
 

American Journal of Theoretical and Applied Statistics 
2016; 5(2-1): 1-6 

Published online November 28, 2015 (http://www.sciencepublishinggroup.com/j/ajtas) 

doi: 10.11648/j.ajtas.s.2016050201.11 

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online) 

 

Tolerance Limits on Order Statistics in Future Samples 
Coming from the Two-Parameter Exponential Distribution 

Nicholas A. Nechval
1, *

, Konstantin N. Nechval
2
 

1Department of Mathematics, Baltic International Academy, Riga, Latvia 
2Department of Applied Mathematics, Transport and Telecommunication Institute, Riga, Latvia 

Email address: 
nechval@junik.lv (N. A. Nechval), konstan@tsi.lv (K. N. Nechval) 

To cite this article: 
Nicholas A. Nechval, Konstantin N. Nechval. Tolerance Limits on Order Statistics in Future Samples Coming from the Two-Parameter 

Exponential Distribution. American Journal of Theoretical and Applied Statistics. Special Issue: Novel Ideas for Efficient Optimization of 

Statistical Decisions and Predictive Inferences under Parametric Uncertainty of Underlying Models with Applications.  

Vol. 5, No. 2-1, 2016, pp. 1-6. doi: 10.11648/j.ajtas.s.2016050201.11 

 

Abstract: This paper presents an innovative approach to constructing lower and upper tolerance limits on order statistics in 

future samples. Attention is restricted to invariant families of distributions under parametric uncertainty. The approach used here 

emphasizes pivotal quantities relevant for obtaining tolerance factors and is applicable whenever the statistical problem is 

invariant under a group of transformations that acts transitively on the parameter space. It does not require the construction of any 

tables and is applicable whether the past data are complete or Type II censored. The proposed approach requires a quantile of the 

F distribution and is conceptually simple and easy to use. For illustration, the two-parameter exponential distribution is 

considered. A practical example is given. 
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1. Introduction 

Statistical tolerance limits are another tool for making 

statistical inference on an unknown population. As opposed to 

a confidence limit that provides information concerning an 

unknown population parameter, a tolerance limit provides 

information on the entire population; to be specific, one-sided 

tolerance limit is expected to capture a certain proportion or 

more of the population, with a given confidence level. For 

example, an upper tolerance limit for a univariate population 

is such that with a given confidence level, a specified 

proportion or more of the population will fall below the limit. 

A lower tolerance limit satisfies similar conditions. 

It is often desirable to have statistical tolerance limits 

available for the distributions used to describe time-to-failure 

data in reliability problems. For example, one might wish to 

know if at least a certain proportion, say β, of a manufactured 

product will operate at least T hours. This question can not 

usually be answered exactly, but it may be possible to 

determine a lower tolerance limit L(X1, …, Xn), based on a 

preliminary random sample (X1, …, Xn), such that one can say 

with a certain confidence γ that at least 100β % of the product 

will operate longer than L(X1, …, Xn). Then reliability 

statements can be made based on L(X1, …, Xn), or, decisions 

can be reached by comparing L(X1, …, Xn) to T. Tolerance 

limits of the type mentioned above are considered in this paper. 

That is, if fθ (x) denotes the density function of the parent 

population under consideration and if S is any statistic 

obtained from the preliminary random sample (X1, …, Xn) of 

that population, then L(S) is a lower γ probability tolerance 

limit for proportion β if 

( )

Pr ( ) ,
L S

f x dx
θ

β γ

∞   ≥ =   
∫         (1) 

and U(S) is an upper γ probability tolerance limit for 

proportion β if  

( )

Pr ( ) ,

U S

f x dx
θ

β γ

−∞

   ≥ =   
∫        (2) 

where θ is the parameter (in general, vector). 

The common distributions used in life testing problems are 

the normal, exponential, Weibull, and gamma distributions [1]. 

Tolerance limits for the normal distribution have been 
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considered in [2], [3], [4], and others. 

Tolerance limits enjoy a fairly rich history in the literature 

and have a very important role in engineering and 

manufacturing applications. Patel [5] provides a review 

(which was fairly comprehensive at the time of publication) of 

tolerance intervals for many distributions as well as a 

discussion of their relation with confidence intervals for 

percentiles and prediction intervals. Dunsmore [6] and 

Guenther, Patil, and Uppuluri [7] both discuss 2-parameter 

exponential tolerance intervals and the estimation procedure 

in greater detail. Engelhardt and Bain [8] discuss how to 

modify the formulas when dealing with type II censored data. 

Guenther [9] and Hahn and Meeker [10] discuss how 

one-sided tolerance limits can be used to obtain approximate 

two-sided tolerance intervals by applying Bonferroni's 

inequality. 

In contrast to other statistical limits commonly used for 

statistical inference, the tolerance limits (especially for the 

order statistics) are used relatively rarely. One reason is that 

the theoretical concept and computational complexity of the 

tolerance limits is significantly more difficult than that of the 

standard confidence and prediction limits. Thus it becomes 

necessary to use the innovative approaches which will allow 

one to construct tolerance limits on future order statistics for 

many populations. 

In this paper, the innovative approach to constructing lower 

and upper tolerance limits on order statistics in future samples 

is proposed. For illustration, the two-parameter exponential 

distribution is considered. 

2. Mathematical Preliminaries 

2.1. Probability Distribution Function of Order Statistic 

Theorem 1. If there is a random sample of m ordered 

observations Y1≤…≤Ym from a known distribution (continuous 

or discrete) with density function fθ (y), distribution function 

Fθ (y), then the probability distribution function of the kth 

order statistic Yk, k∈{1, 2, …, m}, is given by 

( | )  [ ( )]  [1 ( )]
m

j m j

k k k k
j k

m
P Y y m F y F y

jθ θ θ

−

=

  ≤ = −   
∑  

2( 1),2

1 ( ) 2

( ) 2( 1)

( ) ,

k

k

m k k

F y k

F y m k

f x dx

θ

θ

∞

− +
−

− +

= ∫     (3) 

where 

2( 1),2

1
( )

2( 1) 2
,

2 2

m k k
f x

m k k
− +

=
 − +  Β   

 

2( 1)/2 1

2( 1) 2( 1)
 

2 2

m k

m k m k
x

k k

− + −  − + − +   ×        
 

 [2( 1) 2 ]/2

2( 1)
 1 ,    0,

2

m k k

m k
x x

k

− − + + − +  × + >   
   (4) 

is the probability density function of an F distribution with 

2(m−k+1) and 2k degrees of freedom. 
Proof. Suppose an event occurs with probability p per trial. 

It is well-known that the probability P of its occurring k or 

more times in m trials is termed a cumulative binomial 

probability, and is related to the incomplete beta function Ix(a, 

b) as follows: 

 (1 ) ( , 1).
m

j m j

p
j k

m
P p p I k m k

j

−

=

  ≡ − = − +   
∑     (5) 

It follows from (5) that  

{ | } [ ( )] [1 ( )]
m

j m j

k k k k
j k

m
P Y y m F y F y

jθ θ θ

−

=

  ≤ = −   
∑  

( )
( , 1)

k
F y
I k m k
θ

= − +  

( )

1 ( 1) 1

0

1
(1 )

( , 1)

k
F y

k m ku u du
k m k

θ

− − + −= −
Β − + ∫  

2( 1)/2

( ) 2( 1) 2

2

0

2( 1)

2

2( 1)2
,

2 2

k

m k

F y m k k

m k

k
u

m kk

θ

− +

− + +

 − +     
=

 − +  Β   

∫  

2( 1)/2 1

2

1 2 2
 

2( 1) 2( 1)

m k

u k k du

u m k m k u

− + −   − −   × −     − + − +   
 

2( 1)/2

2( 1)/2 1

1 ( ) 2

( ) 2( 1)

2( 1)

2

2( 1) 2
,

2 2
k

k

m k

m k

F y k

F y m k

m k

k
x

m k k
θ

θ

− +

∞
− + −

−

− +

 − +     
=

 − +  Β   

∫  

 [2( 1) 2 ]/2

2( 1)
 1 ,

2

m k k

m k
x dx

k

− − + + − +  × +   
      (6) 

where 

1 2

2( 1)

u k
x

u m k

−
=

− +
          (7) 

This ends the proof. 

Corollary 1.1. 

1

0

( | )  [ ( )]  [1 ( )]
k

j m j

k k k k
j

m
P Y y m F y F y

jθ θ θ

−
−

=

  > = −   
∑  
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1 ( ) 2

( ) 2( 1)

2( 1),2

0

( ) .

k

k

F y k

F y m k

m k k
f x dx

θ

θ

−

− +

− +
= ∫      (8) 

Corollary 1.2. If yk,m;γ is the quantile of order γ for the 

distribution of Yk, we have from (3) that yk,m;γ is the solution of 

, ;

2( 1),2 ;1

( ) ,
( 1)k m

m k k

k
F y

k m k q
θ γ

γ− + −

=
+ − +      (9) 

where ��������	,��;��γ is the quantile of order 1−γ for the F 

distribution with 2(m−k+1) and 2k degrees of freedom. 

2.2. Two-Parameter Exponential Distribution 

The two-parameter exponential distribution is a widely 

used and widely known distribution. It is characterized by the 

density function 

1
( ) exp ,   ,

y
f y y
θ

µ
µ

σ σ

 −  = − ≥   
     (10) 

where θ = (µ,σ), σ (scale parameter) and µ (shift parameter) 

are unknown. The distribution function of the two-parameter 

exponential distribution is 

( ) 1 exp
y

F y
θ

µ

σ

 −  = − −   
            (11) 

The sufficient statistic for the parameter θ, based on the r (≤ 

n) smallest observations (X1 ≤. .. ≤ Xr) in a random sample of 

size n from the two-parameter exponential distribution (10) is 

1 1 1
1

min( ,  ...,  ),  ( ) ,
r

r i r
i

S X X X S X n r X
=

  = = = + −   
∑  (12) 

1

1 1 1

( )
~ ( ) exp ,    ,

n xn
X h x x

θ

µ
µ

σ σ

 −  = − ≥   
    (13) 

where 

1
X

V
µ

σ

−
=                  (14) 

is the pivotal quantity with the density function  

( )( ) exp ,    0,h v n nv v= − ≥         (15) 

2 1

1 1 1 11

1
~ ( ) exp ,   0,

( 1)

r

r

s
S g s s s

r
σ

σσ

−

−

  = − ≥  Γ −  
   (16) 

where 

1
S

W
σ

=                   (17) 

is the pivotal quantity with the density function 

21
( ) exp( ),    w 0.

( 1)

r
g w w w

r

−= − ≥
Γ −

     (18) 

3. Tolerance Limits for Order Statistic 

3.1. Lover Tolerance Limit 

Theorem 2. Let X1≤…≤Xr be the first r ordered observations 

from the preliminary sample of size n from a two-parameter 

exponential distribution defined by the density function (10). 

Then a lower one-sided β-content tolerance limit at level γ, Lk 

≡Lk (S) (on the kth order statistic Yk from a set of m future 

ordered observations Y1≤…≤Ym also from the distribution 

(10) ), which satisfies 

( )Pr ( | ) ,
k k

P Y L m
θ

β γ> ≥ =       (19) 

is given by 

  ,

 , , 

1

1

1

1

1

1

1

1

ln(1 )
1    if   ,

1 ln

ln(1 )
1    if   

1 ln

n r

k

n r

S
X n

n

L

S
X n

n

β

β

β

β

δ γ

γ δ

δ γ

γ δ

−

−

       −   + −  ≥    −       =        −   −  − <    −      

 (20) 

where 

2( 1),2 ;

2( 1),2 ;

( 1)
.

( 1)

m k k

m k k

m k q

m k q k

β

β

β

δ
− +

− +

− +
=

− + +
        (21) 

Proof. It follows from (8), (11) and (19) that 

( )Pr ( | )
k k

P Y L m
θ

β> ≥  

1 ( ) 2

( ) 2( 1)

2( 1),2

0

Pr ( )

k

k

F L k

F L m k

m k k
f x dx

θ

θ

β

−

− +

− +

     = ≥      

∫  

2( 1),2 ;

1 ( ) 2
Pr

( ) 2( 1)
k

m k k

k

F L k
q

F L m k

θ

β

θ

− +

 −  = ≥   − + 
 

2( 1),2 ;

Pr ( )
( 1)k

m k k

k
F L

k m k q
θ

β− +

  = ≤   + − +  
 

2( 1),2 ;

2( 1),2 ;

( 1)
Pr exp

( 1)

m k kk

m k k

m k qL

m k q k

β

β

µ

σ

− +

− +

   − +−    = − ≥      − + +    
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2( 1),2 ;

2( 1),2 ;

( 1)
Pr ln

( 1)

m k kk

m k k

m k qL

m k q k

β

β

µ

σ

− +

− +

  − + −    = ≤−     − + +      
 

( )Pr ln
L

V W
β

η δ= ≤− −
ln

0

( ) ,
L
w

h v dv

β
η δ− −

= ∫       (22) 

where 

1

1

,k

L

L X

S
η

−
=                  (23) 

is the lower tolerance factor, 

2( 1),2 ;

2( 1),2 ;

( 1)
.

( 1)

m k k

m k k

m k q

m k q k

β

β

β

δ
− +

− +

− +
=

− + +
       (24) 

It follows from (18), (19) and (22) that 

ln

0 0

arg ( ) ( )
L
w

L
h v g w dvdw

β
η δ

η γ

− −∞   = =    
∫ ∫  

1/( 1)

1
1 .

1

r
n

n

β
δ

γ

−     = −   −    

                (25) 

Taking into account (23) and (25), we have (20). This 

completes the proof.  

Corollary 2.1. If k=m=1, then 

  ,

 , . 

1

1
1

1

1

1
1

1

ln(1 )
1    if   ,

1 ln

ln(1 )
1    if   

1 ln

n r

k

n r

S
X n

n

L

S
X n

n

γβ

γ β

γβ

γ β

−

−

      −  + − ≥    −       =       −  − − <    −       

  (26) 

The result similar to that of (26) can be found in [7, 8]. 

3.2. Upper Tolerance Limit 

Theorem 3. Let X1≤…≤Xr be the first r ordered observations 

from the preliminary sample of size n from a two-parameter 

exponential distribution defined by the density function (10). 

Then a lower one-sided β-content tolerance limit at level γ, Uk 

≡Uk (S) (on the kth order statistic Yk from a set of m future 

ordered observations Y1≤…≤Ym also from the distribution 

(10) ), which satisfies 

( )Pr ( | ) ,
k k

P Y U m
θ

β γ≤ ≥ =        (27) 

is given by 

  ,

 , , 

1

1
11

1

1

1

1
11

1

1

ln
1    if   ,

ln

ln
1    if   

ln

n r

k

n r

S
X n

n

U

S
X n

n

β

β

β

β

δ γ

γ δ

δ γ

γ δ

−
−

−

−
−

−

         + −  ≥           =          −  − <          

   (28) 

where 

2( 1),2 ;1

1

2( 1),2 ;1

( 1)
.

( 1)

m k k

m k k

m k q

m k q k

β

β

β

δ
− + −

−
− + −

− +
=

− + +
      (29) 

Proof. It follows from (3), (11) and (27) that 

( )Pr ( | )
k k

P Y U m
θ
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2( 1),2

1 ( ) 2

( ) 2( 1)

Pr ( )

k

k

m k k

F U k

F U m k

f x dx

θ

θ

β

∞

− +
−

− +

     = ≥      

∫  

1 ( ) 2

( ) 2( 1)

2( 1),2
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k

k

F U k

F U m k

m k k
f x dx

θ

θ

β

−

− +

− +

     = ≤ −      
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k

m k k
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F U k
q
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θ

β

θ
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 −  = ≤   − + 
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σ

− + −

− + −

  − + −    = ≥−     − + +      
 

( )1
Pr ln

U
V W

β
η δ −= ≥− −

1
ln

( ) ,

U
w

h v dv

β
η δ −

∞

− −

= ∫    (30) 

where 

1

1

,k

U

L X

S
η

−
=                (31) 

is the upper tolerance factor, 
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2( 1),2 ;1

1

2( 1),2 ;1

( 1)
.

( 1)

m k k

m k k

m k q

m k q k

β

β

β

δ
− + −

−
− + −

− +
=

− + +
   (32) 

It follows from (18), (27) and (30) that 

10 ln

arg ( ) ( )

U

U

w

h v g w dvdw

β
η δ

η γ

−

∞ ∞

− −

   = =    
∫ ∫  

1/( 1)

11
1 .

r
n

n

β
δ

γ

−

−

     = −      

                  (33) 

Taking into account (31) and (33), we have (28). This 

completes the proof.  

Corollary 3.1. If k=m=1, then 

  ,

 , . 

1

1
1

1

1

1
1

1

(1 ) ln
1    if   ,

ln(1 )

(1 ) ln
1    if   

ln(1 )

n r

k

n r

S
X n

n

U

S
X n

n

β γ

βγ

β γ

βγ

−

−

      −   + − ≥    −       =       −   − − <    −       

 (34) 

The result similar to that of (34) can by found in [7]. 

Remark 1. It will be noted that an upper tolerance limit may 

be obtained from a lower tolerance limit by replacing β by 1−β, 

γ by 1−γ. 

4. Practical Example 

An industrial firm has the policy to replace a certain device, 

used at several locations in its plant, at the end of 24-month 

intervals. It doesn’t want too many of these items to fail before 

being replaced. Shipments of a lot of devices are made to each 

of three firms. Each firm selects a random sample of l= 5 items 

and accepts his shipment if no failures occur before a specified 

lifetime has accumulated. In order to find this specified 

lifetime, the manufacturer wishes to take a random sample of 

size n=15 and to calculate the lower one-sided simultaneous 

tolerance limit Lk=1(S) which is expected to capture a certain 

proportion β=0.95 or more of the population of selected items 

(m=3l), with a given confidence level γ=0.95. This tolerance 

limit is such that one can say with a certain confidence γ that at 

least 100β % of the product selected for testing by firms will 

operate longer than L1(S). The resulting lifetimes (rounded off 

to the nearest month) of the initial sample of size n = 15 from a 

population of the aforementioned devices are given in Table 1. 

Table 1. The resulting lifetimes of the initial sample of size n=15. 

Observations (in terms of month intervals) 

X1 X2 X3 X4 X5 X6 X7 X8 

8 9 10 12 14 17 20 25 

X9 X10 X11 X12 X13 X14 X15  

29 30 35 40 47 54 62  

Goodness-of-fit testing. It is assumed that 

1
~ ( ) exp ,   ,

i

x
X f x x

θ

µ
µ

σ σ

 −  = − ≥   
    (35) 

where the parameters µ and σ are unknown. Thus, for this 

example, we have that r = n = 15, m = 3l =15, k = 1, β = 0.95, γ 

= 0.95, 

1 1 1
1

8,    ( ) 266 .
n

i
i

S X S X X
=

  = = = − =   
∑      (36) 

It can be shown that the 

1

1
2

2

1
2

( 1)( )

(0,1) 1 ,    1(1) 2,

( 1)( )

j
j

i i
j i

j

i i
i

n i X X

U j n

n i X X

+

−
=
+

−
=

   − + −    = − = −    − + −   

∑

∑
 (37) 

are i.i.d. U(0,1) rv’s (Nechval et al. [11]). We assess the 

statistical significance of departures from the two-parameter 

exponential model (10) by performing the 

Kolmogorov-Smirnov goodness-of-fit test. We use the K 

statistic (Muller et al. [12]). The rejection region for the 

α=0.05 level of significance is {K ≥ Kn;α}. The percentage 

points for Kn;α were given by Muller et al. [12]. For this 

example, 

K = 0.280 < Kn=13;α=0.05 = 0.361.     (38) 

Thus, there is not evidence to rule out the two-parameter 

exponential model. 

Now the lower one-sided simultaneous β-content tolerance 

limit at the confidence level γ, L1 ≡L1 (S) (on the order statistic 

Y1 from a set of m future ordered observations Y1≤…≤Ym ) can 

be obtained from (20). Since 

ln(1 )
15 292,

ln
n

β

γ

δ

−
= < =          (39) 

where
 

2( 1),2 ;

2( 1),2 ;

( 1)
.

( 1
0.98

)
9848,

m k k

m k k

m k q

m k q k

β

β

β

δ
− +

− +

− +
= =

− + +
    (40) 

it follows from (20) that 

 

1

1

1

1 1
( ) 1 4.

1

n rS
L S X

n

β
δ

γ

−
 
   = −  − =  −    

     (41) 

Statistical inference. Thus, the manufacturer has 95% 

assurance that no failures will occur in the proportion β=0.95 

or more of the population of selected items before L1 = 4 

month intervals. 
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5. Conclusion 

Tolerance limits enjoy a fairly rich history in the literature 

and have a very important role in engineering and 

manufacturing applications. In contrast to other statistical 

limits commonly used for statistical inference, the tolerance 

limits (especially for the order statistics) are used relatively 

rarely. One reason is that the theoretical concept and 

computational complexity of the tolerance limits is 

significantly more difficult than that of the standard 

confidence and prediction limits. Thus it becomes necessary 

to use the innovative approaches which will allow one to 

construct tolerance limits on future order statistics for many 

populations. 
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