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Abstract: The main aim of this paper is to present more accurate stochastic fatigue models for solving the fatigue reliability 

problems, which are attractively simple and easy to apply in practice for situations where it is difficult to quantify the costs 

associated with inspections and undetected cracks. From an engineering standpoint the fatigue life of a structure consists of two 

periods: (i) crack initiation period, which starts with the first load cycle and ends when a technically detectable crack is presented, 

and (ii) crack propagation period, which starts with a technically detectable crack and ends when the remaining cross section can 

no longer withstand the loads applied and fails statically. Periodic inspections of fatigued structures, which are common practice 

in order to maintain their reliability above a desired minimum level, are based on the conditional reliability of the fatigued 

structure. During the period of crack initiation, when the parameters of the underlying lifetime distributions are not assumed to be 

known, for effective in-service inspection planning (with decreasing intervals as alternative to constant intervals often used in 

practice for convenience in operation), the pivotal quantity averaging (PQA) approach is offered. During the period of crack 

propagation (when the damage tolerance situation is used), the approach, based on an innovative crack growth equation, to 

in-service inspection planning (with decreasing intervals between sequential inspections) is proposed to construct more accurate 

reliability-based inspection strategy in this case. To illustrate the suggested approaches, the numerical examples are given. 
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1. Introduction 

Certain fatigued structures must be inspected in order to 

detect fatigue damages that would otherwise not be apparent. 

For fatigued structures for which fatigue damages are only 

detected at the time of inspection, it is important to be able to 

determine the optimal times of inspections. Fewer inspections 

will lead to lower fatigue reliability of the structure upon 

demand, and frequent inspection will lead to higher cost. In 

spite of decades of investigation, fatigue response of materials 

is yet to be fully understood. This is partially due to the 

complexity of loading at which two or more loading axes 

fluctuate with time. Examples of structures experiencing such 

complex loadings are automobile, aircraft, off-shores, 

railways and nuclear plants. Fluctuations of stress and/or 

strains are difficult to avoid in many practical engineering 

situations and are very important in design against fatigue 

failure. While most industrial failures involve fatigue, the 

assessment of the fatigue reliability of industrial components 

being subjected to various dynamic loading situations is one 

of the most difficult engineering problems. The traditional 

analytical method of engineering fracture mechanics (EFM) 

usually assumes that crack size, stress level, material property 

and crack growth rate, etc. are all deterministic values which 

will lead to conservative or very conservative outcomes. 

According to many experimental results and field data, even in 

well-controlled laboratory conditions, crack growth results 

usually show a considerable statistical variability. Fatigue is 

one of the most important problems of aircraft arising from 

their nature as multiple-component structures, subjected to 

random dynamic loads. The analysis of fatigue crack growth is 

one of the most important tasks in the design and life 

prediction of aircraft fatigue-sensitive structures (for instance, 

wing, fuselage) and their components (for instance, aileron or 

balancing flap as part of the wing panel, stringer, etc.). From 

an engineering standpoint the fatigue life of a structure (or 
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component) consists of two periods (this concept is shown 

schematically in Figure 1): 

 

Figure 1. Schematic fatigue crack growth curve (Crack initiation period 

(A-B); Crack propagation period (B-C)). 

(i) crack initiation period, which starts with the first load 

cycle and ends when a technically detectable crack is present, 

and (ii) crack propagation period, which starts with a 

technically detectable crack and ends when the remaining 

cross section can no longer withstand the loads applied and 

fails statically. Periodic inspections of aircraft are common 

practice in order to maintain their reliability above a desired 

minimum level. 

For guaranteeing safety, the structural life ceiling limits of 

the fleet aircraft are defined from three distinct situations: 

Safe-Life, Damage Tolerance, and Fail-Safe situations. The 

common objectives to define fleet aircraft lives by the three 

situations are to ensure safety while at the same time reducing 

total ownership costs. The Safe-Life situation is based on the 

concept that significant damage, i. e. fatigue cracking, will not 

develop during the service life of a structure (or component). 

The life is initially determined from fatigue test data (S–N 

curves) and calculations using a cumulative damage ‘‘law’’. 

Then the design Safe-Life is obtained by applying a safety 

factor. When the service life equals the design Safe-Life the 

component must be replaced. However, there are two major 

drawbacks to this situation: (1) components are taken out of 

service even though they may have substantial remaining lives; 

(2) despite all precautions, cracks sometimes occur 

prematurely. This latter fact led airlines to introduce the 

Damage Tolerance situation (Iyyer et al. [1]). The Damage 

Tolerance situation recognizes that damage can occur and 

develop during the service life of a structure (or component). 

Also, it assumes that cracks or flaws can be present in new 

structures. Safety is obtained from this situation by the 

requirements that either (1) any damage will be detected by 

routine inspection before it results in a dangerous reduction of 

the static strength (inspectable components), or (2) initial 

damage shall not grow to a dangerous size during the service 

life (non-inspectable components). For Damage Tolerance 

analysis to be successful it must be possible to: (i) Define 

either a minimum crack length that will not go undetected 

during routine inspections, or else an initial crack length, 

nominally based on pre-service inspection capability; (ii) 

Predict crack growth during the time until the next inspection 

or until the design service life is reached. The Fail-Safe 

situation assumes initial damage as manufactured and its 

subsequent growth during service to detectable crack sizes or 

greater. Service life in fail-safe structures can thus be defined 

as the time to a service detectable damage. Inspection intervals 

are determined by using appropriate safety factors on 

calculated crack growth time interval from service detectable 

cracks to critical crack sizes. The prediction of crack growth is 

similar to that for Damage Tolerance situation, except that a 

much smaller initial crack length is used.  

Many important fatigued structures (for instance, 

Transportation Systems and Vehicles: aircraft, space vehicles, 

trains, ships; Civil Structures: bridges, dams, tunnels; and so 

on) for which extremely high reliability is required are 

maintained by in-service inspections to prevent the reliability 

degradation due to fatigue damage. However, temporal 

transition of the reliability is significantly affected by the 

inspection strategy selected. Thus, to keep structures reliable 

against fatigue damage by inspections, it is clearly important 

in engineering to examine the optimal inspection strategy. In 

particular, it should be noticed that periodical inspections with 

predetermined constant intervals are not always effective, 

since a fatigue crack growth rate is gradually accelerated as 

fatigue damage grows, i. e. the intervals between inspections 

should be gradually smaller in order to restrain the reliability 

degradation by repeated inspections. Therefore, we need to 

construct the inspection strategy by paying attention to this 

case. Barlow et al. [2] tackled this problem by assuming a 

known, fixed cost of making an inspection and a known fixed 

cost per unit time due to undetected failure. They then found a 

sequence of inspection times for which the expected cost is a 

minimum. Their results have been extended by various 

authors (Luss and Kander [3]; Sengupta [4]). Unfortunately, it 

is difficult to compute optimal checking procedures 

numerically, because the computations are repeated until the 

procedures are determined to the required degree by changing 

the first check time. To avoid this, Munford and Shahani [5]
 

suggested a sub-optimal (or nearly optimal) but 

computationally easier inspection policy. This policy was 

used for Weibull and gamma failure distribution cases 

(Munford and Shahani [6]; Tadikamalla [7]). Numerical 

comparisons among certain inspection policies are given by 

Munford [8] for the case of Weibull failure times. This case 

under parametric uncertainty was considered by Nechval et al. 

[9-11]. 

Most models, which are used for solving the problems of 

inspection planning, are developed under the assumptions that 

the parameter values of the models are known with certainty. 

When these models are applied to solve real-world problems, 

the parameters are estimated and then treated as if they were 

the true values. The risk associated with using estimates rather 

than the true parameters is called estimation risk and is often 

ignored. In this paper, the case is considered when the 

functional form of the underlying invariant lifetime 

distribution is assumed to be known, but some or all of its 

parameters are unspecified. Periodic inspections of aircraft, 

which are common practice in order to maintain their 

reliability above a desired minimum level, are based on the 

conditional reliability of the fatigued structure. During the 

period of crack initiation, when the parameters of the 
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underlying lifetime distributions are not assumed to be known, 

for efficient in-service inspection planning (with decreasing 

intervals as alternative to constant intervals often used in 

practice for convenience in operation), the pivotal quantity 

averaging (PQA) approach is offered. During the period of 

crack propagation (when the damage tolerance situation is 

used), the approach based on a novel crack growth equation to 

efficient in-service inspection planning (with decreasing 

intervals between sequential inspections) is proposed to 

construct more accurate reliability-based inspection strategy 

in this case.  

2. Planning in-Service Inspections Under 

Fatigue Crack Initiation in the Case of 

Complete Information 

In this paper we look at inspection strategies for items or 

structures that can be described as being in one of two states, 

one of which is preferable to the other. This preferred state 

might be described as ‘working’ whilst the other may 

represent some sort of ‘fatigue damage’. The structures are 

originally known to be in a working state but may 

subsequently have fatigue damage. In other words, at t0 = 0 the 

structure is in state S(t0) (working) but at a later time, t1, the 

structure will move into state S(t1) (fatigue damage). We 

suppose that we do not know when the transition from S(t0) 

into S(t1) will occur, and that fatigue damage (crack) can only 

be detected through inspection. We deal with situations, where 

it is difficult to quantify the costs associated with inspections 

and undetected fatigue damage, or when these costs vary in 

time. 

2.1. Inspection Strategy 

The inspection strategy defined is based on the conditional 

reliability of the structure. It is given as follows. Fix 0 < γ < 1 

and let 

1 1arg  (Pr{ } ),Xτ τ γ= > =               (1) 

1arg  (Pr{ | } ),    2,j j jX X jτ τ τ γ−= > > = ≥       (2) 

where {τj}j=1, 2, … are inspection times, X is a random variable 

representing the lifetime of the component (structure). This is 

named as ‘reliability-based inspection’. The above inspection 

strategy makes use of the information about the remaining life 

that is inherent in the sequence of previous inspection times. 

The value of γ can be seen as ‘minimum fatigue reliability 

required’ (or ‘fatigue reliability index’) during the next period 

when the structure was still operational at last inspection time, 

that is, in other words, the conditional probability that the 

failure (fatigue crack) occurs in the time interval (τj−1,τj) 

without failure at time τj−1 is always assumed 1−γ. It is clear 

that if Fθ, the structure lifetime distribution with the parameter 

θ (in general, vector), is continuous and strictly increasing, the 

definition of the inspection strategy is equivalent to  

arg ( ( ) ),    1,j
j jF jθτ τ γ= = ≥           (3) 

or equivalent to 

2arg min  [ ( ) ] ,    1,
j

j
j jF jθ

τ
τ τ γ= − ≥         (4) 

where 

( ) 1 ( ).j jF Fθ θτ τ= −               (5) 

2.2. Optimization of Fatigue Reliability Index 

If it is known that each inspection costs c1 and the cost of 

leaving an undetected failure (fatigue crack) is c2 per unit time, 

then the total expected cost per inspection cycle is given by 

1
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1 2
2

( ) ln
{ },

1 1

c c
c E Xθ

ϕ θ γ
γ γ

= + −
− −

          (6) 

where ( )f xθ is the probability density function of the 

structure lifetime X,  

0

{ } ( ) ,E X xf x dxθ θ
∞

= ∫                 (7) 

( )arg ln ( ) ln ( ) ln .j
j jF jθτ τ γ ϕ θ γ= = =        (8) 

Thus, we can choose the fatigue reliability index γ such that 

( ( , ))C τ θ γ  as defined in (6) is minimized. The appropriate 

value of γ is determined from ( ( , ))} / 0,C τ θ γ γ∂ ∂ =  and we 

get the optimal value of the fatigue reliability index as 
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1

2

1
arg ln .

( )

c

c

γγ γ
γ ϕ θ

∗  −= + = − 
 

           (9) 

If −∞ < ϕ(θ) < 0, it follows from (9) that the optimal value 

of the fatigue reliability index γ exists and is unique. To make 

sure that the optimal solution (9) represents a minimum of (6), 

not a maximum, the second derivative of the performance 

index (6) is calculated and evaluated at γ = γ*
: 

2

22

( ( , )) 1 1
( ) 1 0.

C
c

τ θ γ ϕ θ
γ γγ
 ∂ = − > 
 ∂

        (10) 

which is positive (i. e., (9) represents a minimum point of 

(6)), as desired. Thus, the following theorem has been 

proven. 

Theorem 1. The fatigue reliability index γ  (such that 

( ( , ))C τ θ γ  as defined in (6) is minimized) exists and is 

unique if and only if ϕ(θ) as defined in (8) satisfies the 

inequality: −∞ < ϕ(θ) < 0. 

2.3. Index of Improvement Percentage in Effectiveness of 

Inspection Strategy 

The index of improvement percentage in effectiveness of the 

optimal inspection strategy (with )γ γ ∗=  as compared with 

the standard inspection strategy (with st )γ γ= is given by

 

 

st
imp.per st

st

( ( , ) ( ( , )
( , ) 100%.

( ( , )

C C
I

C

τ θ γ τ θ γγ γ
τ θ γ

∗
∗ −

=   (11) 

2.4. Numerical Example 2.4 

Let us assume that X follows the exponential distribution, 

( )~ ( ) (1/ )exp / ,X f x xθ θ θ= −  

1 20,    0;    1,    15,    2000.x c cθ θ≥ > = = =     (12) 

It follows from (9) and (12) that 

1

2

1
arg ln 0.991879.

c

c

γγ γ
γ θ

∗  −= + = = 
 

     (13) 

It follows from (6) and (13) that 

1 2
2

ln
( ( , )

1 1

c c
C c

θ γτ θ γ θ
γ γ

∗
∗

∗ ∗= − −
− −

 

1
2

ln
1 245.6161.

1 1

c
c

γθ
γ γ

∗

∗ ∗

 
 = − + =
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     (14) 

If the standard fatigue reliability index st 0.95γ =  is used, 

then 

1
st 2

ln
( ( , ) 1 795.9766.

1 1

c
C c

γτ θ γ θ
γ γ

∗

∗ ∗

 
 = − + =
 − − 

  (15) 

Index of improvement percentage. It follows from (11) that 

the index of improvement percentage in effectiveness of the 

optimal inspection strategy (with 0.991879)γ γ ∗= =  as 

compared with the standard inspection strategy (with 

st 0.95)γ γ= = is given by 

st
imp.per st

st

( ( , ) ( ( , )
( , ) 100%

( ( , )

C C
I

C

τ θ γ τ θ γγ γ
τ θ γ

∗
∗ −

=  

69.1428%.=                 (16) 

3. Planning in-Service Inspections Under 
Fatigue Crack Initiation in the Case of 

Parametric Uncertainty 

3.1. Criteria for Construction of Inspection Strategies 

To construct the reliability-based inspection strategy under 

parametric uncertainty, the two criteria are proposed. 

The first criterion, which takes into account (3) and the 

random sample of the past lifetime data (X1, …, Xn) of the 

components of the same type, allows one to construct the 

inspection strategy given by  

unb arg ( { ( ( )) } ),    1,j
j E F S jθ θτ τ γ= = ≥      (17) 

where S represents some sample statistic (say, either the 

maximum likelihood estimator of θ or sufficient statistic for θ). 

This criterion is named as ‘unbiasedness criterion’. 

The second criterion, which takes into account (4) and the 

random sample of the past lifetime data (X1, …, Xn) of the 

components of the same type, allows one to construct the 

inspection strategy given by  

mv 2

( )
arg min  { [ ( ( )) ] },    1,

j
j

S
E F S jθ θ

τ
τ τ γ= − ≥    (18) 

This criterion is named as ‘minimum variance criterion’.  

It will be noted that in practice, under parametric 

uncertainty, the criterion,  

ml arg  ( ( ) ),    1,j
j F jθτ τ γ= = ≥⌢          (19) 

is usually used, where θ
⌢

 is the maximum likelihood estimate 

of θ. This criterion is named as ‘maximum likelihood criterion’. 

When there is a fatigue reliability requirement, the problem 

is usually to develop an inspection strategy that meets the 

reliability requirements. It is assumed that only the functional 

form of the underlying invariant distribution of time to crack 

detection is specified, but some or all of its parameters are 

unspecified. The pivotal quantity averaging (PQA) approach 

proposed in this paper allows one to construct an optimal 

inspection strategy under parametric uncertainty.  

3.2. Inspection Strategies 

Theorem 2. Let X1, …, Xn be the random sample of the past 
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independent observations of time to crack detection from the 

fatigued structures (components) of the same type, which 

follow the exponential distribution with the probability 

density function 

( )( ) (1/ )exp / ,    0,    0,f x x xθ θ θ θ= − ≥ >       (20) 

where the parameter θ is unknown. Then the reliability-based 

inspection strategies for a new fatigued component of the 

same type are given as follows. 

The unbiased inspection strategy: 

unb /[ 1] ,    1.j n
j S jτ γ −= − ≥             (21) 

The minimum variance inspection strategy: 

1
mv

1

1
,   1,

2 1

j

n

j j

n

S j
γτ

γ

+

+

−= ≥

−

           (22) 

where 
1

n
ii

S X==∑ is the sufficient statistic for θ. 

The maximum likelihood inspection strategy: 

ml 1ln ,    1.j
S

j j
n

τ γ −= ≥            (23) 

Proof. Using the pivotal quantity averaging approach 

(Nechval et al. [12, 13]), the unbiased inspection strategy can 

be obtained from (17) as  

unb arg[ { ( ( ))} ]j
j E F Sθ θτ τ γ= =  

arg exp
j jS

E
S

θ
τ

γ
θ
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/[ 1] ,    1,j n S jγ −= − ≥               (24) 

where the ancillary factor ρj is given by 

/ ,j j Sρ τ=                  (25) 

the pivotal quantity V is given by 

11
/ ~ ( ) exp( ),    0.

( )

n
V S f v v v v

n
θ −= = − ≥

Γ
    (26) 

The minimum variance inspection strategy is obtained from 

(18) as 
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/( 1) /( 1)[(1 ) (2 1)] ,   1.j n j n S jγ γ+ += − − ≥      (27) 

The maximum likelihood inspection strategy follows 

immediately from (19):  

ml arg ( ( ) ) arg expj j
j Fθ

ττ τ γ γ
θ

  = = = − =  
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1
ln ,    1,

S
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γ −= ≥                (28) 

where the maximum likelihood estimator of θ is /S nθ =
⌢

 

This ends the proof.  

3.3. Optimization of Fatigue Reliability Index 

Theorem 3. If (under conditions of Theorem 2) the unbiased 

inspection strategy is used, where each inspection costs c1 and 

the cost of leaving an undetected failure (fatigue crack) is c2 

per unit time, then the fatigue reliability index
 
γ minimizing 

the total expected cost per inspection cycle is given by  

1/
1

unb 2 2( 1)/

1 1
arg min .
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  (29) 

Proof. It follows from (20) and (26) that ( ( , ))C τ θ γ  can be 

transformed as 

1
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Using the pivotal quantity averaging approach, it follows 

from (30) that 
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It follows from (24) and (31) that 
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Thus, we can choose the fatigue reliability index γ such that 

unb( ( , ))C Sτ γ  as defined in (32) is minimized. The optimal 

value of the fatigue reliability index γ is determined as 

unb
unb arg min ( ( , ))C S

γ
γ τ γ∗ =  

1/
1

2 2( 1)/

1 1
arg min .

11

n

n n

c n
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Sγ
γ

γγ

−

+

 −
 = + −
 −− 

 (33) 

This ends the proof. 

3.4. Index of Improvement Percentage in Effectiveness of 

Inspection Strategy 

The index of improvement percentage in effectiveness of 

the optimal unbiased inspection strategy (with unb )γ γ ∗=  as 

compared with the standard inspection strategy (with 

st )γ γ= is given by 

st unb
imp.per unb st

st

( ( , ) ( ( , )
( , ) 100%.

( ( , )

C S C S
I

C S

τ γ τ γγ γ
τ γ

∗
∗ −

=  (34) 

3.5. Numerical Example 3.5 

Let X1, …, Xn be the random sample of the past independent 

observations of time to crack detection (from the same 

fatigued structures) which follow the exponential distribution 

(20), where n = 2 and the parameter θ is unknown. The 

sufficient statistic for θ is S = 4000 hours. In order to construct 

the reliability-based inspection strategy for a new fatigued 

structure of the same type, the unbiased inspection strategy 

(21) will be used. Let us assume that each inspection costs 

c1=1 (in terms of money) and the cost of leaving an undetected 

failure (fatigue crack) is c2=15 (in terms of money) per unit 

time. Then it follows from (33) that 
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0.994581.=                (35) 

It follows from (32) and (35) that 
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If the standard fatigue reliability index st 0.95γ =  is used, 

then 
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1
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Index of improvement percentage. It follows from (34) that 

the index of improvement percentage in effectiveness of the 

optimal unbiased inspection strategy (with 

unb 0.994581)γ γ ∗= =  as compared with the standard 

unbiased inspection strategy (with st 0.95)γ γ= =  is given by 
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st unb
imp.per unb st

st

( ( , ) ( ( , )
( , ) 100%

( ( , )

C S C S
I

C S

τ γ τ γγ γ
τ γ

∗
∗ −

=  

79.3123%.=                     (38) 

3.6. Numerical Example 3.6 

Consider, for example, the data of fatigue tests on a 

particular type of structural components (stringer) of aircraft 

IL-86. The data are for a complete sample of size n = 5, with 

observations of time to crack initiation (in number of 10
4
 flight 

hours): X1=5, X2=6.25, X3=7.5, X4=7.9, X5=8.1. 

Goodness-of-fit Testing. It is assumed that Xi, i=1(1)5, 

follow the two-parameter Weibull distribution with the 

probability distribution function 

Pr{ } 1 exp
x

X x

δ

β

   ≤ = − − 
   

, x ≥ 0,       (39) 

where the parameters β and δ are unknown. We assess the 

statistical significance of departures from the Weibull model 

by performing empirical distribution function goodness-of-fit 

test. The K statistic (Kapur and Lamberson [14]) is used. For 

censoring (or complete) datasets, the K statistic is given by 
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where [r/2] is a largest integer ≤ r/2, the values of Mi are 

given in [14]. The rejection region for the α level of 

significance is {K >Kn;α}. The percentage points for Kn;α were 

given by Kapur and Lamberson [14]. For this example, where 

r=n=5, 

K = 0.184 < Kn=5;α=0.05 = 0.86.           (41) 

Thus, there is not evidence to rule out the Weibull model.  

Theorem 4. Let X1 ≤... ≤ Xr be the first r ordered past 

observations of time to crack detection from the n fatigued 

structures of the same type, which follow the Weibull 

distribution with the probability distribution function (39) 

Pr{ } 1 exp
x

X x

δ

β

   ≤ = − − 
   

, x ≥ 0.       (42) 

Then the unbiased reliability-based strategy of inspections 

of a new fatigued structure of the same type is given as 

follows: 
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where 
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β
⌢

 and δ
⌢

 are the maximum likelihood estimators of β and δ 

based on the first r ordered past observations (X1 ≤... ≤ Xr) 

from a sample of size n from the two-parameter Weibull 

distribution (39), which can be found from solution of 
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and 
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       (46) 

Proof. The proof is similar to that of Theorem 2 and so it is 

omitted here. 

Inspection planning under fatigue crack initiation. Using 

(43), for γ = 0.95, we have obtained the following inspection 

time sequence (see Table 1). Graphical representation of 

inspection intervals is shown in Figure 2. 

Table 1. Inspection time sequence under fatigue crack initiation. 

Inspection time (in terms of flight hours) τj, j=0(1)9  

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 

0 25549 32569 36975 40212 42775 44898 46708 

τ8 τ9 … … … … … … 

48287 49685 … … … … … … 

Interval (in terms of flight hours) τj+1−τj, j=0(1)8 

− τ1-τ0 τ2-τ1 τ3-τ2 τ4-τ3 τ5-τ4 τ6-τ5 τ7-τ6 

− 25549 7020 4406 3237 2563 2123 1810 

τ8-τ7 τ9-τ8 … … … … … … 

1579 1398 … … … … … … 
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Figure 2. Graphical representation of inspection intervals under fatigue 

crack initiation. 

4. Planning in-Service Inspections Under 

Fatigue Crack Propagation (Growth) 

To capture the statistical nature of fatigue crack growth, 

different stochastic models have been proposed in the 

literature. Some of the models are purely based on direct curve 

fitting of the random crack growth data, including their mean 

value and standard deviation (Bogdanoff and Kozin [15]). 

These models, however, have been criticized by other 

researchers, because less crack growth mechanisms have been 

included in them. To overcome this difficulty, many 

probabilistic models adopted the crack growth equations 

proposed by fatigue experimentalists, and randomized the 

equations by including random factors into them (Lin and 

Yang [16]; Yang et al. [17]; Yang and Manning [18]; Nechval 

et al. [19, 20]; Straub and Faber [21]). The random factor may 

be a random variable, a random process of time, or a random 

process of space. It then creates a random differential equation. 

The solution of the differential equation reveals the 

probabilistic nature as well as the scatter phenomenon of the 

fatigue crack growth. To justify the applicability of the 

probabilistic models mentioned above, fatigue crack growth 

data are needed. However, it is rather time-consuming to carry 

out experiments to obtain a set of statistical meaningful 

fatigue crack growth data. To the writers’ knowledge, there are 

only a few data sets available so far for researchers to verify 

their probabilistic models. Among them, the most famous data 

set perhaps is the one produced by Virkler et al. [22]. More 

frequently used data sets include one reported by Ghonem and 

Dore [23]. Itagaki and his associates have also produced some 

statistically meaningful fatigue crack growth data, but have 

not been mentioned very often (Itagaki et al. [24]). In fact, 

many probabilistic fatigue crack growth models are either lack 

of experimental verification or just verified by only one of the 

above data sets. It is suspected that a model may explain a data 

set well but fail to explain another data set. The universal 

applicability of many probabilistic models still needs to be 

checked carefully by other available data sets. 

Many probabilistic models of fatigue crack growth are 

based on the deterministic crack growth equations. The most 

well known equation is 

( )
( ( ))b

da t
q a t

dt
=              (47) 

in which q and b are constants to be evaluated from the crack 

growth observations. The independent variable t can be 

interpreted as stress cycles, flight hours, or flights depending 

on the applications. It is noted that the power-law form of 

q(a(t))
b
 at the right hand side of (47) can be used to fit some 

fatigue crack growth data appropriately and is also 

compatible with the concept of Paris–Erdogan law (Paris and 

Erdogan [25]). 

4.1. Innovative Stochastic Model of Fatigue Crack 

Propagation 

This model of fatigue crack propagation (growth) is based 

on the following deterministic crack growth equation, 

1 0 0
2

( )
exp ,

q q qdt a

da aa

 = − 
 

          (48) 

in which q1 and q0 are constants to be evaluated from the crack 

growth observations. The variable t can be interpreted as stress 

cycles, flight hours, or flights depending on the applications. 

The service time for a crack to grow from size a0 to a (where a > 

a0) can be found by performing the necessary integration 

0 0
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1 2
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dt q dv

vv
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to obtain 
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q q

t a t a q
a a

   − = − − −   
    

     (50) 

If a0=0, then it follows from (50) that 

0
1( ) exp

q
t a q

a

 = − 
 

              (51) 

or 

0 1ln ( ) ,a t a aβ β= +               (52) 

where 1 1ln ,qβ =  0 0.qβ = −  Including a stochastic factor ε 

(say, ε ~ N(0, σ2)) into (52), we obtain the innovative 

stochastic model of fatigue crack propagation 

0 1ln ( ) .a t a aβ β ε= + +               (53) 

4.2. New Equation for Planning in-Service Inspections 

Under Fatigue Crack Propagation 

Let us assume that we have a sample of k data points 

consisting of pairs of observed values of a and τ, say (τ1, a1), 

(τ2, a2), …, (τk, ak), where k > 2, τj is the time of the jth 

inspection, aj is the crack size detected by means of the jth 
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inspection, j=1(1)k. Then, taking into account (53), it can be 

shown that the timeτ k +1 of the next inspection is determined 

as 

(1 )
1

1
1

exp  ,k
k

k

h
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α
τ

−
+

+
+

 
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               (54) 

where 
 

 1k k ka a+ = + ∆ɶ                   (55) 

represents an assumed value of future crack size ak +1 (not yet 

observed), ∆k =  1k ka a+ −ɶ  represents an increment of ak, 
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represents the 100(1−α)% lower prediction limit for a single 

future value of ak+1lnτk+1, 2;1nt α− − denotes the (1−α) 

quantile of the t-distribution with (n – 2) degrees of freedom,  
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4.3. Numerical Example 4.3 

For illustration, the procedure of inspection planning based 

on the innovative model (53) was used for the upper longeron 

of RNLAF F-16 aircraft [26] (Figure 3). 

 

Figure 3. Inspection points of the upper longeron of RNLAF F-16 aircraft. 

Figure 4 shows the deterministic damage tolerance 

inspection requirements (Military Specification [26]) for the 

RNLAF longerons. 

 

Figure 4. Deterministic damage tolerance inspection requirements for the 

RNLAF longerons. 

These requirements led to the following inspection scheme 

which includes 
inspections.
const.int.

N  = 42 inspections: (i) initial 

inspection after 2655 flights hours; (ii) repeat inspections 

every 62 flight hours. It will be noted that this inspection 

scheme has an unknown safety level. 

Using the RNLAF longeron mean crack growth curve 

(Figure 4) and the innovative stochastic model of fatigue crack 

propagation (53), we have obtained from (54), where the 

safety level was specified to be 1−α = 0.99, ∆k=4 mm for all k, 

the following in-service inspection time sequence with 

decreasing intervals (see Table 2). 

Table 2. Inspection time sequence under fatigue crack propagation. 

Inspection time (in terms of flight hours) τj, j=1(1)12  

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 

2655 4200 4600 4800 4930 5030 5110 5170 

τ9 τ10 τ11 τ12 … … … … 

5220 5260 5290 5310 … … … … 

Interval (in terms of flight hours) τj+1−τj, j=0(1)11, τ0 = 0 

τ1-τ0 τ2-τ1 τ3-τ2 τ4-τ3 τ5-τ4 τ6-τ5 τ7-τ6 τ8-τ7 

2655 1545 400 200 130 100 80 60 

τ9-τ8 τ10-τ9 τ11-τ10 τ12-τ11 … … … … 

50 40 30 20 … … … … 

Graphical representation of decreasing in-service 

inspection intervals under crack propagation for the proposed 

inspection scheme (Table 2) is shown in Figure 5. Thus, the 

proposed inspection scheme contains only 
inspections
decr.int.

N =12 

inspections. 

 

Figure 5. Graphical representation of inspection intervals under fatigue 

crack propagation. 
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The index of relative efficiency of the inspection scheme 

with constant intervals as compared with the inspection 

scheme with decreasing intervals is given by 

inspections inspections
rel.eff. const.int. decr.int.

( , )I N N  

inspections inspections
decr.int. const.int.

/ 12 / 42 0.29.N N= = =     (60) 

The index of reduction percentage in the inspection costs 

for the inspection scheme with decreasing intervals as 

compared with the inspection scheme with constant intervals 

is given by 

inspections inspections
red.per. decr.int. const.int.

( , )I N N  

inspections inspections
rel.eff. const.int. decr.int.

[1 ( , )]100% 71%.I N N= − =  (61) 

5. Conclusion 

The technique proposed in this paper represents a simple 

and computationally attractive statistical method based on the 

constructive use of the invariance principle in mathematical 

statistics. The main advantage of this technique consists in that 

it allows one to eliminate unknown parameters from the 

problem and to use the past lifetime data for planning future 

inspections as completely as possible. The unbiasedness and 

minimum variance criteria, which are proposed in the paper 

for constructing inspection strategies under fatigue crack 

initiation such as the unbiased inspection strategy (UIS) and 

minimum variance inspection strategy (MVIS), respectively, 

represent the novelty of the work. It is clear that these 

inspection strategies, which have such properties as 

unbiasedness and minimum variance, are preferable as 

compared to the maximum likelihood inspection strategy 

(MLIS). We have illustrated the prediction methods for 

log-location-scale distributions (such as the Exponential, 

Gumbel or Weibull distribution). Application to other 

distributions could follow directly. Under fatigue crack 

growth, the damage tolerance situation is considered. As a 

result of our investigations of the experimental data of fatigue 

crack growth, we have found that for planning in-service 

inspections of fatigued structures under crack propagation it 

can be used the approach based on a novel crack growth 

equation to construct more accurate reliability-based 

inspection strategy in this case. The new technique proposed 

for planning in-service inspections of fatigued structures 

under crack propagation requires a quantile of the 

t-distribution and is conceptually simple and easy to use. The 

results obtained in this work can be used to solve the service 

problems of the following important engineering structures: (1) 

Transportation Systems and Vehicles – aircraft, space vehicles, 

trains, ships; (2) Civil Structures − bridges, dams, tunnels; (3) 

Power Generation – nuclear, fossil fuel and hydroelectric 

plants; (4) High-Value Manufactured Products − launch 

systems, satellites, semiconductor and electronic equipment; 

(5) Industrial Equipment − oil and gas exploration, production 

and processing equipment, chemical process facilities, pulp 

and paper. 
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