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Abstract: Truncated distributions arise naturally in many practical situations. In this paper, the problem of finding sampling 

distributions for truncated laws is considered. This problem concerns the very important area of information processing in 

Industrial Engineering. It remains today perhaps the most difficult and important of all the problems of mathematical statistics 

that require considerable efforts and great skill for investigation. In a given problem, most would prefer to find a sampling 

distribution for truncated law by the simplest method available. For many situations encountered in textbooks and in the literature, 

the approach discussed here is simple and straightforward. It is based on use of the unbiasedness equivalence principle (UEP) 

that represents a new idea which often allows one to provide a neat method for finding sampling distributions for truncated laws. 

It avoids explicit integration over the sample space and the attendant Jacobian but at the expense of verifying completeness of the 

recognized family of densities. Fortunately, general results on completeness obviate the need for this verification in many 

problems involving exponential families. The proposed approach allows one to obtain results for truncated laws via the results 

obtained for non-truncated laws. It is much simpler than the known approaches. In many situations this approach allows one to 

find the results for truncated laws with known truncation points and to estimate system reliability in a simple way. The approach 

can also be used to find the sampling distribution for truncated law when some or all of its truncation parameters are left 

unspecified. The illustrative examples are given. 
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1. Introduction 

A probability distribution for a random variable X is said to 

be truncated when some set of values in the range of X is 

excluded. The truncated distributions (left truncated, right 

truncated or the doubly truncated) have found many 

applications, particularly in numerous industrial settings [1-8]. 

Final products are often subject to screening inspection before 

being sent to the customer. The usual practice is that if a 

product’s performance falls within certain tolerance limits, it 

is judged conforming and sent to the customer. If it fails, a 

product is rejected and thus scrapped or reworked. In this case, 

the actual distribution to the customer is truncated. Another 

example can be found in a multistage production process, in 

which inspection is performed at each production stage. If 

only conforming items are passed on to the next stage, the 

actual distribution is a truncated distribution. Accelerated life 

testing with samples censored is also a good example. In fact, 

the concept of a truncated distribution plays a significant role 

in analyzing a variety of production processes, process 

optimization and quality improvement. Truncated 

distributions can also be used to model intensity statistics in 

the study of atomic heterogeneity [9]. The justification being 

that: 1) atomic heterogeneity led to the intensity statistics 

being modified from Gaussian to near Gaussian forms [10, 11]; 

and 2) in reality, the structure factors or normalized structure 

factors do not range from −∞ to ∞ but over a finite range. 

Several examples have been given employing the truncated 

distributions in fitting rainfall data and animal population 

studies where observations usually begin after migration has 

commenced or concluded before it has stopped [12, 13]. Other 

examples arise in life testing and reliability problems, where if 
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failure is caused by a wear-out mechanism or is a consequence 

of accumulated wear, then the length-of-life of a system can be 

expected to be of finite dimension.  

In many areas of the sciences, in particular communication 

networks, economic, hydrology, material science and Physics, 

long-tailed distributions arise. For example, many traffic 

measurement studies in modern communication networks 

such as the Internet have found long-tailed distributions. This 

means that the behavior of these data significantly departs 

from the traditional telephone traffic and its related Markov 

models with short-range dependence. In particular, the 

common Poisson arrival process and corresponding analysis 

based on Erlang formula are no longer valid. 

The main weakness of long-tailed distributions is that they 

do not have finite moments of all orders. This weakness has 

restricted their use. To overcome this weakness, Nadarajah [14] 

introduces truncated versions of five of the most commonly 

known long-tailed distributions—which possess finite 

moments of all orders and could therefore be better models. 

The object of the present paper is to obtain a sampling 

distribution for truncated law with a known (or unknown) 

truncation point (in general, vector) and a minimum variance 

unbiased estimator of the reliability function for this model 

using the results obtained for non-truncated law. It is known 

that a sampling distribution for truncated law may be derived 

using, namely, the method based on characteristic functions 

[15], the method based on generating functions [16], or the 

combinatorial method [17]. In this paper, a much simpler 

technique than the above ones is proposed. It allows one to 

obtain the results for truncated laws more easily. 

2. Unbiasedness Equivalence Principle 

Suppose an experiment yields data sample X
n
 = (X1, … , Xn) 

relevant to the value of a parameter θ (in general, vector). Let 

LX(x
n
|θ) denote the probability or probability density of X

n
 

when the parameter assumes the value θ. Considered as a 

function of θ for given X
n
=x

n
, LX(x

n
|θ) is the likelihood 

function. If the data sample X
n
 can be summarized by a 

sufficient statistic S (in general, vector), one can write LS(s|θ) 

∝ LX(x
n
|θ). Further, for any non-negative function ω(s), 

ω(s)LS(s|θ) is also a likelihood function equivalent to LX(x
n
|θ). 

Suppose we recognize a function ω(s) such that ω(s)LS(s|θ), 

regarded as a function of s for a given θ, is a density function. 

It can be shown that this is the sampling density of S if the 

family of recognized densities is complete.  

The unbiasedness equivalence principle [18] consists in the 

following. If  

        (1) 

represents the likelihood function for the truncated law, where 

w(θ,ϑ) is some function of a parameter (θ,ϑ) associated with 

truncation, ϑ is a known truncation point (in general, vector), 

then a sampling density for the truncated law is determined by 

    (2) 

where 

 (3) 

g(s|θ) is a sampling density of a sufficient statistic s(X
n
) (for a 

family of densities {f(x|θ)}) determined on the basis of 

LX(X
n
|θ), is an unbiased estimator of 1/[w(θ,ϑ)]

n 
with 

respect to g(s|θ), s∈S (a sample space of a non-truncated 

sufficient statistic S), ϕ(S) is a function of S for a given θ, 

which is equivalent to unbiased estimator  of 

1/[w(θ,ϑ)]
n
, i.e.,  

                  (4) 

or 

,     (5) 

gϑ (s|θ) is the sampling density of a sufficient statistic S (for a 

family of densities {fϑ (x|θ)}) when the truncation parameter ϑ 

is known, Sϑ is a sample space of a truncated sufficient 

statistic S.  

3. Finding Sampling Distributions for 

Truncated Laws with Known 

Truncation Points 

3.1. Example 3.1 

Sampling distribution for the left-truncated Poisson law. Let 

the Poisson probability function be denoted by  

        (6) 

The probability function of the restricted random variable, 

which is truncated away from some ϑ ≥ 0, is then 

   (7) 

where 

     (8) 

Consider a sample of n independent observations X1, X2, …, 

Xn, each with probability density function fϑ (x|θ), where the 

likelihood function is defined as 
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and let 

     (10) 

It is well known that 

           (11) 

is a complete sufficient statistic for the family {f(x|θ)}. A 

result of [19] states that sufficiency is preserved under 

truncation away from any Borel set in the range of X. Hence, 

in the case at hand S is sufficient for {fϑ (x|θ)}. It can be 

verified that S is also complete. 

For the sake of simplicity but without loss of generality, 

consider the case ϑ=0. This is at the same time the most 

important case for applications and the easiest with which to 

deal. It follows from (2) that 

 

       (12) 

where 

        (13) 

             (14) 

                 (15) 

 denotes the Stirling number of the second kind [20] 

defined by 

   (16) 

 

    (17) 

This is the same result that of Tate and Goen [21]. Their 

proof was based on characteristic functions. 

3.2. Example 3.2 

Sampling distribution for the right-truncated exponential 

law. Let the probability density function of the right-truncated 

exponential distribution be denoted by 

       (18) 

where 

               (19) 

           (20) 

Consider a sample of n independent observations X1, X2, …, 

Xn, each with density fϑ (x|θ), where the likelihood function is 

determined as 

 

   (21) 

It is well known that 

             (22) 

is a complete sufficient statistic for the family {f(x|θ)}. It 

follows from (2) that 

 

 

 n ≥ 1,                 (23) 

where a+= max(0, a), 

         (24) 

             (25) 

     (26) 

 

 

   (27) 

This is the same result that of Bain and Weeks [15]. Their 

proof was based on characteristic functions. 

3.3. Example 3.3 

Sampling distribution for the doubly truncated exponential 
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law. Consider an exponential distribution (20) that is doubly 

truncated at a lower truncation point (ϑ1) and an upper 

truncation point (ϑ2). The probability density function of the 

doubly truncated exponential distribution is defined as 

       (28) 

where ϑ = (ϑ1,ϑ2), 

             (29) 

Consider a sample of n independent observations X1, X2, …, 

Xn, each with density fϑ (x|θ), where the likelihood function is 

determined as 

 

  (30) 

It is well known that 

           (31) 

is a complete sufficient statistic for the family {f(x|θ)}. It 

follows from (2) that 

 

 

 

 n ≥ 1,              (32) 

where a+ = max(0, a), g(s|θ) is given by (24), 

             (33) 

 

         (34) 

    (35) 

4. Validity of the Unbiasedness 

Equivalence Principle 

The theoretical results of this investigation into the validity 

of the proposed unbiasedness equivalence principle (UEP) for 

finding sampling distributions for truncated laws are largely 

contained in the theorem given below. We introduce the 

following notation and assumptions. Let Xn be a random 

variable taking on values xn in a space Xϑ, let A be a σ −field 

of subsets of Xϑ, and let (θ, ϑ) be a parameter associated with 

truncation, where ϑ is a known truncation point. For all values 

of the parameter θ in some parameter space Θ, let Pϑ be a 

probability measure on A; i.e., for any set A in A, Pϑ (A|θ) is 

the probability that Xn will belong to A when the parameter has 

the value θ. Let S = s(Xn) be a statistic on the measurable space 

(Xϑ, A) taking on values in a measurable space (Sϑ, B). For 

each θ∈Θ, let Gϑ be the probability distribution of S when Xn 

has the distribution Pϑ, i.e., for any B∈B , Gϑ (B|θ) = Pϑ 

(  where s−1(B) is the set of points xn in Xϑ for 

which s(xn)∈B.  

(i). Assume the family P={Pϑ:θ∈Θ} of probability 

distributions of X
n
 is dominated by a totally σ−finite 

measure µ over (Xϑ, A), i.e., there exists, for all θ ∈Θ, 

a non-negative A − measurable function pϑ (x
n
|θ) such 

that 

         (36) 

for all A∈A. (The integrand pϑ (x
n
|θ) is called the density of Pϑ 

w.r.t. (with respect to) µ). 

(ii). Assume that s(X
n
) is sufficient for P. From the 

Halmos-Savage factorization theorem [22], s(X
n
) is 

sufficient if and only if for each θ∈Θ there exists a 

non-negative B- measurable function LS(s(x
n
)|θ,ϑ) on 

S ϑ and a non-negative A - measurable function v on Xϑ 

such that 

     (37) 

(The symbol (µ) following a statement means that the 

statement holds except on a set of µ - measure zero). In (37), 

we will assume that LS and v are finite (µ). 

(iii). Assume we recognize some likelihood function 

LS(s|θ,ϑ) equivalent to likelihood function LX(x
n
|θ,ϑ). 

Define a σ −finite measure ρ over (Xϑ, A) by 
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Then, from (36), (37), and (38), 
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(iv). Assume we recognize a totally σ −finite measure η 

over (Sϑ, B) such that the measure ρ s
-1

 over (Sϑ, B) is 

absolutely continuous w.r.t. η; i.e., η(B)=0 implis that 

ρs
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(B) denotes the ρ − measure of 

the inverse image of B. 

(v). Assume we recognize a positive B-measurable 

function ϕ on Sϑ such that 
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          (40) 

for all θ∈Θ. Assume further that for any measurable set B of 

positive η − measure, there exists a θ∈Θ and a measurable 

subset B1 of B of positive η − measure over which LS(s|θ,ϑ)ϕ(s) 

is positive.  

From (40), {LS(s|θ,ϑ)ϕ(s):θ∈Θ} is a family of densities 

w.r.t. η. For B∈B, let 

        (41) 

Thus, (v) provides us with a family of densities, but at this 

stage we do not know if this recognized family is the family of 

sampling densities of S.  

(vi). (vi) Assume we recognize that the family 

{LS(s|θ,ϑ)ϕ(s):θ∈Θ} is complete, i.e., 

      (42) 

implies  

                   (43) 

except on a set D with  for all θ∈Θ. 

Theorem 1 (Sampling distribution for truncated law). 

Under assumptions (i) through (vi), Gϑ has a density with 

respect to η and LS(s|θ,ϑ)ϕ(s) is a version of it, i.e.,  

      (44) 

is the sampling density, gϑ (s|θ), of the sufficient statistic s(X
n
). 

Proof. We show first that (43) and the second part of (v) 

imply that φ (s)≡0 (η). For suppose there exists a measurable В 

with η(B)>0 and φ(s)≠0 over B. Then B⊂D, so Gϑ (B|θ)=0 for 

all θ∈Θ. But, from (v), there exists a B1⊂B for which 

Gϑ(B1|θ)>0 for some θ, contradicting Gϑ (B|θ)=0 for all θ∈Θ. 

Now, by a theorem in [22], there exists a non-negative 

measurable function ψ on Sϑ such that 

   (45) 

for every measurable function Qϑ, in the sense that if either 

integral exists, then so does the other and the two are equal.  

In (45), let Qϑ (s,θ)=χBLS(s|θ,ϑ), where χB is the 

characteristic function of B (B∈B). Then there exists a ψ (s) 

such that 

  (46) 

for all B∈B. Note that the left side of (46) is Gϑ (B|θ).  

In (42), let φ (s) = 1−[ψ(s)/ϕ (s)]. From (40) and (46), 

       (47) 

for all θ∈Θ. Thus, from (43), ψ(s)=ϕ(s) almost everywhere 

(η), and, from (47),  

       (48) 

is a version of the density of Gϑ with respect to η. 

5. Finding Reliability Estimators for 

Truncated Laws 

Consider a system that is required to operate for a given 

‘mission time’, t. The reliability of this system for the 

right-truncated distribution of time-to-failure with the 

probability density function fϑ (x|θ) may be defined as 

         (49) 

Due to the Rao-Blackwell and Lehmann-Scheffé theorem 

[23] a minimum variance unbiased (MVU) estimator for R 

may be obtained as 

              (50) 

where X may be any one of the observations (X1, …, Xn) from 

fϑ (x|θ), S is a complete sufficient statistic for {fϑ (x|θ)}, and 

fϑ(x|s) is the conditional distribution of X given S=s; fϑ (x|s) is 

obtained as 
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where 
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is the joint probability density of X and S,  is an 

unbiased estimator of 

.             (53) 

with respect to g(s|θ). 

It should be noted that (50) can be obtained by different 

method as 
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5.1. Example 5.1 

MVU estimator of reliability for the right truncated 

exponential distribution. Let X
n
=(X1, …, Xn) be a random 

sample of size n from a population with density (18). Then it 

follows from (50) (or (54)) that the MVU estimator of R(t) is 

obtained as 

    (56) 

As a particular case, if ϑ → ∞ that is the variable X is 

assumed unrestricted, the corresponding MVU estimator of 

reliability reduces to 

               (57) 

For instance, suppose that the following failure times, in 

hours, are available from a given system: 4.2, 9.8, 16, 20 and 

that the truncation point ϑ=25 hours and the mission time t=5 

hours. Clearly s=50 hours. Substituting these values in (56), 

the estimate of reliability is obtained as  Had 

we assumed, however, that the observations are coming from 

the complete population, the estimate of reliability would have 

been, from (57),   

5.2. Example 5.2 

MVU estimator of reliability for the right-truncated gamma 

distribution. Let X
n
=(X1, …, Xn) be a random sample of size n 

from a population with density 

 

0 < x ≤ ϑ, σ > 0, δ > 0,           (58) 

where ϑ is point of truncation, θ=(σ,δ), and w(θ,ϑ) is such that 

        (59) 

This distribution has found applications in a number of 

diverse fields, for instance, in fitting of length-of-life data 

under fatigue. Note that for δ=1, the right-truncated gamma 

distribution reduces to the right-truncated exponential 

distribution with parameter σ. Although, this distribution is a 

special case of gamma distribution and gives a good fit to 

length-of-life data in many situations, it is not suitable since its 

use carries the implication that at any time future life-length is 

independent of past history. 

To find MVU estimator of R(t) we apply the above 

technique. If the shape parameter δ in (58) is assumed to be 

known, then it is well known that 

                  (60) 

is a complete sufficient statistic for σ. The probability density 

function of the sampling distribution of S is given by 

 

 

 

s∈(0, nϑ),                  (61) 

where 

 

 (62) 

               (63) 

The joint distribution of X and S is given by 

 

 

 

         (64) 

Thus the conditional distribution of X given S is 

 

 

 

  (65) 

Hence the MVU estimator of R(t) at time t is given by 
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  (66) 

It may be remarked that the result (66) though at the first 

look appears quite unwieldy is not so in practical applications, 

particularly when the sample size is small. 

As a particular case, if ϑ → ∞ that is the random variable X 

is assumed unrestricted, the distribution of the sufficient 

statistics from equation (61) reduces to 

 s∈(0,∞)       (67) 

and the corresponding MVU estimator of reliability at time t is 

given by 

      (68) 

which corresponds to Basu’s [24] equation (9). 

6. Finding Sampling Distributions for 

Truncated Laws with Unknown 

Truncation Points 

It will be noted that the proposed approach can also be used 

to find the sampling distribution for truncated law when some 

or all of its truncation parameters are left unspecified. 

6.1. Example 3.3 (Continued) 

For instance, consider a situation of Example 3.3 where it is 

assumed that the truncation parameter ϑ=(ϑ1,ϑ2) is unknown. 

It is known that the statistic (X(1), X(n), S), where 

                (69) 

                (70) 

and  

                  (71) 

is a complete sufficient statistic for a set of parameters 

(ϑ1,ϑ2,θ). In this case, the likelihood function of a sample is 

determined as 

 

 

 

  (72) 

where ϑ = (ϑ1,ϑ2), 

 

 

          (73) 

is the joint probability density function of the order statistics 

and , Fϑ (⋅) is the probability distribution function. It is 

well known that 

            (74) 

is a complete sufficient statistic for the family {f(x|θ)}. It 

follows from (2) and (72) that 

 

 

 

s∈[(n−2) , (n−2) ], n ≥ 3,        (75) 

where 

     (76) 

    (77) 

 

    (78) 

  
(79) 

Thus, the sampling distribution of the sufficient statistic 

(X(1), X(n), S) for (ϑ1,ϑ2,θ) is given by 

     (80) 

In other words, we have the following results. 
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6.2. Truncation Cases 

In the case of one-sided truncation, when a truncation point 

on the left, ϑ1, is unknown, a sampling distribution of the 

sufficient statistic (X(1), S) for (ϑ1,θ) is given by 

         (81) 

where 

 

  xi ≥ ϑ1, i = 1, …, n,     (82) 

     (83) 

is the probability density function of the order statistic X(1),  

      (84) 

s≡s(X2, …, Xn). 

In the case of one-sided truncation, when a truncation point 

on the right, ϑ2, is unknown, a sampling distribution of the 

sufficient statistic (X(n), S) for (ϑ2,θ) is given by 

      (85) 

where  

 

xi ≤ ϑ2, i = 1, …, n,             (86) 

       (87) 

is the probability density function of the order statistic X(n), 

       (88) 

s≡s(X1, …, Xn-1). 

In the case of two-sided truncation, when a lower truncation 

point, ϑ1, and an upper truncation point, ϑ2, are unknown, a 

sampling distribution of the sufficient statistic (X(1), X(n), S) for 

(ϑ1,ϑ2,θ ) is given by  

    (89) 

where  

 

 

ϑ1 ≤ xi ≤ ϑ2, i = 1, …, n,            (90) 

 

     (91) 

is the joint probability density function of the order statistic X(1) 

and X(n),  

    (92) 

s≡s(X2, …, Xn-1). 

6.3. Example 6.3 

If, say, we deal with a left-truncated exponential 

distribution, 

     (93) 

where 

                (94) 

and a truncation point on the left, ϑ1, is unknown, then it 

follows immediately from (81) that the sampling distribution 

of the sufficient statistic (X(1), S=X2 + … +Xn) for (ϑ1,θ) is 

given by 

 

 

 

   (95) 

which corresponds to the well-known result [23]. 

7. Conclusion 

The authors hope that this work will stimulate further 

investigations using the proposed approach on specific 

applications to see whether obtained results with it are feasible 

for realistic applications.  
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