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Abstract: Distance sampling with line transect method has been applied by many researchers to monitor and observe varied 

animals and plants with the aim of determining the population density and or abundance of animals. The application of this 

method has not received the needed attention in Ghana, in particular to monitor, observe, and estimate the densities and 

abundance of animals and plants in the game reserves of the Mole National Park (MNP) is not without exception and the 

statistics of these are always reported based on guesses and without any scientific proof. This study has seen the application of 

line transect methodology in the MNP in which the abundance estimates are statistically determined with both the classical and 

Bayesian philosophies of statistical approaches. An alternative means of detectability estimation using the total probability 

concept has been established to enhance the probability of detection of a rare and elusive population of large mammals. In 

performing statistical investigations on rare and elusive population, it appears insufficient to model from the classical 

perspective, the use of PRIOR knowledge as seen in the Bayesian context cannot be underestimated. This study proposed that 

the concept of Total Probability with prior knowledge of animals and plants in line transect surveys must be well embraced, 

Periodic censuss must be conducted regularly to help in establishing the rate of extinction of units of interest in wildlife and 

Distance sampling data with line transect sampling methodology need not be analysed using only the classical reasoning. 

Attention must be given to the existence and availability of prior knowledge of the units under study. 
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1. Introduction 

1.1. Background 

The population size of the units under investigation 

supports much statistical analysis and investigation of which 

wildlife ecology and environmental biology form apart. In 

ecology or environmental biology, a complete study of the 

species concerned appears very challenging and density or 

abundance estimations of wildlife populations are based on 

sampling methods generally known as distance sampling. 

Distance sampling is a widely used group of closely related 

methods for estimating the density and or abundance of 

biological populations [18]. 

Line transect sampling is seen or has been observed to be 

one of the most widely used techniques for wildlife 

population size estimation and has been used for many types 

of populations, including bird, mammal, and plant species as 

well as other objects for which detectability depends on 

location relative to the observer [7]. The authors further 

stressed that under the transect methodology, observers 

typically survey the area of interest by traversing several 

spatially replicated lines to detect units of interest either in 

clusters of many or individuals while measuring or recording 

the distances of objects on either side of the line and 

modelling of detection with the observed distance data. 

When direct observations are not possible, counting animal 

signs provides a relative measure or “index”, a measure often 

used to study secretive species [22, 26]. 

The most accurate estimates are obtained by methods 
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relying on the count of animals, or their signs, where the 

estimate of individuals per unit area allows the calculation of 

the total population [8, 11, 23, 24]. Partial counts enable a 

population subset to be obtained, allowing the whole 

population to be measured without the constraint of counting 

all individuals [22]. 

Assume ��, ��, … , �� are perpendicular distances recorded 

by an observer from a transect line believed to follow a 

specific Probability Density Function (pdf), [5] suggested 

that the detectability function ���	 is related with the pdf 


��	 by 


��	 � ��
	
� ��
	�
�
�

,	0≤x≤w                     (1) 

And 


�0	 � �� ���	���
� ���                       (2) 

Where � is a truncated distance and the population density 

D is expressed as 

� � ���	���	
�� � �∗���	

��                             (3) 

Where L and E(n) length and expected number of units 

observed. 

1.2. Problem Statement 

Ghana has had an increase in population over the years 

with an estimated growth rate of about 2.07%. With such an 

increase in human population, human activities undoubtedly 

appear to increase, poaching for wild animals and plants in 

the MNP is not unlikely to occur. The occurrence of 

poaching may affect species numbers but by how much may 

remain unanswered for several decades. 

The effective management and conservation of wild 

species of plants and animals appear dependent on methods 

with accurate estimates of density and abundance [11]. In 

Ghana and MNP in particular, the methods of density and 

abundance estimates appear unknown and estimates of 

mammals are based on guesses without scientific proof or 

establishment. This paper is thus aimed at establishing 

density estimates with a variety of principles. 

1.3. Research Questions 

1) Do the statistics of mammals in the MNP actual 

represent the figures of those units of interest? 

2) Can abundance estimation with distance sampling 

technique be applied to Bayesian reasoning? 

1.4. Study Objective 

This study is meant to find density and abundance 

estimates of units of interest under study based on line 

transect laid down procedures and applications using both the 

classical and Bayesian reasoning with application of the 

principle of total probability concept. 

2. Methods 

2.1. The Study Area 

The study area is located in the West Gonja District of the 

Savannah region of Ghana as seen in Figure 1 and about 

184km from the Northern Regional capital of Tamale. It 

covers a total area of 4,755 square kilometers of the West 

Gonja District which inhabits several plant and animal 

species whose densities are of concern to management and 

conservation. 

 

Figure 1. Map of Ghana with Location of the MNP [16]. 
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Briggs, K. T., Tyler, W. B. and Lewis, D. B. revealed that 

the MNP represents Ghana’s largest wildlife refuge which is 

located northwest Ghana on grassland savannah and riparian 

ecosystems at an elevation of 150m, with a sharp escarpment 

forming the southern boundary of the park [4]. The park’s 

entrance is reached through the nearby town of Larabanga. 

This area of Ghana receives over 1000 mm per year of 

rainfall. 

2.2. Pilot Survey 

This provides a platform for a preliminary study to be 

carried out on a small scale in the study area with a purpose 

that includes the determination of the total length of the 

transect for reliable and precise estimates in the Mole 

National Park. 

2.2.1. Sample Size Selection 

The number of line transects can constitute a component of 

a sample size in which a minimum of 10 - 20 replicated lines 

are recommended to allow for a reliable estimation of 

parameters of interest with at least 60 - 80 detection's of 

animals or a cluster of animals for reliable estimation and 

modeling of the detection function [6]. 

The variance estimate according [10] is: 

 !"#$�%& � ��%	� '()̂ �+	,� + �)̂ �
.�0))��/	           (4) 

Where ()̂ (+),� =  "#(+) (0(+))�	⁄              (5) 

	�)̂ (
.(0))�� =  "#(
.(0)) (0(
.(0)))�	⁄            (6) 

Implies, 

�)̂ $�%&�� = 2!34(5%)	
$�(5%)&6 = 7(5%)68(9̂2(�),6:;9̂2<�.(�)=>

6?
(5%)6 @ = ()̂ (+),� + ;)̂ <
.(0)=>� = ;234(�)(�(�))6 + 234(�.(�))

(�(�.(�)))6>	                  (7) 

Rewriting (4) to in the form 

�)̂ $�%&�� = �
� ("� + "�, = B

�                    (8) 

To determine the coefficient of variation to be tolerated on a 

pilot base where  "#(+) = "�+	 and  "# <
.(0)= =(
(0))� "� +⁄  respectively, [12] provided evidence that the 

constant b may typically be between 2 and 4; however, b=4 arise 

with less efficient estimators and a value of b=2.5 is tenable with 

a risk of underestimating the needed line length of b=1.5. 

If C�  line length is covered in a pilot study to observe +�units of interest, then the proportion  
�
� = �D�D holds without 

any loss of information where L and n respectively denote 

the total transects length covered in the study region and total 

number of units of interest observed (sampled) for the entire 

study period. Using equation (8) and  
�
� = �D�D, the total length 

expected to cover can be expressed as: 

C = B
(9̂2(5%),6 <�D�D=	                                  (9) 

2.2.2. Sampling Effort Determination 

A pilot study revealed that on traversing a total of C� = 2 

kilometres by the researcher, a total of +� = 29  elephants 

were detected. With the constraints on the part of the 

researcher, it was resolved to use a value of G = 2.5  as 

suggested by Eberhardt, L. L and tolerating a coefficient of 

variation of 5% ( )̂ $�%& = 0.05)  [12]. The transect length 

obtained using equation (9) yields 69	KL. This indicates that, 

at least a sampling effort of 69 km is expected to be covered. 

2.3. Design for Selecting Transects 

Katara S., S. K Amponsah and Bashiru I. I. S. stated that 

the sampling design in a line transect study is the procedure 

by which the transect locations are selected [17]. Desired 

properties of unbiasedness of estimators will be based as 

much as possible on the design rather than on assumptions 

about the population [26]. 

To select the appropriate transects for the study, a 

combination of both probability and non-probability 

sampling designs were employed for improve data quality 

and analysis. These designs included stratification, 

convenient, and systematic sampling, respectively. Due to the 

timing of the research and the nature of the study area, it was 

decided to stratify the study area into two major strata (a 

stratum with and without water bodies) within which separate 

designs are employed for transect placement. Areas, where 

water bodies are located, are believed to have more 

concentration of units of interest and hence more likely to 

have higher detectability. With this prior knowledge, more 

effort was allocated to this stratum to improve precision. 

Conveniently identifying a random start line in each 

stratum, a combination of both continuous systematic design 

and discrete parallel transect lines were placed, respectively, 

in the strata to avoid discontinuation in detection from one 

transect to the other while ensuring an even spatial 

distribution of lines in the survey region. 

2.3.1. Number of Transect Lines Used 

Steven K. Thompson indicates that estimates from n 

transects are more preferred to those based on single transect 

[25], a recommendation emphasized by a number of authors 

[5, 12, 21, 25]. As recommended that a minimum of 10 - 20 

replicated lines is capable of producing a reliable estimation 

and modeling [6], available resources could only permitted 

traversing through 10 replicated lines in the study area. 

2.3.2. Methods of Observation 

The study employs both direct and indirect methods of 

observation along transect lines placed in the study area. Transect 

lines are identified by employing simple and systematic sampling 

techniques. Direct methods are based on actual observation of the 

species in question (large mammals), while indirect methods rely 
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on interpreting the signs of animal presence. Visibility and 

detectability can often pose a problem when surveying terrestrial 

species, therefore, surveys relying on signs are ideal for estimating 

mammal abundance and habitat use [16, 22, 24]. The indirect 

method (the use of dung) was successful in confirming the present 

of the specific species, more particularly with the elephant species. 

To select the appropriate transects for the study, a combination of 

both probability and non-probability sampling designs were 

employed to improve data quality and analysis. These designs 

include stratification, convenient, and systematic, respectively. 

Due to the timing of the research and the nature of the study area, 

it was decided to stratify the study area into two major strata (a 

stratum with and without water bodies) within which separate 

designs are employed in transect placement. Areas, where water 

bodies are located, are believed to have more concentration of 

units of interest and hence more likely to have higher detectability. 

With this prior knowledge, more effort is allocated to this stratum 

to improve precision. 

2.3.3. Transect Selection Procedure 

To maximize the detectability of units of interest while 

satisfying the general requirements of line transect 

applications, the researcher must decide how many transect 

lines need to be placed in the coverage area and at what 

length each line must be stretched. 
Given the nature of the study area and resource limitations, a 

total effort of 4 km per day was assumed to be covered in the 

study area during 20 days spread over 10 months, with at least 

2 days spent on each visit to travel along a sample of ten (10) 

as seen from Figure 2. The first transects were conveniently 

chosen perpendicular to the baseline in each stratum and were 

thought of as random start samples. From there, the remaining 

eight non-overlapping and widely spaced lines were 

systematically positioned to cover and include specific 

locations with prior knowledge of a high concentration of the 

elephant population in the study area [17]. 

 

A: Continuous Zigzag lines (not to scale) 

 

B: Systematically parallel lines (not to scale 

Figure 2. Traversed transect lines in the study area [17]. 

2.4. Data Type 

Two types of data were taken into account. An investigator 

and some supporting staff members collected the primary data in 

the study area. Ten conveniently and methodically set transect 

lines within two stratified areas were used to collect data on 

perpendicular distances as well as the quantity of elephants, 

hartebeests, waterbugs, and warthogs found at different points 

within the study zone. Regarding the elephant data in particular, 

footprints of units of interest and droppings or other ways were 

also taken into consideration as indicators of the presence of the 

unit of interest. The secondary data were previously gathered 

information regarding the study area's units of interest. 

2.5. Detectability 

In the realm of the basic distance sampling framework, the 

variable of interest is assumed to have been recorded without error 

for each unit in the sample. In a survey of elusive events such as 

birds, mammals, or the homeless, some units of interest may 

remain undetected. The probability that an object in a selected 

region is observed, whether seen, heard, caught, or detected by 

some other means represents its detectability. The process of 

detection can either be passive or active form depending on how 

the units of interest or objects are observed or detected. 

2.5.1. Constant Detectability Within a Given Area A 

Assume the probability of detection for a given unit of interest 

in a given region is a constant p throughout the region of area A. 

Denote y as the number of units observed in the region, while 

the actual (exact) number in the region is τ; i.e., the population 

total. Assume also that the detection of units of interest are 

statistically independent- i.e., the detection of one unit is not 

being influenced by another. We note that a unit in a region is 
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either detected or not with probabilities p and q, respectively. 

This follows a binomial distribution with the expectation. 

0(M) = NO	                             (10) 

And variance 

 "#(M) = NOP	                           (11) 

Since p is assumed known or constant, an estimator of the 

population total is expressed as 

N = 	 QR	                                       (12) 

with variance expressed as 

S"#(N)% = �
R6  "#(M).                         (13) 

The density estimate with known detectability is now 

�% = Q
TR	                                    (14) 

with variance; 

S"#(�)UV = �
(TR)6  "#(M).                           (15) 

2.5.2. Unknown Detectability over a Region of Area A 

In general terms, the detectability of objects in the study 

region appears unknown and can be estimated by alternative 

methods including mark – recapture, ratio estimation with the 

use of auxiliary information, the number of units observed by 

observers in the air and on the ground, to mention but a few. 

For this study, I decided to employ the following two cases 

for reasons of convenience. 

Using Coverage Region 

This considers the detectability as a ratio of the area 

covered in the study region and the total area of the entire 

study region. Consider a line transect in which a region at a 

distance w from the line is searched which has an area a. If 

the area of the entire study region is A, the fraction 

O9	W = 3
T	                             (16) 

for all i's. 

Suppose the transect lines are located randomly and 

independently of the units of interest, then on average, any 

covered object in the coverage region with probability O9	Wreferred to as the “coverage probability”. Now assume y 

objects are observed in the covered region with some units 

remaining unsighted. 

Denote 

XY = 81, [
	\G]^)_`	"#^	`[�ℎ_^�	[+	_ℎ^	)\ ^#"�^	"#^"0, \_ℎ^#�[`^ .  (17) 

We can reasonably consider 

O = ∑ 	Yc� O9	W ∗ XY 	for	] = 1, 2, … M               (18) 

with abundance estimated as 

N̂ = Q
R	                                      (19) 

2.5.3. Density Estimation 

Density is the number of objects (animals) per unit area A. 

It is mathematically expressed as; 

� = d
T                                    (20) 

Implying that 

�% = Q
TR	                                    (21) 

Equation (21) represents an estimated parameter based on 

sampled y animals or units of interest with O detectectability 

or probability of detection. As indicated in [10], the density 

estimator is solely dependent on the Probability Distribution 

Function (pdf) at distance zero (
(� = 0)). However, with 

Bayesian philosophy which depends on the principle of total 

probability, where detections are made on selected transect 

lines with the number of detections conditional on the 

probability of detections on each transect [  where 	[ =1, 2, 3, … , +	with which the density is seen to be expressed as 

�% = Q
TR = Q

��f ∑ g(hW)∗g(T hW⁄ )iWjD                         (22) 

This equation appears to look independent of the 

probability distribution function and can easily be applied in 

both cases of known and unknown distributions of detection 

and detectabilities of units of interest. 

3. Analysis and Discussion 

3.1. The Case of Detected/Observed Elephants in the MNP 

The study was structured to collect data in two locations 

(coded as 1&2); Two Sessions (coded as 1&2); and Two 

seasons (coded as 1&2) throughout the study period. In all, a 

total of 111 elephants were detected in 69 observations. The 

location, session, season, and month are considered as 

covariates in further analysis to identify their possible impact 

on the detection of units of interest in the study area. 

Table 1. Descriptive Statistics of Elephants in the MNP. 

 Total        

Variable Count N N* Mean v StDev Variance CoefVar 

Cluster size 69 69 0 1.6087 0.0951 0.7900 0.6240 49.11 

Distance 69 69 0 22.05 2.99 24.87 618.59 112.81 

N for         

Variable Minimum Q1 Median Q3 Maximum IQR Mode Mode 

Cluster size 1.0000 1.0000 1.0000 2.0000 4.0000 1.0000 1 38 
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Distance 0.10 5.51 12.05 26.58 95.65 21.07 * 0 

Variable Skewness Kurtosis       

Cluster size 1.20 0.88       

Distance 1.62 1.65       

 

Of the 69 observations made during the research period, a 

mean cluster size of about two elephants was observed at an 

average distance of about 22 meters from the centre of the 

transect line. As Table 1 reveals, all observed measurements 

turned to differ from the mean values of the distance and 

cluster sizes by + or - 24.87 and 0.7900, respectively. 75% of 

the observation is also at distances less than 26.58 meters. 

3.2. Estimates of Rate of Detection of Elephants 

Given an estimated population size of elephants of at least 

450 and with an average observation time of 9 hours per day, it 

is expected that an average of at least 50 elephants is observed 

per day. The 50 units or above is thus set as a benchmark to 

test the rate of occurrence. On the assumption of the event 

(Detection of elephants per observation) as either a binomial or 

Poisson process that describes the occurrence of an event in a 

given amount of time (day), area, or other observation space, 

one sample Poisson rate is employed to compare the rate to a 

target value and to estimate the rate of occurrence. The 1-

sample Poisson rate procedure calculates a confidence interval 

and conducts a hypothesis test for the rate of occurrence in a 

one-sample Poisson model. In this application, the 

investigation will be made to detect whether the number of 

detection exceeds a certain (benchmark value) per day/visit. 

Table 2. Test and CI for One-Sample Cluster size Poisson Rate. 

Test of rate = 50 vs rate not = 50 

Total  Rate of     

Variable Occurrences N Occurrence 95% CI Z-Value P-Value 

Cluster size 111 69 0.053623 (0.043648, 0.063599) -321.37 0.000 

 "Length" of Mean     

Variable Observation Occurrence 95% CI Z-Value   

Cluster size 30 1.60870 (1.30943, 1.90796) -321.37   

 

From Table 2, a total of 111 observation units of interest 

were detected in 69 observation times within the 30 days 

length of the observation period of the survey. This implies 

that at the 95% confident level, the average detection rate per 

day equals 30 ∗ 	0.053623 = 1.60869 = 2. This estimate is 

believed to fall between 39.2829 and 57.2388, which is a 

range of values that is likely to contain the rate. 

3.3. Modelling Detectability Function of Elephants in the 

MNP 

The modelling is carried out using DISTANCE. Modelling 

by DISTANCE is an iterative procedure [8] that first applies a 

key function to approximate the underlying data distribution 

and then adjusts the fit of the basic model by manipulating 

additional series parameters. This was performed in two stages. 

The first stage is done allowing the detection of units of 

interest to be conditional on perpendicular distances only 

with the use of all possible key functions embedded in 

DISTANCE with all available adjustment series expansion 

combinations. The second phase involved making room for 

detectability to be dependent on additionally identified 

factors as covariates. This allows incorporating other factors 

likely to influence the ability to detect units of interest 

extends the key function and the adjustment terms making 

room for the covariates into either the scale or the shape or 

both [19]. The study observed that apart from distance, the 

model performance can be influenced by weather conditions, 

time of survey to mention but a few referred to as covariates. 

These covariates have some possibility and ability to affect 

the likelihood of detecting units of interest under study in the 

Mole National Park. 

Table 3. Half Normal Key with Varied Values of Truncation and Associated AIC Values. 

Filtration Eff 
Number 

Observed 

Total 

Para 

Specific parameters 
ESW D N P f(0) Log L 

AIC 

Value 

GoF 

Chi Key Para Adj par 

Untrun 7.20 111 2 1 1 31.80 24.237 194 0.27 0.03 -452.58 909.16 0.000 

40m 
7.20 93 1 1 0 17.66 36.575 293 0.44 0.06 -311.57 625.15 0.443 

7.20 93 2 1 1 15.42 41.891 335 0.39 0.06 -162.49 328.98 0.368 

60m 
7.20 98 2 1 1 17.85 38.118 305 0.30 0.06 -348.34 700.68 0.091 

7.20 98 2 1 1 17.31 39.317 315 0.29 0.06 -149.63 303.25 0.263 

80m 
7.20 107 2 1 1 22.93 32.405 259 0.29 0.04 -407.46 818.91 0.004 

7.20 107 2 1 1 23.30 31.897 255 0.29 0.04 -164.91 333.82 0.036 

100m 
7.20 109 2 1 1 26.68 28.375 227 0.27 0.04 -428.11 860.23 0.000 

7.20 109 2 1 1 26.65 28.401 227 0.27 0.04 -154.30 312.61 0.000 

120m 
7.20 111 2 1 1 31.87 24.183 193 0.27 0.03 -452.70 909.40 0.000 

7.20 111 2 1 1 32.02 24.077 193 0.27 0.03 -153.82 311.65 0.000 
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Table 4. Hazard Rate Key to Varied Values of Truncation and Associated AIC Values. 

Filtration Eff 
Number 

Observed 

Total 

Para 

Specific parameters 
ESW D N P f(0) Log L 

AIC 

Value 

GoF 

Chi Key Para Adj par 

Untrun 7.20 111 2 2 0 17.86 43.157 345 0.15 0.06 -439.10 882.20 0.000 

40m 
7.20 93 3 2 1 14.71 43.919 351 0.37 0.07 -309.23 624.45 0.326 

7.20 93 3 2 1 14.61 44.190 354 0.37 0.07 -161.58 329.17 0.146 

60m 
7.20 98 2 2 0 16.44 41.396 331 0.27 0.06 -347.14 698.29 0.236 

7.20 98 2 2 0 16.23 41.920 335 0.27 0.06 -148.76 301.52 0.434 

80m 
7.20 107 3 2 1 17.64 42.121 337 0.22 0.06 -404.71 815.42 0.000 

7.20 107 3 2 1 18.65 39.836 319 0.23 0.05 -163.78 333.56 0.006 

100m 
7.20 109 2 2 0 17.52 43.202 346 0.18 0.06 -423.05 850.10 0.000 

7.20 109 2 2 0 18.35 41.243 330 0.18 0.05 -151.37 306.75 0.001 

120m 
7.20 111 2 2 0 17.87 43.141 345 0.15 0.06 -439.13 882.27 0.000 

7.20 111 2 2 0 14.61 52.751 422 0.12 0.07 -141.76 287.51 0.033 

 

With the application of the various keys at varied filter 

points as revealed from Table 3 and Table 4, the HN key 

produces a minimum AIC value of 303.25 at the 60m 

truncation with 8 histogram bin plots. The HR key, NE key, 

and the UN key functions produce a respective minimum AIC 

value of 287.51, 296.34, and 331.01 at various filter points as 

indicated in the tables in Appendix. In view of the respective 

AIC values, the HR key functions appear to produce a 

somewhat good fit compared to the other key functions. The 

question we pose here is how does the data support this? 

Exploring further to adjustment of terms and visual inspection 

on Qq plots with an additional test on Kolmogorov –Smirnov 

and Cramer –von Mises goodness of fit, we observed that the 

Qq plots reveal a visual representation of how well the 

individual key functions well fit the data observed. It is 

evident from the Qq plots that the elephant data is best 

described by the hazard key where in most points appears on 

or close to the blue line with little systematic departure. 

3.4. Kolmogorov-Smirnov and Cramer-von Mises family 

Test 

(i). Kolmogorov-Smirnov test of the HR key 

D_n= 0.0460 

p = 0.9731 

Cramer-von Mises family test of the HR key 

W-sq (uniform weighting) = 0.0297 

0.900 < p <= 1.000 

Relevant critical values: 

W-sq crit (alpha=0.900) = 0.0000 

C-sq (cosine weighting) = 0.0150 

0.900 < p <= 1.000 

Relevant critical values: 

C-sq crit (alpha=0.900) = 0.0000 

(ii). Kolmogorov-Smirnov test of the NE key 

D_n = 0.1132 

p = 0.1162 

Cramer-von Mises family test of the NE key 

W-sq (uniform weighting) = 0.3556 

0.050 < p <= 0.100 

Relevant critical values: 

W-sq crit (alpha=0.100) = 0.3472 

W-sq crit (alpha=0.050) = 0.4621 

C-sq (cosine weighting) = 0.2361 

0.050 < p <= 0.100 

Relevant critical values: 

C-sq crit (alpha=0.100) = 0.2353 

C-sq crit (alpha=0.050) = 0.3153 

 

A: Hazard Rate (HR) function 
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B: Negative exponential (NE) function 

Figure 3. Global Qq plots of HR and NE keys. 

The Kolmogorov-Smirnov and Cramer-von Mises family 

test looks at the Qq plot of Figure 3 and transforms the 

location of the points into a test statistics with an associated 

p-value testing hypothesis that the model fits the data. In 

each case of the p values, we have no statistical evidence to 

reject the claim that the HR performs better than the NE key. 

With the inclusion of adjustment terms to adequately 

describe the model, it is necessary to investigate to 

determine how many adjustment terms are needed to provide 

an optimum solution which adequately improves the 

maximum description with a balance between bias and 

variance in the parsimony principle. In this principle, an 

increase in the number of parameters results in a decrease in 

bias and an increase in variance. 

The analysis of the models suggested a hazard rate key 

function with no adjustment term as the best model because 

it had the lowest AIC value. The detectability function. �(�) ∝ K^M(�)(1 + `^#[^`��m	,  is found to be of the 

form 1 n ^���
 o⁄ 	pq�	with the scale parameter r � s�1	 �
	6.3894963 t 6.4  and the shape parameter G � s�2	 �

1.454576 t 1.5	 respectively. Thus, the general form of the 

model is expressed as 

���	 � 1 n ^���
 v.w⁄ 	pD.x�                   (23) 

3.5. The Detection Function Model Conditional on 

Distance and Other Covariates 

During the data collection period, the investigator 

identified session, season, and stratum as some variables 

which are considered to have a potential power to influence 

the detection function [19]. That is, the ability to observe 

units of interest may appear to depend on these factors other 

than distance alone. These factors are termed covariates 

considered as factors with two levels each. Incorporating 

these into the detection function where the covariates 

assume a variable z, then the model is considered to take the 

form ���, X	 � K^M��, X	(1 + `^#[^`	��	,  as suggested by 

[9] where ���, X	 is the probability of detecting an object of 

interest at a distance x and covariates z. 

Table 5. MCDS with Hazard Rate Key with Varied Truncation and AIC Values. 

Filtration Eff 
Number 

Observed 

Total 

Para 

Specific parameters 
ESW D N P f(0) Log L 

AIC 

Value 

GoF 

Chi Key Para Adj par 

Untrun 3.60 111 5 2 0 17.82 86.531 346 0.15 0.06 -435.73 888.46 0.000 

40m 
3.60 93 5 2 0 13.4 96.371 385 0.34 0.07 -307.68 625.35 0.066 

3.60 93 5 2 0 16.76 77.054 308 0.42 0.06 -159.37 328.74 0.028 

60m 
3.60 98 5 2 0 17.97 75.740 303 0.30 0.06 -344.09 698.19 0.114 

3.60 98 5 2 0 16.59 82.047 328 0.28 0.06 -144.76 299.53 0.021 

80m 
3.60 107 5 2 0 19.81 75.013 300 0.25 0.05 -404.27 818.55 0.000 

3.60 107 5 2 0 21.26 69.892 280 0.27 0.05 -166.10 342.19 0.000 

100m 
3.60 109 5 2 0 17.99 84.164 337 0.18 0.06 -420.58 851.16 0.000 

3.60 109 5 2 0 20.53 73.739 295 0.21 0.05 -148.47 306.94 0.000 

120m 
3.60 111 5 2 0 17.82 86.523 346 0.15 0.06 -435.76 881.51 0.000 

3.60 111 5 2 0 29.18 52.827 211 0.24 0.03 0.00 10.00 0.000 

 

As indicated in Table 5, various filtration points were 

considered for both the HN and HR with observer group, 

season, and session as covariates at 2 levels with distances 

scaled by the maximum distance at which detection is 

considered possible in this study. According to the AIC 

values, the HR key appears more appropriate in fitting the 
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detection function with the covariates inclusion at 60m 

truncation with 8bins specified. Conditioning distance and 

other identified covariates yields a minimum AIC = 299 with �(�)  taking the form �(�) = 1 n exp	�n�� 16.33957⁄ 	��.|�}	 in which the shape 

parameter � 	s�2	 � 2.507 and the scale parameter � 	`	 �
	s�1	 	∗ 	0�O��s�3		 + �s�4		 + �s�5			  with estimated 

values s�1	 � 13.13, s�3	 � 0.6966, s�4	 � n0.4176  and 

s�5	 � n0.06031. Hence ` � 16.33957. 

We can observe that the covariates included in the hazard 

model have increased both the scale and shape parameters 

from 6.4 to about 16.33957 and 1.5 to about 2.507 

respectively. 

3.6. Enhancement of the Detectability Through Bayesian 

Approach 

The Bayesian inference is a process of fitting a probability 

model to a set of data and summarizing the result by a 

probability distribution on the parameters of the model and 

on unobserved quantities such as prediction for new 

observations [1]. This approach is an alternative to the 

classical form of statistical analysis whose inference is done 

on the posterior which dependents on both the likelihood and 

the prior in which the parameters are seen to be random with 

a known probability distribution. The posterior is an updated 

form of the prior after the observation. 

The decision to perform this analysis is based on the fact 

that both the variables of interest and the parameters to be 

estimated are considered as random variables believed to 

have or follow a particular probability distribution. This 

contrasts the classical or frequentist approach wherein 

parameters are considered fixed with unknown values which 

are found by maximizing the likelihood function. With the 

application of the Bayes theorem, the posterior distribution of 

the parameters given the data has a density proportional to 

the product of the likelihood of the data given the parameters 

and the prior distribution of the parameters. 

In fitting the Bayesian model to estimate abundance and 

other parameters of interest, I adopt a simulation method 

using the Markov Chain Monte Carlo principle [14, 15] with 

data augmentation, which makes it possible to sample from 

very high dimensional joint posterior densities while 

ensuring that units undetected but present in the study area 

are catered for in the modelling process for both observed 

and unobserved units of interest. 

3.6.1. Bayesian Models of Elephant Detectability 

Recall that the posterior distribution is proportional to the 

product of the PRIOR and the LIKELIHOOD and on the 

assumption of a unit either to be detected or not believed to 

be characterized binomially and distributed as ~�� �⁄ 	 �
�
�1 n �	��
 . If the distribution of elephants in the study 

region is seen to be described by the Weibull distribution as 

seen earlier, which I considered to represent my PRIOR 

believe, then the posterior distribution associated with this 

BINOMIAL WEIBULL combination is defined as 

O�� �⁄ 	 ∝ O��	 ∗ O�� �⁄ 	 � ������^�O$n��&� ∗
��
�1 n �	��
� 	� ����	��:
�1 n �	��
^$�
�&	� � 0  (24) 

The above equation exhibits non-conjugacy property with 

the Weibull-Binomial combination, I have adapted the 

approach of [3] to model the relationship between distances 

of detection and cluster sizes of units observed through 

Bayesian approach using Gibbs sampling. 

3.6.2. Abundance Estimation of Hazard Rate Detectability 

with Data Augmentation 

The study organized the observed data according to a 4 X 

5 factorial layout of mammal types by covariates wherein the 

units detected are augmented with unobserved units in the 

study region. By augmentation, I have observed that the 

study region contains no more than 398 elephants. 
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Figure 4. History plots of different levels of iterations of three chains. 

Figure 4 presents the history plots for the first 1,000 

iterations of all three chains through 100000 updates for the 

specified augmented model. The figure reveals that within 

the first few iterations of all three chains, the initially 

sampled samples from the target distribution contribute less 

significantly in parameter estimation, which eventually 

influences the mixing ability of the chains. Discarding the 

first 250 samples as burn-in and visually inspecting all labels 

confirm better mixing after discarding the initial samples 

even though convergence has not been properly achieved. 

There is a slow mixing of the chains and high autocorrelation 

and requires many more iterations to reach a stable 

equilibrium distribution (i.e., converged). With further 

updates up to 30000 through to 100000 as indicated in the 

above, I have realized that the convergence improves as the 

number of iterations increases with a relatively perfect and 

stable convergence at 50000 iterations and beyond. 

By perusing the BGR plots as seen in Figure 5, at the varied 

level of iterations and burn-ins, we can observe the stability 

within and between chains occurring beyond the 20000 

updates, wherein we can conclude to have obtained complete 

mixing with complete convergence among all three chains 

sampled from the same posterior distribution. For all BGR’s, 

after several iterates, the red line representing the ratio begins 
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near 1 and remains there with the blue and green lines coming 

together to become horizontal beyond the 20000 iterates 

reflecting the initial samples that must be discarded as burn-in 

in the MCMC iteration. Values around 1 indicate convergence, 

with 1.1 considered as an acceptable limit by [13]. 

  

Figure 5. BGR diagnostic plot from 50000 iterations and 15000 iterates discarded. 

3.6.3. Autocorrelation Plots of Burn-ins of the Hazard Rate Detectability 

  

Figure 6. Autocorrelation from 100000 iterations to 30000 burn-in. 

The autocorrelation plots represent a plot of lags on the x-

axis and the magnitude of the autocorrelation (between -1 

and +1) on the y-axis with the highest magnitude (+1) at lag 

zero (0) at which the remaining magnitudes at the various 

lags are compared and decreases steadily as the lags 

increases until it reaches a threshold lag beyond which it is 

essentially zero. Usually sampled iterates are realized 

conditional on the other until a realization of the target 

distribution where convergence between chains are achieved 

and autocorrelation is a quantitative measure of this 

dependence. Whereas correlation is a measure of association 

between two quantitative variables measured on the same 

object, autocorrelation refers to correlation with self. i.e., 

correlation within the same chain. Lag k autocorrelation in 

MCMC output is the correlation between samples drawn k 

iterations apart. 

With all autocorrelation plots at different iterated values as 

revealed in Figure 6 with varied discarded initial samples, we 

can observe that all three superimposed chains obtained a 

zero autocorrelation beyond lag 50. 

Table 6. Summary statistics of 100000 iterations with 30000 burn-in. 

 Mean sd MC_error val2.5pc  median val97.5pc Start Sample 

N 318.0 9.191 0.1198 314.0  392.0 398.0 30001 210000 

Alpha 0.5938 0.0285 1.081E-4 0.5378  0.5938 0.6498 30001 210000 

Beta 0.3535 0.03386 1.272E-4 0.2892  0.3526 0.4223 30001 210000 

 

Table 6 revealed that the Bayesian estimate of the abundance 

of elephants in the MNP is estimated at 318, believed to lie 

within a credible range of 364 and 398 for all varied iterated 

levels of the hazard rate function with an error not exceeding 

0.1927 and a standard deviation of about 9.191. As a rule of 

thumb, ��	^##\# � 1 n 5%	\
	_a^	O\`_^#[\#	�� (2]. 

Following this rule, 

��	^##\# � 0.1198 � 1 n 5%	\
	_a^	O\`_^#[\#	�� �

1 n 0.05 ∗ 9.191 � 0.54045 which indeed is satisfied making 

the inference and estimates of the parameter reliable and valid. 

With 100000 iterations and 30000 burn–in, the Half Normal 

detectability with the Bayesian approach produced an abundance 

estimate of the elephant as 333.2 falling within a credible range 

of 333.0 and 391.0 with an MC error and SD of 0.5667 and 

31.05 respectively. 

Similarly, ��	^##\# � 0.5667 � 1 n 5%	\
	 the 
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posterior SD= 1 n 0.05 ∗ 31.05	 � n0.5525 � ��	^##\# , 

an indication that model is not appropriate for the observed 

data. In the case of the negative exponential detectability, the 

abundance is estimated at 385.3, falling within a credible 

range of 352.0 and 352.0 with an MC error and SD of 0.1764 

and 12.36 respectively. But ��	^##\# � 0.1764 � 1 n
5%	\
	 the posterior SD � 1 n 0.05 ∗ 12.36 � 0.382 �
	��	^##\# which confirms the Hazard rate as best as were 

found by the classical approach. 

3.6.4. Posterior Probability Density Plots for Varied Iterates and Burn-ins 

 

 

Figure 7. Posterior probability at different iterations and burn-ins. 

With the convergence achieved at 500000 iterations and 

beyond as indicated in Figure 7, a kernel smoothed posterior 

distribution of all monitored parameters with the hazard rate, 

the Half Normal, and the Negative Exponential detectability 

functions, respectively, revealed that the kernel smoothed 

histogram of the DENSITY and ABUNDANCE parameters 

of both the hazard rate and the Negative Exponential 

functions appear negatively skewed with a symmetric shape 

in the ALPHA and BETA parameters with much smoother as 

the number of updates increases. 
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Table 7. Bayesian and classical estimates of the abundance of elephants in the MNP. 

Function Abundance_Classical Abundance_Bayesian Error of Estimation 

Hazard Rate 328 318 0.01198 

Half Normal 315 333 0.5667 

Negative Exponential 439 386 0.01764 

Weibull N/A 307 0.01077 

 

In Table 7, various estimates have been realized for the 

elephant species with a function specific for both the 

Bayesian and the classical approaches. Even though there 

exist differences in the estimation procedures, the findings, 

however, are similar. 

3.6.5. Using the Principle of Total Probability 

Suppose 	s  represents an event that the unit of interest 

(elephants) is detected and ��  represents the event that the 

detection occur in transect [  with partitions represented as 

follows: 

 

Figure 8. Total Probability representation. 

By the principle of the total probability, the probability of 

observing event A which appears as a subset of Ti’s as Figure 

8 illustrates is estimated as; ~(s) = ~(��) ∗ ~�s ��⁄ 	 +
~���	 ∗ ~�s ��⁄ 	 + ⋯+ ~���	 ∗ ~�s ��⁄ 	 

Table 8. Total probability concept of detectability estimation with prior knowledge. 

 Function Design Detectability _ From Literature Posterior Estimates 

Observed 

Hazard Rate CDS 0.12 N/A 

 MCDS 0.28 N/A 

Weibull CDS N/A 0.5736 

 MCDS N/A 0.5979 

Simulated 
Weibull CDS N/A 0.5149 

 MCDS N/A 0.5777 

 

The restriction of four specific functions consisting of half 

normal, hazard rate, negative, exponential, and uniform for 

analyzing species with varied characteristics has proved to be 

insufficient in explaining the observational differences of 

plants and animals. The biological differences in plants and 

animals can be thought of to be reflected in functions that 

may appear to describe their detection and detectabilities. 

The use of prior knowledge in ecological studies subject to 

density and abundance estimation of rare events in the 

Bayesian ideology appears critical and necessary. As seen in 

Table 8, the Weibull function as determined by best fit 

detection and detectability of the elephant species in the 

MNP, appears to perform better in abundance in the Bayesian 

form than the classical method of statistical investigation of 

the functions specified in the distance software. This 

confirms the need for increase of the functional space of the 

application software for distance sampling with line transect 

applications to cater for all differences in biological 

characteristics of the units of interest under study. 

In Table 6, we can observe that the posterior estimate of 

the updated Weibull prior on the binomial likelihood appear 

to increase the detectability of the elephant species in the 

MNP. This is seen to suggest that the use of prior information 

in the detection of rare species in ecological studies with the 

line transect methodology of distance sampling cannot be 

downplayed. 

4. Conclusions and Recommendations 

In conclusion, the classical or frequentist approach 

determines the abundance and detectability estimates of the 

elephant in the MNP with the hazard rate detectability 

function based on a minimum AIC of 287.51 at 422 and 0.12 

respectively. Using the total probability concept, the 

detectability appears to be enhanced as seen in Table 6. 

With the Bayesian principle using the Gibbs sampling 

approach, the research has established that, based on 

minimum error and runtime, the hazard rate function 

determines the abundance estimate of elephants at 318, 

believed to be within a credible range of 314 and 398. This 

has made the researchers to believe that the actual count of 

the elephant population in the MNP appears far less than 

what management of the park wants the public to believe. 

Moreover, the observation of units of interest conditional on 

distance has been modelled in a more general perspective 

with additional categorical predictors wherein all regression 

equations are provided at various factor level combinations 

with about 99.98% of explained variation in the model by the 

data augmentation process and less than 20% of the 

explained variability for non-augmented case. 

Furthermore, in performing statistical investigations on 

rare and elusive population, it appears insufficient to model 

from the classical perspective, the use of PRIOR knowledge 

as seen in the Bayesian context cannot be underestimated. In 

addition, data recording and presentation in this type of study 

requires a more generalization in the form described in this 

study as “augmentation” process. Based on the findings of 

this study, the researcher wishes to propose the following 

recommendations based on the line transect application of the 

distance sampling methodology: 
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1) The concept of Total Probability with prior knowledge 

of animals and plants in line transect surveys must be 

well embraced. 

2) Application of data augmentation process in data 

representation with Line Transect Methodology 

involving observation of more than one species at a 

time. 

3) Periodic census must be conducted regularly to help in 

establishing the rate of extinction of units of interest in 

wildlife. 

4) That Distance sampling data with line transect sampling 

methodology need not be analyse using only the 

classical reasoning. Attention must be given to the 

existence and availability of prior knowledge of the 

units under study. 

5) That every effort should be made by researchers in 

ecological and biological science to make maximum use 

of prior knowledge of units of interest. 
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