost periodic 
and optimal mild solutions of fractional evolution equations". 
Electronic Journal of Differential Equations, vol. 2009, pp. 1-
8, 2009. 

[2] M. M. El-Borai, "Some probability densities and fundamental 
solutions of fractional evolution equations". Chaos, Solitons & 
Fractals, vol. 14, pp. 433-440, 2002. 

[3] M. M. El-Borai, K. E. S. El-Nadi, and E. G. El-Akabawy, "On 
some fractional evolution equations". Computers and 
mathematics with applications, vol. 59, pp. 1352-1355, 2010. 

[4] O. P. Agrawal, A general formulation and solution scheme for 
fractional optimal control problems. Nonlinear Dynam. 38 
(2004), no. 1-4, 323-337. 

[5] O. P. Agrawal, A formulation and numerical scheme for 
fractional optimal control problems. J. Vib. Control 14 (2008), 
no. 9-10, 1291-1299. 

[6] O. P. Agrawal, O. Defterli and D. Baleanu, Dumitru Fractional 
optimal control problems with several state and control 
variables. J. Vib. Control 16 (2010), no. 13, 1967-1976. 

[7] G. S. F. Frederico and D. F. M. Torres, Fractional optimal 
control in the sense of Coputo and the fractional Noether’s 
theorem. Int. Math. Forum 3 (2008), no. 9-12, 479-493. 

[8] G. S. F. Frederico and D. F. M. Torres. Fractional conservation 
laws in optimal control theory, Nonlinear Dynam. 53 (2008), 
no. 3, 215-222. 

[9] C. Tricaud and Y. Chen. An approximate method for 
numerically solving fractional order optimal control problems 
of general form. Comput. Math. Appl. 59 (2010), no. 5, 1644-
1655. 

[10] C. Tricaud and Y. Chen. Time Optimal Control of Systems 
with Fractional Dynamics, Int. J. Differ. Equ. Appl., Volume 
2010 (2010). Article ID 461048, 16 pages. 

[11] M. M. El-Borai, W. G. Elsayed and R. M. Al-Masroub, Exact 
Solutions for Some Nonlinear Fractional Parabolic Equations, 
Inter. J. Adv. Eng. Res. (IJAER), vol. 10, No. III, Sep. 2015, 
106-122. 

[12] M. M. El-Borai, W. G. Elsayed and F. N. Ghaffoori, On the 
Cauchy Problem for Some Parabolic Fractional Partial 
Differential Equations with Time Delays, J. Math. & System 
Scie. 6(2016), 194-199. 

[13] M. M. El-Borai, W. G. Elsayed and R. M. Al-Masroub, Exact 
Solutions for Some Nonlinear Partial Differential Equations 
via Extended (G'/G) – Expansion Method, Inter. J. Math. 
Trends and Tech. (IJMTT) – Vol. 36, No. 1-Aug 2016, 60-71. 

[14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. Theory and 
Applications of Fractional Differential Equations. Elsevier, 
North-Holland Mathematics Studies, 2006, 204. 

[15] M. M. El-Borai, W. G. Elsayed and M. Taha, On The 
Fractional Optimal Control Problem wit free End Point, 
American Journal of Theoretical and Applied Statistics, ISSN: 
2326-8999; (2017). 

[16] Zoran D, Nebosa Petrovacki, Optimality condition and a 
solution scheme for fractional optimal control problems, 
Struct. Multidisc Optim. 10.1007/s00158-008-0307-7, (2009) 

[17] Atanackovic TM, Stankovic B (2004) An expansion formula 
for fractional derivatives and its applications. Fractional 
Calculus and Applied Analysis 7(3): 365–378. 

[18] Atanackovic TM, Stankovic B (2007a) On a class of 
differential equations with left and right fractional 
derivatives. ZAMM, Z Angew Math Mech 87: 537–546. 

[19] Atanackovic TM, Stankovic B (2007b) On a differential 
equation with left and right fractional derivatives. Fractional 
Calculus Applied Analysis 10: 138–150. 

[20] Mahmoud M. El-borai, M. A. Abdou, E. M. Youssef, On some 
Approximate analytical solution for mathematical model of 
carcinogenesis using Adomian decomposition method. 

[21]  Dummit, D. S., Statistics and probability, Prentice Hall, John 
Wiley & Sons, Hoboken, NJ. 

[22]  Knapp, W.,' Advanced Real Analysis, Birkhauser', Boston, 
2005. 

[23] Yuan L, Agrawal OP (2002) A numerical scheme for 
dynamic systems containing fractional derivatives. J Vib 
Acoust 124: 321–324. 

[24] M. El-Borai, K. El-Nadi, O. Mostafa, and H. Ahmed, 
"Numerical methods for some nonlinear stochastic differential 
equations," JOURNAL-KOREA SOCIETY FOR 
INDUSTRIAL AND APPLIED MATHEMATICS, vol. 9, p. 
79, 2005. 

[25] M. M. El-Borai, "The fundamental solutions for fractional 
evolution equations of parabolic type," International Journal 
of Stochastic Analysis, vol. 2004, pp. 197-211, 2004. 

[26] M. M. El-Borai, "On some fractional differential equations in 
the Hilbert space," Discrete and Continuous Dynamical 
Systems. Series A, pp. 233-240, 2005. 

[27] M. M. El-Borai, A. El-Banna, and W. H. Ahmed, "Optimal 
Control of a Class of Parabolic Partial Differential Equations," 
International Journal of Advanced Computing, vol. 36, 2013. 

[28] M. M. El-Borai, A.-Z. H. El-Banna, and W. H. Ahmed, "On 
Some Fractional-Integro Partial Differential Equations," 
International Journal of Basic & Applied Sciences, vol. 13, 
2013. 

[29] Gelfand, I. M.; Fomin, S. V. Silverman, Richard A., Calculus 
of variations. Mineola, New York: p. 3. ISBN 978-
0486414485. (2000). 

[30] Knapp, A. W., Advanced Real Analysis, Birkhauser, Boston, 
2005. 

 

 


