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Abstract: We present a necessary optimality conditions for a class of optimal control problems. The dynamical control 

system involves integer and fractional order derivatives and the final time is free. Optimality conditions are obtained. Feedback 

control laws for linear dynamic system are obtained. 
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1. Introduction 

An optimal control problem consists in the finding of 

control signals that make a system satisfy certain constraints 

while an objective functional is optimized. 

In a fractional optimal control problem, at least one 

fractional order derivative is present in the formulation of the 

problem. 

There is a growing interest to the modeling of physical 

phenomena in terms of fractional operators [Sec, e.g. 1, 2, 3, 

4, 5] and another modeling of phys-phenomena in terms of 

integer and fractional operators [see, e.g., 6, 7, 8, 9]. 

This gives us the sight that, sooner or later, such problems 

will appear in our real-world life. We inter some basic 

concepts on fractional calculus. We may say that the 

fractional calculus is the integral and differential calculus of 

real order. Now we will define,  
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Where; n-1<α< n, and Γ is the gamma function.  

The aim of this paper is to determine the necessary 

conditions for extreme of the functional of the form: 

 ( ( ), ( ), ) = ( ( ), ( ), )   ( ( ), )

T

a

J x t u t t L x t u t t dt x T Tφ+∫      (1) 

Subject to dynamic constraints on the form  

( )p p-1

a t a t a tD  x(t)  f x(t), D  x(t), ..... D  x(t), u(t), tt
α αα=    (2) 

x(a) = xa,                                    (3) 

Where 0 < α < 1, 1 < α2 < 2,… p-1 < αp < p, and x ∈ R
n
, u 

∈ R
m
 are the state and control vectors respectively, and p is 

an n-dimension column vector. It is assumed that L is a 

differentiable function on the domain 2[ , [a ∞ ×ℝ  and φ is a 

differentiable function on the domain [ , [a ∞ ×ℝ . We assume 

that T is a variable number with a < T <∞. We can say that 

our problem result from the basic functional: 

J (x(t),u(t),t) = 

b
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b

T

L(x(t), u(t), t) dt   (T, x(T))
ε

ϕ
+

+∫  

Where ε is a very small positive constant and a < T <b. 

1. If ε tends to zero, we can say that the objective 

functional J (x(t), u(t),t) will be functional with fixed 

ends point and this problem has already been studied 

for different type of optimal control problems (see. e.g. 

[7], [10]). 

2. If the objective functional J vanishes after period equal 

T then the objective functional J will be functional with 

free end point. 

2. Fractional Necessary Conditions 

The constraints of the problem are handled by introducing 

additional variable called Lagrange multipliers λ to define an 

augmented cost functional. 

]11

T

a t

a

a t

a t a t

J [x(t), t, u(t)]  H (x(t), D  x(t), ......, 

                     D  x(t), (t), u(t), t) - f (x(t), 

                    D  x(t), ......, D  x(t) )  dt

                      (x(T), 

p

p

α

α

αα

λ λ

ϕ

−

= 

+

∫

T),                             

       (4) 

Such that 

H(x(t), 
a tD  x(t)α , … 

a tD  x(t)pα
, λ(t), u(t), t) 

= L(x(t), u(t), t) + λT
(t) 

p-11

a t a tf(x(t), D  x(t), ......, D  x(t))
αα  is the Hamiltonian 

function and H(x(t), 1  x( ), ...,  x( ), u( ), )p

a aD t D t t t
αα

+ +  
is a 

function with continuous first and second partial derivatives 

with respect to all its arguments. It consists of all functions 

x( )t  which have continuous derivatives up to order n-1 on 

[ , [a ∞  with x
n-1

 absolutely continuous function. Now we 

consider variations x + δx, u + δu, λ + δλ and T + δT, with δ
x( )a = 0 by the imposed boundary condition (3). Using the 

well known fact that the first variation of J must vanish when 

evaluated along a minimizer, we get 

1

1

p

p

p p

p

T

a t

a ta

a t

a t

a t a t

a T
t T

H H
0   x(t)   D  x ( )  ........ 

x D x

H H H
     D  x(t)    u(t)   ( )

uD x

    -  (t)  D x(t) - ( ) D x(t)  dt

     T H - D x(t)    (T, x(T)
t

t

t

t

α
α

α
α

α α

α

δ δ

δ δ δλ
λ

λ δλ

ϕδ λ
=

∂ ∂= + + ∂ ∂

∂ ∂ ∂+ + +
∂ ∂∂




∂ + +  ∂

∫

) T

      (T, x(T)) x T                                  
t

δ

ϕ δ∂+
∂

ɺ

  (5) 

With the partial derivatives of H at (x(t),u(t), λ(t)). 

Integration by parts gives these relations (see [11], [12]) 
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We get; 
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Then the necessary conditions can be shown to be: 
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since variation functions where chosen arbitrarily, The 

following condition result from T is a free time, which is 

called the transversely condition  

p

a tH -  D ( )     (x(t),t) x   0, 
t x t T

x t
α φ φλ

=

∂ ∂ + + = ∂ ∂ 
ɺ     (11) 

and this condition is vanished if T is fixed.  

We can say that the system [8]–[11] is called the 

Hamiltonian system. 

3. Generalizations of the Functional 

Conditions 

In this section we will dealing with the free terminal time 

on the dynamical control system involving integer and 

fractional order derivatives. 

Using the performance functional (2) subject to the new 
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control system  

( )p p-1t

a t a t a tMx(t) D ( )  f(x(t), D ( ),  ... D ( ), ( ),x t x t x t u t t
α αα+ =ɺ  (12) 

Where the initial condition x(a) = xa, and 0 < α < 1, 1 < α2 

< 2,... p-1 < αp < p, with M ≠ 0 is a fixed real number. Our 

goal is generalizing the previous works on fractional optimal 

control problems by considering the end time T free and the 

dynamical control system (12) involving integer and 

fractional order derivatives. For convenience, we consider 

the one-dimensional case. However, using similar techniques, 

the results can be easily extended to problems with multiple 

states and multiple controls. 

We assume that the state variable x is differentiable and 

that the control u is piecewise continuous, the case M = 0 

with fixed T has already been studied for different types of 

fractional order derivatives (see, e.g., [2, 5, 13, 14]. In [15] a 

special type of the proposed problem is also studied for fixed 

T. 

By using (1), (3), (12) and the Hamiltonian function H, we 

can rewrite the initial problem as minimizing  
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Using the previous variations, the integration by parts in 

(6), and the following relation 
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Now, define the new variable 

δ x
T
 = [x + δx] (T + δT) – x(T). 

By using Taylor's theorem. 

[x + δx] (T + δT) – [x + δx] (T) 
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2
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Now, we define a Hamiltonian system as:
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for all t ∈ [a, T], 

the stationary condition 

H
  0

u

∂ =
∂

                                       (14) 

For all t ∈ [a, T], 

And the transversely conditions (if T and x(T) are free) 

a t
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αλ
φ φ

=
∂ ∂+ + =
∂ ∂
ɺ

            (15) 

[  ( )]   0.t TM tλ = =                           (16) 

A few Remarks: 

1. If T and x(T) are constant there is no transversely 

conditions. 

2. If T is constant only there is no transversely condition 

in (15) and the transversely condition become 

[  ( )]   0.t TM tλ = =  

3. If x(T) is constant only there is no transversely 
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condition in (16) and the transversely condition 

become 

4. p

a tH -  D ( )   x(t)   (t, x(t))   0
t x t T

x t
α ϕ ϕλ

=
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we note that when we tacked a new minimization on x 

(δx
T
) the transversely condition in (15) become itself 

transversely condition in (11), and this means that after 

this minimization the integer order derivative in the 

dynamical control system dose not effect on the 

transversely condition.  

4. Linear Feedback 

Feedback control laws can be found for a linear dynamic 

systems, where a quadratic performance index J is to 

minimized with free end final time T (see [16], [17]). The 

statement of the problem is to determine u(t) that takes the 

system from an initial state xa at time a to an unspecified 

point at time T. The path during a and T must minimize the 

quadratic functional. 

T

T T
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   (x  Qx  u  Ru) dt

2
J = +∫ɶ ,                      (17) 

Where Q is an (n ×n) symmetric positive semi-definite 

matrix and R is an (m × m) symmetric and positive definite 

matrix, subject to 

1

a tD  x(t)  Ax  Bu,
α = +                           (18) 

Where A is an (n × n) matrix of real numbers, x is an (n × 

1) state vector, B is an (n × m) matrix and u is an (m × 1) 

control vector. 

Now the necessary conditions for optimality becomes 
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The solution of the problem (17) and (18) can be obtained 

using equations (19) - (21). 
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We apply the method of successive approximations to 

solve the integral equation (22). To do this we set  
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The zero approximation λ0(t) is taken to be zero. Thus it is 

easy to see that  
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Where .  is a suitable norm of the matrix. Thus the 

required solution of equation (22) is given by  

λ(t)= 
1

0

( ( ) ( ))n n

n

t tλ λ
∞

+
=

−∑ . 

From the equation (20) the feedback control low for this 

control problem can be written as 

5. Conclusion 

This paper is devoted to discussion some aspects of the 

fractional order optimal control problems in which the 

dynamic control system involves integer partial and 

fractional order derivative with free/ constant terminal time. 

Necessary conditions for a state / control / terminal time 

triplet to be optimal are obtained. Linear feedback control 

laws are obtained. 
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New Research 

We will work on deducing necessary conditions for a state 

/ control / terminal time triplet to be optimal in stochastic 

fractional optimal control problems, such that the dynamic 

control system involves stochastic and fractional order 

derivative and the terminal time is free or constant. We will 

do that by solving typical problems using these conditions. 
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