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Abstract: This paper discussed some existence theorems for nonlinear functional integral equations in the space L^1 of 

Lebesgue integrable functions,by using the Darbo fixed point theorem associated with the Hausdorff measure of 

noncompactness. Also, as an application, we discuss the existence of solutions for some nonlinear integral equations with 

fractional order. 
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1. Introduction 

The subject of nonlinear integral equations considered as 

an important branch of mathematics because it is used for 

solving many problems such as physics, chemistry [4, 20]. 

In this paper we will use the technique of measures of 

noncompactness and Darbo fixed point theorem to prove the 

existence theorem for a nonlinear integral equation in the 

spaces 	��(��) . Also, as an application, we discuss the 

existence of solutions for some nonlinear integral equations 

with fractional order, which extends to some previous results 

in literature [2]. 

2. Notation and Auxiliary Facts 

Let � be the field of real numbers, �� be the interval [0,∞) 

and	��, be the space of Lebesgue integerable functions on a 

measureable subset [0,∞) of �,	with the standard norm. 

‖�‖�1(�+) = �|�(�)|∞
0 �� 

One of the most important operators studied in nonlinear 

functional analysis is the so-called superposition operator [1]. 

Assume that a function �(�, �) = 	�: � × � → �  satisfies 

Carath �́ odory conditions, i.e. it is measurable in t for 

any	� ∈ �	and continuous in � for almost all � ∈ �. 

Then to every function �(�)  being measurable on �,  we 

may assign the function (��)(�) = 	���, �(�)�, �	 ∈ 	�.	
The operator � in such a way is called the superposition 

operator generated by the function	�. 

We have the following theorem due to Appell and 

Zabrejko [1]. 

Theorem 2.1 

The superposition operator �  generated by the function �	 maps continuously the space ��	 !�"	��  if and only if |�(�, �)| ≤ $�(�) + %|�|	∀	� ∈ �  and � ∈ � , where $(�) ∈��	and % ≥ 0. 

Next, we will mention a desired theorems concerning the 

compactness in measure of a subset ( 

Of ��(��) [2]. 

Theorem 2.2 

Let X be a bounded subset of ��[0, ∞)  consisting of 

functions which are almost everywhere nondecreasing (or 

nonincreasing) on the interval [0,∞). Then X is compact in 

measure. 

Furthermore, we recall few facts about the convolution 

operator [19]. 

Let	*	 ∈ 	 ��(�)	 be a given function. Then for any function � ∈ ��, the integral 

(+�)(�) 	= 	, *(� − 	.)/0 �(.)	�., 

exists for almost every �	 ∈ 	��.	 Moreover, the function (+�)(�) belongs to the space	��. 
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Thus +	 is a linear operator which maps the space �� 

into	��	and	+ is also bounded since ‖+�‖12(3) ≤ ‖+‖12(3)‖�‖, for every	� ∈ ��; so, it will be 

continuous. 

Hence the norm 	‖+‖  of the convolution operator is 

majored by ‖+‖12(3).	
In the sequel, we have the following theorem due to Krzyz 

[18]. 

Theorem 2.3 

Assume that *(�, .) = *: ��4 → �  is measurable on �� 

such that the integral operator, (+�)(�) = , *(�, .)�(.)�., � ≥ 0/0 , 

maps ��  into itself, then K  transforms the set of 

nonincreasing functions from �� into itself if and only if for 

any 6 > 0, the following implication is true. 

�� < �4 → , *90 (��, .)�. ≥ , *90 (�4, .)�.. 

In the case space 	��(0,1)  we will use the following 

corollary 

Corollary 2.1 

Let *:: (0,1)4 → �� be ameasurable function generated the 

Fredholm operator K acting from ��(0,1)  into 	��1(0,1) , if 

for every ; ∈ (0,1) and for all ��, �4 ∈ (0,1) the implication 

holds, 

�� < �4 → , *:<0 (��, .)�. ≥ , *:<0 (�4, .)�.. 

Finally, we give a short note on measures of 

noncompactness and fixed point theorem. 

Let = be an arbitrary Banach space with ‖. ‖	and the zero 

element	>. 
Let also ( be a nonempty and bounded subset of = and ?@  

be a closed ball in E centered at	>and radius	A. 

The Hausdorff measure of noncompactness B(()  [3] is 

defined as 

B(() = 	 !�	CA	 > 	0:	�ℎ�A�	�� .�.	$	� ! ��	.E%.��	F	"�	=	.EGℎ	�ℎ$�	( ⊂ 	F	 + ?@I. 
The De Blasi measure of weak noncompactness [2] is defined as 

J(() = 	 !�	 KA > 0:	�ℎ�A�	�� .�.	$	L�$*MN	G"O;$G�	.E%.��	P	"�	=	.EGℎ	�ℎ$�	(	 ⊂ 	P	 + ?@ Q 
De Blasi measure can be expressed in the space ��(0,1) in a very useful formula, given by Appell and De Pascale [2] 

J(() = limU→0 VsupZ∈[ V.E; \� |�(�)|��: ] ⊂ (0,1), O�$.	] ≤ ^_ `aa 

Another measure was defined in the space �� [2]. For any ^ > 0, let 

G(() = M OU→0CsupZ∈[Csup b, |�(�)|��, ] ⊂ ��, O�$.	(]) ≤ ^_ cII, 
and 

�(() = limd→/Csup \� |�(�)|��, � ∈ (/
d `I 

Where meas ] denotes the lebesgue measure of sub set	]. 
put e(() = G(() + �((). 

Then we have the following theorem [2], which connects 

between the two measures B(()	and e((). 

Theorem 2.4 

Let X be a nonempty, bounded and compact in measure 

subset of ��(��), then B(() ≤ e(() ≤ 2B((). 

In the case space	��(0,1) we have the following theorems 

[2]. 

Theorem 2.5 

Let (  be abounded subset of ��(0,1)  and suppose that 

there is a family of measurable subset	CΩhI0ihijkl	m, of the 

interval � such that O�$.Ωh = G	�"A	�nA�N	G ∈ [0, O�$.	�o 

And for every � ∈ (:	G�(��) ≤ �(�4), (�� ∈ Ωh , �4 ∉ Ωh) 

Then the set ( is compact in measure. 

Theorem 2.6 

Let (		be an arbitrary nonempty and bounded subset of ��(0,1). If ( is compact in measure then J(�) = B	((). 
As an application of measures of noncompactness, we 

recall the fixed point theorem due to Darbo [5]. 

Theorem 2.7
 

Let q be a non-empty, bounded, closed and convex subset 

of = and let 6: q → q be a continuous transformation which 

is a contraction with respect to the measure of 

noncompactness, i.e there exist * ∈ [0,1)  such that r(6(() ≤ *r(() for any nonempty subset ( of, then A has 

at least one fixed pointq. 

3. Existence Solutions in st(u�) 

Now we will discuss the solvability for the following 

nonlinear integral equation 

�(�) = v(�) + , *�(� − .)��(., , *4(., w)�4�w, �(w)��w)�., � > 0x0/0  (1) 

in the space	��(��). 

We shall treat equation (3.1) under the following 
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assumptions which are listed below: 

(i) v ∈ ��(��) , almost everywhere positive and 

nonincreasing in	��(��). 
(ii) �:: �� × � → �,  = 1,2 are nonincreasing functions on ��with respect to � and �, satisfy 

Caratheodory conditions and there are two functions $: ∈ ��(��)	and two Constants	%: ≥ 0, 

such that |�:(�, �)	| ≤ $:(�) + %:|�| , for all � ∈ ��, � ∈ �  and �:(�, �) ≥ 0, ∀� ≥ 0,  = 1,2 

(iii) *:: �� 	→ �,  = 1,2  are measurable with respect to �	and .,	+:: �� → ��, and for all 6 > 0 

and ��, �4 ∈ ��, the following condition is satisfied 

�� < �4 ⟹ � *:(�� − .)�.9
0 ≥ � *:(�4 − .)�.9

0 ,  = 1,2 

Note that, from the assumption (iii) we deduce that the 

operator + is bounded with norm	‖+‖. 

(iv) %�%4‖+�‖‖+4‖ < 1. 

Then we can prove the following theorem 

Theorem 3.1 

Let the assumptions (i) − (iv) be satisfied, then the 

equation (1) has at least one solution, � ∈ ��(��)  being 

almost everywhere non increasing on	��. 
Proof 

Consider the operator H 

z�(�) = v(�) + � *�(� − .)��(., � *4(., w)�4�w, �(w)��w)�.x
0

/
0  

Then, the equation (3.1) takes the form �(�) = z�(�) 

First, let	� ∈ ��(��) 

Then using our assumption (i)→(iii), we have 

|z�(�)| ≤ |v(�)| + {� *�(� − .)��(., � *4(., w)�4�w, �(w)��w)x
0

/
0 { �. 

�|z�(�)|/
0 �� ≤ ‖v‖ + ‖+���+4�4�‖ 

≤ ‖v‖ + ‖+�‖‖��+4�4�‖ 

≤ ‖v‖ + ‖+�‖ � |��(., � *4(., �)�4(�, �(�))�.)|	��	|
0

/
0  

≤ ‖v‖ + ‖+�‖ �[$�(.) + %�| � *4(., �)�4��, �(�)��.|o	��	|
0

/
0  

≤ ‖v‖ + ‖+�‖[‖$�‖ + %� � � |*4(., �)�4��, �(�)�|�.	o��	|
0

/
0  

≤ ‖v‖ + ‖+�‖ }‖$�‖ + %�‖+4‖ �[$4(�) + %4|�(�)|o/
0 ~ �� 

≤ ‖v‖ + ‖+�‖�‖$�‖ + %�‖+4‖[‖$4‖ + %4‖�‖o� 	→ (1) 

From the last estimate, the space ��	 into itself using 

theorem (2.1) 

Moreover, using the estimate (1), we see that the operator z transforms the ball ?@  into itself, where: 

A = ‖v‖ + ‖+�‖‖$�‖ + %�‖+�‖‖+4‖‖$4‖1 − %�%4‖+�‖‖+4‖  

Let q@be subset of	?@ consisting of all functions being are 

almost everywhere positive and non-increasing on ��. 
Note that q@  is non-empty, bounded, closed, convex subset 

of ��(��). 
Moreover, in view of Theorem (2.2) the set	q@  is compact 

in measure. 

Next, by taking	� ∈ q@, 

Then �(�)  is almost everywhere positive and non-

decreasing on ��, and consequently +:�(�) is also of the same 

type (in virtue of the assumption (iii) and theorem (2.3)) 
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Further, the assumption (ii) permits us to deduce that, z�(�) = v(�) + +���+4�4�(�), 
is almost everywhere positive and non-decreasing on ��, this 

fact together with assertion z: ?@ → ?@ ,  gives that self-

mapping of the set q@ ,	since the Operator +	 is continuous 

and F is continuous in view theorem (2.1), we conclude that H maps continuously q@  into q@ . 

Finally, assume that (	 is non-empty subset of q@  and � > 0	 is fixed, then for an arbitrary � ∈ (  and for a set ] ⊂ ��,	meas ] ≤ �,	we obtain 

�|(z�)(�)|_ �� = � {v(�) + � *�(� − .)��(., � *4(., w)�4�w, �(w)��w)x
0

/
0 {_ �.�� 

≤ �|v(�)|_ �� + � {� *�(� − .)��(., � *4(., w)�4�w, �(w)��w)�.x
0

/
0 {_ �� 

≤ �|v(�)|_ �� + � � |*�(� − .) ��$�(.) + %�� � *4(., w)�4(wx
0 , �(w)� �w�o�.��	/

0_  

≤ ‖v‖12(_) + � � |*�(� − .)|	/
0_ }$�(.) + %� �|*4(., w)|x

0 [$4(w) + %4|�(w)|o�w�.~ �� 

≤	‖v‖12(_) + ‖+�‖_‖$�‖12(_) + %�‖+�‖_‖+4‖_‖$4‖12(_) + %�%4‖+�‖_‖+4‖_ �|�(.)|_ �. 

Where, +:	��(]) → ��(]), since 

lim�→0C sup[�|v(�)|��_ + ‖+�‖ �|$�(�)|�� + %�‖+�‖_‖+4‖_ �|$4(�)|��:__  

] ⊂ ��,	meas ] ≤ �oI = 0 

Then, the last inequality gives G(z() ≤ %�%4‖+�‖‖+4‖G(()                                                                          (2) 

Further, more fixing � > 0 we arrive at the following estimate 

� |z�(�)|�� ≤ 	� |v(�)|�� + ‖+�‖ �|$�(�)|�� + %�‖+�‖_‖+4‖_ �|$4(�)|/
d

/
d

/
d

/
d �� +	+	%4%4‖+�‖_‖+4‖_ �|�(�)|��/

d  

Since limd→/ � = ∞, the above inequality gives �(z() ≤ %�%4‖+�‖_‖+4‖_                                                                          (3) 

Hence, combining (2) and (3) we get γ(z() ≤ %�%4‖+�‖‖+4‖γ(() 

Where γ denotes the measure of noncompactness, since q@ is compact in measure, then by using Theorem (2.4) the last 

inequality together with the assumption (iv), enable us to apply Theorem (2.7), which proves the existence of a fixed point for 

the operator z in q@ . ∎ 

4. Nonlinear Integral Equations with Fractional Order 

In this section we will discuss solvability for the following nonlinear integral equation with fractional order in ��(��). 

�(�) = v(�) + , k�(���)(|�x)∝�2�(�)|0 ��(., , *(., w)�4�w, �(w)��w)x0 �., � > 0                               (4) 



 American Journal of Theoretical and Applied Statistics 2017; 6(5-1): 13-22 17 

 

We shall treat equation (4.1) under the following assumptions which are listed below 

(i) v ∈ ��(��), and almost everywhere positive and nondecreasing in ��(��). 

(ii) �:: �� × � → �,  = 1,2 are nondecreasing functions on ��with respect to	� and � satisfy Caratheodory conditions, there 

are two functions $: ∈ ��(��)  and two constants %: ≥ 0	 such that |�:(�, �)| ≤ $:(�) + %:|�|,	 for all � ∈ ��, � ∈ �  and �:(�, �) ≥ 0, ∀� ≥ 0,  = 1,2 

(iii)	*: �� × �� → �,	is a measurable with respect to � and	. and +: �� → �� is bounded with norm ‖+‖ 

Note that, for all 6 > 0 and ��, �4 ∈ ��, we have	
�� < �4 ⟹ � ��(|2�x)(�� − .)����. ≥9

0 � ��(|2�x)(�4 − .)����.9
0  

(iv) 	%�%4‖+‖ < 1 

Then we can prove the following theorem, 

Theorem 4.1 

Let the assumptions (i)-(iv) are satisfied, then the equation (4.1) has at least one solution, � ∈ ��(��)	being almost 

everywhere non-decreasing on ��. 
Proof 

Consider the operator z: 
z�(�) = v(�) + � ��(|�x)(� − .)∝��Γ(�)

|
0 ��(., � *(., w)�4�w, �(w)��w)x

0 �., " < � ≤ 1, � > 0 

Then, the equation (4.1) takes the form �(�) = z�(�) 

First, let � ∈ ��(��) 

Then using our assumption (i)-(iii) we have, 

|z�(�)| ≤ |v(�)| + � {��(|�x)(� − .)∝��Γ(�) ��(., � *(., w)�4�w, �(w)��w)	x
0 { �.|

0  

�|z�(�)|�� ≤ �|v(�)|��/
0 + � � | ��(|�x)(� − .)∝��Γ(�) ��(., � *(., w)�4�w, �(w)��w)|�.��	x

0
|

0
/

0
/

0  

≤ ‖v‖	+ � � | ��(|�x)(� − .)∝��Γ(�) ||��(., � *(., w)�4�w, �(w)��w)|���.	x
0

/
|�x

/
x�0  

≤ ‖v‖ 	+ � |��(., � *(., w)�4�w, �(w)��w)|�.	x
0

/
x��  

≤	‖v‖ + ‖��+�4‖ 

≤ ‖v‖ + �[$�(.) + %�| � *(., w)�4(w, �(w))|�w)o�.x
0

/
0  

≤ ‖v‖ + [‖$�‖ + %� � � |*(., w)�4�w, �(w)�|�wo�.x
0

/
0  

≤ ‖v‖ + [‖$�‖ + %�‖+‖ , [$4(w) + %4|�(w)|o�./0  ] 

≤ ‖v‖ + [‖$�‖ + %�‖+‖[‖$4‖ + %4‖�‖o →                                                                   (5) 

From the last estimate we deduce that the operator z	maps continuously, the space �� into itself using theorem (2.1). 

Moreover, using the estimate (1), we see that the operator z  transforms the ball ?@  into itself where: 
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A = 	 ‖�‖�[‖l2‖��2‖�‖‖l�‖o(���2��‖�‖)  

Let q@  be subset of	?@  consisting of all functions being are almost everywhere positive and non-increasing on ��. 
Note that q@  is nonempty, bounded, closed, convex subset of ��(��). 
Moreover, in view of Theorem (2.2) the set	q@  is compact in measure. 

Next, by taking � ∈ q@ ,	then �(�) is almost everywhere positive and non-increasing on ��(��).	and consequently +�(�) is 

also of the same type (in virtue of the assumption (iii) and Theorem (2.3). 

Further, the assumption (ii) permits us to deduce that: z�(�) = v(�) 	+	��+�4�(�) 

Is also almost everywhere positive and non-decreasing on ��, this fact together with assertion, z: ?@ → ?@ 	gives that self – 

mapping of the set q@ . 
Since the operator + is continuous and � is continuous in view theorem (2.1), we conclude that z	mapps continuous q@  into q@ . 

Note, that 

*(�, .) = k�(���)(|�x)��2�	(�) , (+�)(�) = , k�(���)(|�x)��2�	(�) �(.)�.|0  

‖+�‖ = � � ���(|�x)(� − .)���Γ	(�) �|
x�0

/
|�0 |�(.)|�.�� 

= � � ���(|�x)(� − .)���Γ	(�) �/
|�x

/
x�0 |�(.)|���. 

Let J=, �k�(���)(|�x)��2�	(�) �/|�x �� 

=, �k�(���)(|�x)��2�(�) �/|�x�0 �(� − .) = 1 

Then ‖+�‖ = , |�(.)|/0 �. = ‖�‖, then ‖+‖ = 1 

Finally, assume that (	is nonempty subset of q@  and � > 0	is fixed, then for an arbitrary � ∈ ( and for a set ] ⊂ ��,	meas ] ≤ �,	we obtain 

�|(z�)(�)|_ �� = � �v(�) + � ��(|�x)(� − .)���Γ(�) ��(., � *(., w)�4�w, �(w)��w)x
0

|
0 �_ �.�� 

≤ �|v(�)|_ �� + � �� ��(|�x)(� − .)���Γ(�) ��(., � *(., w)�4�w, �(w)��w)�.x
0

|
0 �_ �� 

≤ �|v(�)|_ �� + � � ���(|�x)(� − .)���Γ(�) �/
|�x_ [$�(.) + %� {�*(., w)�4�w, �(w)��wx

0 {o���. 

≤ ‖v‖_ + [‖$�‖ + %�‖+‖ � [$4(w) + %4|�(w)|o�.o_  

≤ ‖v‖_ + ‖$�‖ + %�‖+‖‖$4‖ + %�%4‖+‖ �|�(.)|�.oo_  

Where	+:	��(]) → ��(]), since 
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lim�→0C sup[�|v(�)|��_ + �|$�(�)|�� + +%��|+|�_ �|$4(�)|��:__  

] ⊂ ��,	meas ] ≤ �oI = 0 

Then, the above inequality gives G(z() ≤ %�%4�|+|�G(()                                                                      (6) 

Further, more fixing � > 0 we arrive at the following estimate 

� |z�(�)|�� ≤ 	� |v(�)|�� + �|$�(�)|�� + %�‖+‖_ �|$4(�)|/
d

/
d

/
d

/
d �� + 	%�%4‖+‖_ �|�(�)|��/

d  

Since limd→/ � = ∞, the above in quality gives �(z() ≤ %�%4‖+‖_                                                                      (7) 

Hence, combining (2) and (3) we get γ(z() ≤ %�%4‖+‖γ(() 

Where γ denotes the measure of noncompactness, since q@  is compact in measure, then by using Theorem (2.4), The last 

inequality together with the assumption (iv), enable us to apply Theorem (2.7), Which proves the existence of a fixed point for 

the operator z in q@ . ∎ 

In the same way, we will discuss the solvability of the nonlinear integral equation with fractional order 

�(�) = v(�) + , (|�x)��2�(�)|0 ��(., , *(., w)�4�w, �(w)��w)x0 �., � ∈ [0,1o                               (8) 

in the space ��(0,1). 

We shall treat the equation (4.2) under the following assumptions which are listed below 

(i) v ∈ ��(0,1),	almost everywhere positive and nondecreasing in (0,1), 

(ii) �:: (0,1) × � → �,  = 1,2, are nondecreasing functions with respect to �	and � , satisfy Caratheodory conditions and 

there are two functions $: ∈ ��(0,1) and two constants %: ≥ 0	such that |�:(�, �)| ≤ $:(�) + %:|�|,	for all � ∈ (0,1), � ∈ � and �:(�, �) ≥ 0, ∀� ≥ 0,  = 1,2 

(iii)	*: (0,1) × (0,1) → ��,	is a measurable with respect to	� and	. and +: �� → �� (From assumption (iii), we see that + is 

continuous and so it is bounded with norm ‖+‖).	
Also, for all	6 > 0 and ��, �4 ∈ (0,1), we have 

�� < �4 → �(�� − .)����. ≥9
0 �(�4 − .)����.9

0  

(iv) 	�2��‖�‖�(���) < 1 

Then we can prove the following theorem, 

Theorem 4.2 

Let the assumptions (i)-(iv) are satisfied, then the equation (4) has at least one solution, � ∈ ��(0,1)	 being almost 

everywhere non-decreasing on (0,1). 

Proof 

Consider the operator z 

z�(�) = v(�) + � (� − .)���Γ(�)
|

0 ��(., � *(., w)�4�w, �(w)��w)x
0 �., " < � ≤ 1, � ∈ [0,1o 

Then, the equation (4.2) takes the form �(�) = z�(�) 

First, let � ∈ ��[0,1o 
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Then using our assumption (i)-(iii) we have, 

|z�(�)| ≤ |v(�)| + � {(� − .)���Γ(�) ��(., � *(., w)�4�w, �(w)��w)	x
0 { �.|

0  

�|z�(�)|�� ≤ �|v(�)|���
0 + � � | (� − .)���Γ(�) ��(., � *(., w)�4�w, �(w)��w)|�.��	x

0
|

0
�

0
�

0  

≤ ‖v‖ 	+ � � | (� − .)���Γ(�) ||��(., � *(., w)�4�w, �(w)��w)|���.	x
0

�
|�x

�
x�0  

≤ ‖v‖ 	+ � | (1 − .)�Γ(� + 1) − (. − .)�Γ(� + 1) ||��(., � *(., w)�4�w, �(w)��w)|�.	x
0

�
x��  

≤ ‖v‖ 	+ � (1 − .)�Γ(� + 1) |��(., � *(., w)�4�w, �(w)��w)|�.	x
0

�
x��  

≤ ‖v‖ 	+ � 1Γ(� + 1) |��(., � *(., w)�4�w, �(w)��w)|�.	x
0

�
x��  

≤	‖v‖	+ 1Γ(� + 1) � |��(., � *(., w)�4(w, �(w))�w)|�. 
0

�
0  

≤ ‖v‖ 	+ 1Γ(� + 1) ||��+�4|| 
≤ ‖v‖ + 1Γ(� + 1) �[$�(.) + %�| � *(., w)�4(w, �(w))|�w)o�.x

0
�

0  

≤ ‖v‖ + 1Γ(� + 1) [‖$�‖ + %� � � |*(., w)�4�w, �(w)�|�wo�.x
0

�
0  

≤ ‖v‖ + 1Γ(� + 1) [‖$�‖ + %��|+|�[‖$4‖ + %4‖�‖o → (1) 

From the last estimate we deduce that the operator z	maps continuously, the space �� into itself using theorem (2.1). 

Moreover, using the estimate (1), we see that the operator z  transforms the ball ?@  into itself where: A = 	 ‖�‖� 2¡(�¢2)[‖l2‖��2‖�‖‖l�‖o
(��£2£�‖¤‖¡(�¢2) )  

Let q@be subset of	?@ consisting of all functions being are almost everywhere positive and non-increasing on (0,1). 
Note that q@  is nonempty, bounded, closed, convex subset of ��(0,1). 
Moreover, in view of Theorem (2.5) the set	q@  is compact in measure. 

Next, by taking � ∈ q@ ,	then �(�) is almost everywhere positive and nonincreasing on (0, 1) and consequently +�(�) is also 

of the same type (in virtue of the assumption (iii) and Theorem (2.1). 

Further, the assumption (ii) permits us to deduce that the operator 

z�(�) = v(�) 	+ � (� − .)���Γ(�)
|

0 	��+�4�(�)�. 

is also almost everywhere positive and nondecreasing on (0, 1), this fact together with assertion, z: ?@ → ?@	gives that self – 

mapping of the set q@ . 
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Since the operator + is continuous and � is continuous in view Theorem (2.1), we conclude that z	mapps continuous q@  

into	q@ . 

Note, that *(�, .) = (|�x)��2�	(�) , +�(�) = , (|�x)��2�(�) �(.)�.|0  then 

‖+�‖ = � � |� − .|���Γ(�)|
x�0

�
|�0 |�(.)|�.�� 

= 1Γ(� + 1) �|�(.)|�.	�
x�0  

‖+�‖ = �|Z|��(���), then ‖+‖ = ��(���) 
Finally, assume that (	is nonempty subset of q@  and � > 0	is fixed, then for an arbitrary � ∈ ( and for a set ] ⊂ (0,1),	meas ] ≤ �,	 we obtain 

�|(z�)(�)|_ �� = � �v(�) + � (� − .)���Γ(�) ��(., � *(., w)�4�w, �(w)��w)x
0

|
0 �_ �.�� 

≤ �|v(�)|_ �� + � �� (� − .)���Γ(�) ��(., � *(., w)�4�w, �(w)��w)�.x
0

|
0 �_ �� 

≤ �|v(�)|_ �� + � � �(� − .)���Γ(�) ��
|�x_ [$�(.)+%� {�*(., w)�4�w, �(w)��wx

0 {o���. 

≤ ‖v‖_ + 1Γ(� + 1) [‖$�‖ + %�‖+‖ � [$4(w) + %4|�(w)|o�.o_  

≤ ‖v‖_ + 1Γ(� + 1) ‖$�‖ + 1Γ(� + 1) %�‖+‖‖$4‖ + %�%4‖+‖Γ(� + 1) �|�(.)|�._  

Where 	+:	��(]) → ��(]), since 

lim�→0C sup[�|v(�)|��_ + 1Γ(� + 1) �|$�(�)|�� + + 1Γ(� + 1) %��|+|�_ �|$4(�)|��:__  

] ⊂ (0,1),	meas ] ≤ �oI = 0 

Then the above inequality gives 

J(z�(�)) ≤ %�%4‖+‖Γ(� + 1) J(() 

Where J is the De Blasi measure of noncompactness: 

Since q@  is compact in measure, then by using Theorem 

(2.6), we can write the last inequality in the form 

B(z() ≤ %�%4�|+|�Γ(� + 1) B(() 

This inequality together with the assumption (vi) enables 

us to apply Theorem (2.8), which proves the existence of a 

fixed point for the operator z	in q@ . ∎ 

5. Conclusion 

In this work, we determined the sufficient conditions under 

which the existence theorem of a nonlinear integral equation 

with convolution kernel is proved in the space ��(��). Also, 

the same situation is proved for a nonlinear integral equation 

with fractional order in the spaces ��(��) and ��[0,1o. 
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