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Abstract: In this paper, an efficient approach to pattern recognition (classification) is suggested. It is based on minimization of 

misclassification probability and uses transition from high dimensional problem (dimension p≥2) to one dimensional problem 

(dimension p=1) in the case of the two classes as well as in the case of several classes with separation of classes as much as 

possible. The probability of misclassification, which is known as the error rate, is also used to judge the ability of various pattern 

recognition (classification) procedures to predict group membership. The approach does not require the arbitrary selection of 

priors as in the Bayesian classifier and represents the novel pattern recognition (classification) procedure that allows one to take 

into account the cases, which are not adequate for Fisher’s classification rule (i.e., the distributions of the classes are not 

multivariate normal or covariance matrices of those are different or there are strong multi-nonlinearities). Moreover, it also 

allows one to classify a set of multivariate observations, where each of the observations belongs to the same unknown class. For 

the cases, which are adequate for Fisher’s classification rule, the proposed approach gives the results similar to that of Fisher’s 

classification rule. For illustration, practical examples are given. 
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1. Introduction 

Pattern recognition aim is to classify data (patterns) based 

on statistical information extracted from the patterns [1, 2]. It 

provides the solution to various problems from speech 

recognition, face recognition to classification of handwritten 

characters and medical diagnosis. The various application 

areas of pattern recognition are like bioinformatics, document 

classification, image analysis, data mining, industrial 

automation, biometric recognition, remote sensing, 

handwritten text analysis, medical diagnosis, speech 

recognition, statistics, diagnostics, computer science, biology 

and many more. Pattern recognition aim is to classify data 

(patterns) based on either a priori knowledge or on statistical 

information extracted from the patterns. Fisher’s linear 

discriminant rule (FLDR) is the most widely used 

classification rule [3−9 and references therein]. Some of the 

reasons for this are its simplicity and unnecessity of strict 

assumptions. In its original form, proposed by Fisher, the 

method assumes equality of population covariance matrices, 

but does not explicitly require multivariate normality. 

However, optimal classification performance of Fisher's 

discriminant function can only be expected when multivariate 

normality is present as well, since only good discrimination 

can ensure good allocation. In practice, we often are in need of 

analyzing input data samples, which are not adequate for 

Fisher’s classification rule, such that the distributions of the 

groups (classes, populations) are not multivariate normal or 

covariance matrices of those are different or there are strong 

multi-nonlinearities. 

In this paper, an efficient approach to pattern recognition 

(classification) is proposed. It is based on minimization of 

misclassification probability. The approach does not require 

the arbitrary selection of priors as in the Bayesian classifier 

and represents the novel procedure that allows one to analyze 

input data samples, which are not adequate for Fisher’s pattern 

classification rule (i.e., the distributions of the classes are not 

multivariate normal or covariance matrices of those are 

different or there are strong multi-nonlinearities). For the 
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cases, which are adequate for Fisher’s classification rule, the 

proposed approach gives the results similar to that of Fisher’s 

rule. Moreover, it also allows one to classify the set of 

multivariate observations, where each of the observations 

belongs to the same class. This approach uses transition from 

high dimensional problem (dimension p≥2) to one 

dimensional problem (dimension p=1) in the case of the two 

classes as well as in the case of several classes with separation 

of classes as much as possible. The probability of 

misclassification, which is known as the error rate, is also used 

to judge the ability of various pattern recognition 

(classification) procedures to predict group membership. 

2. Approach to Pattern Recognition 

2.1. Approach to Pattern Recognition (Classification) in the 

Case of Two Classes 

Let 

Y
1C
= (Y11, …, Y

11n ), Y
2C
= (Y21, …, Y

22n )    (1) 

be samples of observed vectors of attributes of objects from 

two different classes C1 and C2, respectively. In this case, the 

proposed approach to pattern recognition (classification) is as 

follows. 

 

Figure 1. Misclassification probability. 

Step 1 (Transition from high dimensional problem 

(dimension p≥2) to one dimensional problem (dimension 

p=1)). At this step, transition from high dimensional problem 

to one dimensional problem is carried out by using suitable 

transformations of the multivariate (p≥2) observations Y = 

[Y1,…, Yp]′ to univariate observations X with separation of 

classes as much as possible to obtain the input object 

allocation, which should be “optimal” in the sense of 

minimizing, on average, the number of incorrect assignments. 

Then the separation threshold h, which minimizes the 

probability of misclassification of the new input observation 

Ynew, 

2 1

1 2

miscl
( ) ( ) ],

C C

C C

R R

P f x dx f x dx= +∫ ∫           (2) 

is determined (see Fig. 1), where ���
��� represents the 

probability density function (pdf) of a transformed 

observation X= X (Ynew) of Ynew from class Cj, j∈{1, 2}. 

Step 2 (Pattern recognition (classification) via separation 

threshold h). At this step, pattern recognition (classification) 

of the new observation Ynew is carried out as follows:  

Y
Y

Y

1 new

new
2 new

  if  ( ) ,

  if  ( ) .

C X h

C X h

 <∈  >
        (3) 

Remark 1. The recognition (classification) rule (3) can be 

rewritten as follows: 

Assign Ynew to the class Cj for which ���
���, j∈{1, 2}, is 

largest. 

2.2. Approach to Pattern Recognition (Classification) in the 

Case of Several Classes 

Let 

Y
1C
= (Y11, …, Y

11
),

n …, Y
m
C
=  (Ym1, …, Y

 
)

m
m n    (4) 

be samples of observed vectors of objects from several 

different classes C1, C2, …, Cm, respectively. In this case, the 

proposed approach to pattern recognition (classification) is as 

follows. 

Step 1 (Transition from high dimensional problem 

(dimension p≥2) to one dimensional problem (dimension 

p=1)). At this step, at first, transition from p-dimensional 

problem to g-dimensional problem is carried out by using a 

suitable transformation of the multivariate observations Y

1
( ,..., )

p
Y Y ′=  to the multivariate observations Z=

1
,  ...,  )

g
Z Z ′ , where g must be no bigger [2] than 

min( 1, ).g m p= −              (5) 

If g≥2, transition from g-dimensional problem to one 

dimensional problem is carried out by using a suitable 

transformation of the multivariate observations Z= 

(
1
,  ...,  )

g
Z Z ′  to univariate observations X with separation of 

classes as much as possible to obtain the input object 

allocation, which should be “optimal” in the sense of 

minimizing, on average, the number of incorrect assignments. 

Then the separation threshold hkl, which minimizes the 

probability of misclassification of the new input observation 

Ynew for classes Ck and Cl, 

miscl
( ) ( ) ],
l k

C Ck l

kl kl kl

C C

R R

P f x dx f x dx= +∫ ∫  

k, l∈{1, …, m}, k≠l,             (6) 

is determined (pairwise), where ��	


���� represents the pdf of a 

transformed observation X(Ynew) from class Ck. 

Step 2 (Pattern recognition (classification) via separation 

thresholds hkl; k, l∈{1, …, m}, k≠l). At this step, pattern 

recognition (classification) of the new observation Ynew is 
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carried out as follows: 

Y Y
new new

 if ( ) ,   .
k kl
C X h l k∈ < ∀ ≠       (7) 

Remark 2. The recognition (classification) rule (7) can be 

rewritten as follows: 

Y
new

 if ( ) ( ),   .
k l

kl kl

k C C
C f x f x l k∈ > ∀ ≠      (8) 

3. Practical Examples 

3.1. Example 1 

Suppose we wish to classify some product (input vector Y = 

[Y1, Y2]′ ) to one of two classes of quality (C1 and C2) of this 

product. The data samples of observed vectors Y of attributes 

of product quality from two different classes C1 and C2, 

respectively, are given in Table 1. 

Table 1. Product quality attributes data. 

Class C1 of product quality attributes 

Vector Y′1(i) of quality attributes 

i y11(i) y12(i) i y11(i) y12(i) 

1. 6 6.8 9. 7.5 5.3 

2. 5.8 6.8 10. 6.8 5 

3. 6.3 7 11. 5 4.4 

4. 7 6.3 12. 5.7 4.6 

5. 6.4 5.9 13. 7.1 4.1 

6. 7.7 5.9 14. 7.8 4.3 

7. 5 5.7 15. 6.1 3.9 

8. 6.1 5.2    

Class C2 of product quality attributes 

Vector Y′2(i) of quality attributes 

i y21(i) y22(i) i y21(i) y22(i) 

1. 4.2 9.4 10. 10.3 5 

2. 6.9 9 11. 11.7 4.4 

3. 8.7 9 12. 3.5 3.7 

4. 4.9 8.4 13. 9.2 3.2 

5. 3.4 7.6 14. 7.4 2.8 

6. 11.2 7.5 15. 4.2 2.2 

7. 9.2 6.3 16. 9 2.3 

8. 3.1 6 17. 11 2 

9. 1.8 4.9 18. 5.9 1.8 

 

Figure 2. Pictorial representation of the data of Table 1, which are not 

adequate for Fisher’s classification rule. 

A pictorial representation of the above data, which are not 

adequate for Fisher’s classification rule, is given on Fig. 2. If 

the points are projected in any direction onto a straight line, 

there will be almost total overlap. A linear discriminant 

procedure will not successfully separate the two classes. 

Step 1. For transition from high dimensional problem (p=2) 

to one dimensional problem (p=1), the following 

transformations are used: Y=[Y1, Y2]′ ⇒ Z=[Z1, Z2, Z3]′ ⇒ X, 

where 

2 2

1 1 2 2 3 1 2
( ) ,    ( ) ,    ( )( ),Z Y a Z Y b Z Y a Y b= − = − = − −  

2
18

21 2
1

/ 6.98,
n

i

a y n

=

=

= =∑  
2

18

22 2
1

/ 5.31,
n

i

b y n

=

=

= =∑    (9) 

U ZX ′= = [5.714, 8.299, 1.089] Z.      (10) 

Using the Anderson-Darling goodness-of-fit test for 

Normality (significance level α=0.05), it was found that 

1

1

2

11

(1
( ) exp ,

22
C

x
f x

µ

σπσ

 −  = −    
      (11) 

1 1
14.148,    9.815,µ σ= =⌢ ⌢

          (12) 

2

2

2

22

(1
( ) exp ,

22
C

x
f x

µ

σπσ

 −  = −    
      (13) 

2 2
109.329,    39.971.µ σ= =⌢ ⌢

        (14) 

It follows from (2) that 

38.149,h =  
miscl

( ) 0.044706,P h =       (15) 

Fisher 1 2
( ) / 2 61.739,h µ µ= + =⌢ ⌢

        (16) 

miscl Fisher
( ) 0.116899.P h =            (17) 

Indexes. Thus, the index of relative efficiency of the Fisher 

approach as compared with the proposed approach is 

rel.eff. Fisher miscl miscl Fisher
( , ) ( ) / ( )I h h P h P h=  

0.044706 / 0.116899 0.382.= =      (18) 

The index of reduction percentage in the probability of 

misclassification for the proposed approach as compared with 

the Fisher approach is given by 

red.per. Fisher
( , )I h h  

rel.eff. Fisher
(1 ( , ))100% 61.8%.I h h= − =      (19) 

3.2. Example 2 

This example is adapted from a study [10] concerned with 

the detection of hemophilia A carriers. To construct a 

procedure for detecting potential hemophilia A carriers, blood 

samples were assayed for two groups of women and 

measurements on the two variables: Y1=log10(AHF activity) 
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and Y2=log10(AHF antigen) recorded. (“AHF” denotes 

antihemophilic factor.) The first group of n1 =23 women was 

selected from known hemophilia A carriers. This group was 

called the obligatory carriers. The second group of n2=29 

women were selected from a population of women who did 

not carry the hemophilia gene. This group was called the 

normal group. The pairs of observations (y1, y2) for the two 

groups are given in Table 2 and plotted in Fig. 3. Also shown 

are estimated contours containing 50% and 95% of the 

probability for bivariate normal distributions centered at y
1
 

and �
�, respectively. 

Table 2. Hemophilia data. 

Group C1 of obligatory carriers 

Vector Y′1(i) = [log10(AHF activity, log10(AHF antigen] 

i y11(i) y12(i) i y11(i) y12(i) 

1. -0.45 0.015 13. -0.25 -0.04 

2. -0.43 -0.095 14. -0.22 -0.015 

3. -0.42 -0.12 15. -0.22 0.024 

4. -0.41 -0.25 16. -0.21 -0.04 

5. -0.38 -0.28 17. -0.175 -0.09 

6. -0.35 -0.015 18. -0.2 0.25 

7. -0.34 0.1 19. -0.19 0.175 

8. -0.33 -0.13 20. -0.075 0.17 

9. -0.24 0.28 21. -0.015 0.15 

10. -0.24 0.15 22. -0.07 0.0135 

11. -0.26 0.08 23. -0.025 0.08 

12. -0.26 -0.075    

Group C2 of noncarriers 

Vector Y′2(i) = [log10(AHF activity, log10(AHF antigen] 

i y21(i) y22(i) i y21(i) y22(i) 

1. -0.23 -0.3 16. 0.03 0.09 

2. -0.18 -0.3 17.  0.05 0 

3. -0.13 -0.3 18. 0.04 -0.03 

4. -0.16 -0.24 19. 0.1 0 

5. -0.025 -0.2 20. 0.075 0.02 

6. -0.12 -0.14 21. 0.055 0.05 

7. -0.075 -0.14 22. 0.06 0.1 

8. -0.02 -0.15 23. 0.09 0.09 

9. -0.07 -0.06 24. 0.1 0.05 

10. -0.06 -0.055 25. 0.11 0.035 

11. -0.025 -0.09 26. 0.1 0.125 

12. -0.06 -0.04 27. 0.12 0.125 

13. 0 -0.08 28. 0.14 0.07 

14. 0.05 -0.08 29. 0.21 0.11 

15. 0.07 -0.1    

 

Figure 3. Scatter plots of [log10 (AHF activity), log10(AHF antigen)] for the 

normal group and obligatory hemophilia A carriers. 

Step 1. For transition from high dimensional problem (p=2) 

to one dimensional problem (p=1), the following 

transformation is used: Y=[Y1 Y2]′ ⇒ U YX ′= , where 

( (
S S

U S Y Y Y Y

1

1 1 2

2 1 2 1

1 2

) )
n n

−

−
  = − = + −   

 

[489.0637,  318.513],= −                (20) 

( ) ( )
2

1
( )( ) ,

1

j
n

j j i j j i j
ij

n =

′= − −
− ∑S Y Y Y Y       (21) 

Y Y
( )

1

1
,

j
n

j j i
ij

n =

= ∑  j = 1, 2.             (22) 

Using the Anderson-Darling goodness-of-fit test for 

Normality (significance level α=0.05), it was found that 

1

1

2

11

(1
( ) exp ,

22
C

x
f x

µ

σπσ

 −  = −    
        (23) 

1 1
127.152,    53.6099,µ σ= − =⌢ ⌢

        (24) 

2

2

2

22

(1
( ) exp ,

22
C

x
f x

µ

σπσ

 −  = −    
        (25) 

2 2
19.94758,    25.34034µ σ= =⌢ ⌢

.       (26) 

Theorem 1. If 

( )
j
C
f x , j = 1, 2,            (27) 

are the probability density functions of the normal distribution 

with the parameters 2

1 1
( , )µ σ and 2

2 2
( , )µ σ , respectively, where

1 2
µ µ< , then the necessary and sufficient conditions for 

2 1miscl
( ) ( ) ( )

h

C C

h

P h f x dx f x dx

∞

−∞

= +∫ ∫       (28) 

to have a unique minimum are: 

(i) the necessary condition for h to be a minimum point of (5) 

is given by 

1 2

( ) ( ),
C C
f h f h=                 (29) 

(ii) the sufficient condition for h to be a minimum point of 

(28) is given by 

1 2
.hµ µ< <                  (30) 

Proof. The proof being straightforward is omitted here. 

Corollary 1.1. If 
1 2

,σ σ=  then the separation threshold h 
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is determined as 

1 2
( ) / 2,h µ µ= +                (31) 

i.e., in this case we deal with Fisher’s separation threshold. 

It follows from (28) that 

33.938,h =−  
miscl

( ) 0.05777,P h =  (32) 

Fisher 1 2
( ) / 2 53.602,h µ µ= + = −⌢ ⌢

miscl Fisher
( ) 0.08689.P h =    (33) 

Indexes. Thus, the index of relative efficiency of the Fisher 

approach as compared with the proposed approach is 

rel.eff. Fisher miscl miscl Fisher
( , ) ( ) / ( )I h h P h P h=  

0.05777 / 0.08689 0.665.= =       (34) 

The index of reduction percentage in the probability of 

misclassification for the proposed approach as compared with 

the Fisher approach is given by 

red.per. Fisher rel.eff. Fisher
( , ) (1 ( , ))100% 33.5%.I h h I h h= − =  (35) 

Step 2 (Pattern recognition (classification) via separation 

threshold h). At this step, pattern recognition (classification) 

of a new observation Ynew is carried out as follows:  

Y U Y
Y

Y U Y

1 new new

new
2 new new

  if  ( ) ,

  if  ( ) .

C X h

C X h

 ′ = <∈  ′ = >
      (36) 

For instance, measurements of AHF activity and AHF 

antigen on a woman who may be a hemophilia A carrier give 

y1 = −0.210 and y2 = −0.044. Should this woman be classified 

as C1 (obligatory carrier) or C2 (normal)?  

Using Fisher’s classification rule, we obtain 

new
U Y

new
X′ =  

[489.0637   318.513][ 0.210   0.044]′= − − −  

Fisher
88.69 53.602.h= − < = −                (37) 

Using the proposed approach based on minimization of 

misclassification probability, we obtain 

new
U Y

new
X′ =  

[489.0637   318.513][ 0.210   0.044]  ′= − − −  

88.69 33.938.h=− < =−                    (38) 

Applying either (37) or (38), we classify the woman as C1, 

an obligatory carrier. Thus, Fisher’s approach and the 

proposed one give the same result in the above case. 

It will be noted that if Ynew=Y1(22)=[ −0.07 0.0135]′, then 

Xnew= −38.5344 > hFisher= −53.602. Thus, in this case, Fisher’s 

classification rule gives incorrect classification. 

4. Conclusion 

The approach proposed in this paper represents the 

innovative pattern recognition (classification) procedure 

based on minimization of misclassification probability. It 

allows one to take into account the cases, which are not 

adequate for Fisher’s classification rule. Moreover, the 

procedure also allows one to classify the set of multivariate 

observations, where each of the observations belongs to the 

same unknown class. This approach has been motivated by a 

misclassification problem that appears in various application 

areas of pattern recognition. 
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