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Abstract: The analysis of sample-based studies involving sampling designs for small sample size, is challenging because the 
sample selection probabilities (as well as the sample weights) is dependent on the response variable and covariates. The study has 
focused on using systems of weighted regression estimating equations, using different modified weights, to estimate the 
coefficients of Weighted Likelihood Estimators. Usually, the design-consistent (Weighted) estimators are obtained by solving 
(sample) weighted estimating equations. They are then used to construct estimates which have better relative efficiencies and 
smaller finite small sample bias than the estimates from the Horvitz-Thompson Weighted Estimator with unmodified weight, 
option A. The purpose of our study is to compare derived Estimators of the weighted regression estimating equations for 
estimating the coefficients of Weighted Likelihood Estimators, the Semi-Parametric Weighted Likelihood Estimator, SPW and the 
Weighted Conditional Pseudo Likelihood Estimator, WCPE with the conventional Horvitz-Thompson Weighted Likelihood 
Estimator, using relative efficiency, sample bias and Standard Error for small sample size. The constructed estimates from the 
system of weighted regression estimating equations, using different modified weights, are actually the Weighted Likelihood 
Estimators. The study compared the two new estimators, the Semi-parametric weighted estimator, SPW and the Weighted 
Conditional Pseudo Likelihood estimator, WCPE, for both the unmodified and modified Weights, which were found to have 
better relative efficiency and smaller finite small sample bias than the estimates from conventional Horvitz-Thompson Weighted 
Estimator, for both generated and for real data. The outcome of the tests show strong similarity in performance to those obtained 
using the simulated data. Estimates were constructed which have better relative efficiencies and smaller finite small sample bias 
than the estimates from the Horvitz-Thompson Weighted Estimator with unmodified weight, option A. 
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1. Introduction 

This study is a follow up on the main reference found in 
Kamun et al [22]. The study has focused on using systems 
of weighted regression estimating equations [14], using 
different modified weights, to estimate the coefficients of 
Weighted Likelihood Estimators [1, 3-5]. We use them to 
construct estimates which have better relative efficiencies 
and smaller finite small sample bias than the estimates 
from the Horvitz-Thompson Weighted Estimator with 

unmodified weight, option A. Further inference on 
Stratified samples can be found in [15]. 

1.1. The Model 

Suppose data, Lawless et al. [18], is produced according to 
a function 

f(y │x; θ)g(x)                                (1) 

where y is a response variable which is multivariate and x is 
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a continuous or discrete vector of covariate variables and 

f(y │ x; θ)                                   (2) 

is the regression part of the function. The marginal 
distribution of x is denoted by g(x), which for this study we 
have used Gaussian density to represent, is as shown below. 
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We describe the conditional distribution of y given x1 as θ. 
The likelihood is given by 

( );f y x θ∏                               (4) 

1.2. System of Estimating Equations 

Let the function below represents a regression equation 

( ) ( );j j jy f y x g xθ=                              (5) 

multiplying equation (5) by xj 

( ) ( );j j j j jx y x f y x g xθ=                       (6) 

and summing from j=1 to N equation (6) 
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= =

=∑ ∑                  (7) 

We can rewrite the equation as 
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or as 
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j

x y f y x g xθ
=
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and when we multiply the equation by the weight wj it gives 
us the sample weighted estimating equations 

( ) ( )( )
1

, 0
N

j j j j

j

w x y f y x g xθ
=

− =∑                (10) 

the sample estimating equations [14] and sample weighted 
estimating equations have been used as equations (9) and 
(10) respectively and are used to find solutions to regression 
equations [13]. 

2. Weighted Likelihood 

In our study, we propose two novel weighted system of 

regression estimating equation for estimating coefficients for 
small sample studies: the small sample pseudo likelihood 
weighted (SPW) model and the small sample semi parametric 
weighted conditional (WCPE) model [17]. By fitting a 
regression model to the establish sample weights against the 
sample variables and or response variable [7], which is the 
requirement for the two estimates to be obtained we end up 
estimating the conditional expectation of the weights. 

We modified the original sample weights, for WCPE, 
where the estimated conditional expectation of the weights is 
used. For our study, both response variables and predictor 
variables were used to find estimated weights. The SPW and 
WCPE models are an improvement of the design-based 
weighted estimates with improvement achieved by using 
suitable modification on the original sample weights before 
the estimation (e.g., [8]). 

2.1. Horvitz-Thompson Weighted Estimator 

Consider a finite population Ω of Ν individuals. Let y 
denote the response variables and v(x’, z’)’ denote the vector 
of all measured covariates, where x are covariates associated 
with the outcome and z are the sample variables used in the 
process of sample selection. x and z may or may not have 
common variables. 

Let n be the size of the observed sample S. The probability 
that individual i, i = 1, 2, 3, …, n, is included in the sample is 
denoted by πi. The base sample weight wi is defined as a 
reciprocal of the sample inclusion probability πi, so πi = 1/wi. 
We refer to the final sample weight as the sample weight of 
individual i and denoted by wi. 

We have assumed in this study that the observed data are 
the data for the simulated units, for individuals i ԑ S, i = 1, 
2, …, n., as we observe (yi, vi’, wi’)’. We have assumed also 
the availability of sample proportions and means for the 
variables in zi’, which can be used to calibrate the sample 
weights. 

In the population, the outcomes Yi conditional on 
covariates Xi have distribution 

( ) ( ),i i if Y X g Xθ  

For our study we use 

( ) '
0,i i i if Y X Xθ β β= +  

Where ( )0 1 2 3 4, , , ,iβ β β β β β= . 

By fitting model (1) to the entire finite population Ω, we 
can estimate βi consistently by solving a system of estimating 
equations with respect to b: 

( ) ( ) ( )( )
1

, 0
N

i i i i i

i

G b x y f y x g xθ
=

= − =∑             (11) 

where 

( ) ( ) 0 1 1 2 2 3 3 4 4,i i if y x g x x x x xθ β β β β β= + + + +  
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and g(xi) is the marginal distribution of xi obtained non 
parametrically. In equation (5), G(b) above, are the maximum 
likelihood estimating equations based on all the values (yi, xi) 
ԑ Ω if Ω is a stratified random sample from a super 
population generated under model (1)(cluster sampling could 
equally be used [2]). Denote the solution of (5) by B. 

For any fixed value of B, G(B) is a vector of finite sample 
totals, and hence, it can be estimated from the sample S by 

( ) ( ) ( )( )ˆ ,
w i i i i i i

i S

G b w x y f y x g x
ε

θ= −∑       (12) 

where yi is the observed response for the unit i. We denote 

the solution of the system of the equations ( )ˆ 0wG b =  by 

ˆ
wβ  which is referred to as the weighted estimator (the 

Horvitz-Thompson estimator). 

2.2. Weighted Conditional Likelihood: Pseudo Maximum 

Likelihood Estimator 

Let ( ), ,
p i i i

f w y x θ , which is the conditional pdf for the 

weight in the population [10], be the weight of the population 
distribution where the observed weight stems from the 
sample distribution fs, obtained by Bayes rule as 

( ) ( ) ( ) ( )
( )

Pr , , ,
, , , , ,
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i i p i i i

p i i i p i i i

i S y v f w y x
f w y v f w y z i S

i S

ε θ
θ ε θ

ε
= =  (13) 

We assume from equation (13) and in this study that 

( ) ( ), , , ,p i i i p i i if w y v f w y xθ θ=  

for each value of i. This is an example of informative 
sampling that should be accounted for in the inferential 
process. 

Equation (13) can be written equivalently by 

( ) ( ) ( )
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, , , , ,
, , , ,

, ,
s i p i i i

s i i i

s i i i

E w f w y x
f w y v

E w y v

θ γ β θ β
θ γ β

γ
=  (14) 

Where ( ).s iE w  refers to the conditional expectation of 

the weights wi with respect to their sample distribution. Also 
γ is an unknown vector of the unknown regression 
coefficients of the regression model on the design variables 
and the outcome for sample weights [11]. 
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is the sample log-likelihood score equation in relation to β. 
It follows then from equation (10), if it can be assumed 

that (1) is a population distribution of yi given xi, that these 
equations can equivalently be written as 
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Where ( ), , ,s i iE w v θ β γ , can be differentiated with 

respect to β for any fixed γ. 
We estimate γ separately, using individual-level data wi, yi, 

vi observed for sample units, i ԑ S. We then express the 
sample expectations ES (wi│ vi) as functions of β and the 
estimated value of γ. We then obtain the system of equations 
from (15) or (16) by substituting γ̂  in place of γ, and solve it 
iteratively with respect to β, 

( )ˆ, 0SG γ β =  

We denote this solution out of (9 or 10) by ˆ
WCPEβ  and refer 

to it as an WCPE estimator according to [12]. 

2.3. Semi-parametric Weighted Estimator 

We obtain the modified sample weights using four steps as 
follows: 

i. We obtain sample weights from two samples, n and g, 
where wg and wn are worked out as regression of the 
sample weights wi on yi, z, x1, x2, x3 and x4, for wg and 
wi on x1, x2, x3 and x4 for wn. 

ii. We then obtain sample weights from the two samples, n 
and g, where wreg1 and wreg2 are worked out as 
regression using least squares of sample weights wi on 
yi, z, x1, x2, x3 and x4 for wreg1 and wi on x1, x2, x3 and x4 
for wreg2. 

iii. We define the weights that have been rescaled as 
iwɶ  by 

2
g n

i

w w
w

+ 
=  
 

ɶ  

iv. We then fit the regression model to the weight which 
have been rescaled, against the covariates vi and 
compute 

( ) ( ),S i i S i iE w v E w z ψ=ɶ ɶ  

Where ψ  refers to the estimated coefficients of the 

regression model which relates 
iwɶ  to the covariates vi. We 

define the model with adjusted weights by 
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The system of weighted estimating equations 

( ) ( )( )ˆ , 0m

SPW i i i i i ii S
G w x y f y x g x

ε
θ= − =∑ ɶ    (18) 

is solved with regards to ˆ
SPWβ , and its solution, is the semi-

parametric weighted estimator as proposed in [10]. 

3. Results 

We repeated the simulations 10,000 times for sample plan 
A. We computed the simulated bias for the regression 
coefficients as the average of the difference of the estimated 
coefficient minus the true coefficient. We computed the 
simulated standard deviation for a regression coefficient by 
dividing the standard error by the number of simulations. We 
have used software packages designed for analysis of the 
weighted estimators using R [16]. 

Table 1. Summary of Comparison and Analysis of Estimates for Generated Data. 

Estimators Plan 
Coefficient of 

Determination. R2 

Adjusted Coefficient 

of Determination. R2 
Bias 

Standard 

Error 

Relative Efficiency 

(Var1/Var2) 
Mean Stan.Dev 

WCPE (MOM) A 0.99999999997974 0.99999999997 2.5881519e-12 1.2250786e-11 0.982396 45.79445 0.51578 
 B 0.99999999997379 0.99999999996 4.5261572e-12 1.4955370e-11 1.045718 45.74961 0.49992 
 C 0.99999999998251 0.99999999998 2.8067548e-12 9.623465e-12 1.136823 45.70296 0.47947 
WCPE (MASS) A 0.99999999998446 0.999999999978 4.2077453e-12 6.4815375e-12 1.260005 45.76692 0.45543 
 B 0.99999999996874 0.999999999956 8.6316509e-12 1.8434238e-11 1.042005 45.74961 0.50081 
 C 0.99999999999274 0.99999999999 1.6465718e-12 4.3478758e-12 1.071496 45.77053 0.49387 
WCPE (STATS4) A 0.99999999997703 0.999999999968 4.3728354e-12 1.2832394e-11 0.993460 45.76174 0.51290 
 B 0.99999999998055 0.999999999973 2.4388269e-12 1.1426680e-11 0.983769 45.76172 0.51542 
 C 0.99999999999922 0.999999999999 1.2534418e-13 4.7164760e-13 0.034135 45.62707 2.76699 
SPW A 0.99999999994496 0.999999999923 8.9096508e-12 4.4634743e-11 2.695988 45.85448 0.31135 
 B 0.99999999996414 0.99999999995 8.5930152e-12 1.5639812e-11 0.993661 45.74964 0.51286 
 C 0.999999999985982 0.99999999998 3.2606140e-12 7.6167599e-12 1.152102 45.71676 0.47628 
HTWE A 0.9999999999585073 0.999999999942 1.0464185e-11 1.8758009e-11 1.000000 45.77449 0.51122 
 B 0.999999999983550 0.999999999977 1.1735057e-12 1.2060731e-11 1.051093 45.74964 0.49864 
 C 0.999999999981308 0.999999999974 3.9779291e-12 1.0356865e-11 1.118182 45.72881 0.48345 
HTWE w=1 0.9999999999844992 0.999999999978 3.1787906e-12 9.2209949e-12 1.046095 45.74960 0.49983 
Monte Carlo  0.9999999999790133 0.999999999971 6.2848615e-12 8.9509268e-12 1.043087 45.74961 0.50055 

HTWE = Horvitz-Thompson Weighted Estimator (HTWE); SPW = Semi parametric Weighted Estimator, 
WCPE = Weighted Conditional semi parametric Estimator., HTWE (w = 1) = Un-weighted HTWE Estimator, 
Var1 = Variance of HTWE Option A, Var2 = Variance of another Estimator. 

The results in Table 1 show that all the Estimators for options A, B and C, except WCPE (STATS4) options A, B and C, with 
lower relative efficiency, have higher relative efficiencies and coefficients of determination than HTWE for option A including 
Monte Carlo Simulation, and hence are more efficient for Simulated Data for n = 15. 

Table 2. Summary of Comparison and Analysis of Estimates for Real Data. 

Estimators Plan 
Coefficient of 

Determination. R2 
Bias Standard Error 

Relative Efficiency 

(Var1/Var2) 
Mean Stan.Dev 

WCPE (MOM) A 0.999999999910297 2.0048e-11 4.786e-11 0.8759 116.2194 2.6517 
 B 0.9999999996825778 7.6514e-11 1.2443e-10 2.3213 116.2732 1.6288 
 C 0.9999999999590754 1.0063e-11 1.65680e-11 0.4113 115.8890 3.8695 
WCPE (MASS) A 0.99999999984530186 3.7533e-11 5.6396e-11 0.8467 115.9398 2.6970 
 B 0.999999999806429063 3.3201e-11 1.1911e-10 2.3218 116.2732 1.6287 
 C 0.9999999999082826 2.7677e-11 3.8922e-11 0.5858 117.5860 3.2425 
WCPE (STATS4) A 0.99999999992502486 2.3693e-11 2.5764e-11 0.8518 116.0661 2.6888 
 B 0.999999999833797504 3.5832e-11 9.3068e-11 2.3215 116.2732 1.6288 
 C 0.999999999951708 1.1129e-11 2.1533e-11 0.8518 116.3275 2.5979 
SPW A 0.9999999999999848 3.9968e-15 6.2258e-15 1.0834 116.2212 2.3842 
 B 0.9999999999999820 3.9968e-15 8.0151e-15 2.3215 116.2732 1.6288 
 C 0.999999999999959 1.1102e-15 1.9884e-15 0.7106 116.6525 2.9439 
HTWE A 0.9999999999433389 1.4085e-11 2.3787e-11 1.0000 116.1443 2.4816 
 B 0.99999999999999467 1.11022e-15 2.7760e-15 0.3582 116.2732 4.1462 
 C 0.999999999999991 2.1094e-15 4.4433e-15 0.7051 116.3878 2.9554 
HTWE (w=1)  0.999999999629764602 9.2224e-11 1.4834e-10 2.3233 116.2733 1.6281 

HTWE = Horvitz-Thompson Weighted Estimator (HTWE); SPW = Semi parametric Weighted Estimator, 
WCPE = Weighted Conditional semi parametric Estimator., HTWE (w = 1) = Un-weighted HTWE Estimator, 
Var1 = Variance of HTWE Option A, Var2 = Variance of another Estimator. 
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The results in Table 2 show that all estimators whose relative efficiency is greater than one are more efficient than HTWE 
(A) for real data for n = 15. 

Table 3. Summary of the Performance of Estimators based on Bias and Standard Error for Real Data. 

Estimators Plan 
��� ��� ��� ��� ���    

Bias Error Bias Error Bias Error Bias Error Bias Error 

WCPE (MOM) A -21.60857 1.4995e-07 0.21271 2.5080e-10 -0.01046 4.7754e-11 0.06382 1.5103e-10 -0.01963 1.6181e-07 
 B 26.61126 7.0506e-08 0.08192 2.9014e-10 -0.01491 7.1071e-12 0.01473 8.0998e-11 -0.01984 2.5863e-12 
 C -22.97434 6.7705e-08 0.33323 3.4611e-10 0.11031 7.5084e-12 0.04374 6.7999e-11 -0.01901 2.5813e-12 
WCPE (MASS) A -21.60916 8.3168e-08 0.18817 3.3363e-10 -0.01035 8.5216e-12 0.06680 8.76977e-11 -0.01892 2.7146e-12 
 B 26.62450 6.0548e-08 0.08189 2.2084e-10 -0.01491 6.7780e-12 0.01472 6.5860e-11 -0.01984 1.9245e-12 
 C -21.60980 8.8651e-08 2.89294 2.8204e-10 -8.9177e-03 9.8664e-12 0.05403 1.0917e-10 -0.01943 3.4142e-12 
WCPE (STATS4) A -21.60903 5.5451e-08 0.17072 1.6534e-10 -0.01002 6.7411e-12 0.06919 7.1569e-11 -0.01877 2.5745e-12 
 B 26.62442 5.5440e-08 0.54149 2.0925e-10 -0.01491 5.6512e-12 0.01472 6.2208e-11 -0.01984 1.8769e-12 
 C -21.60879 4.6955e-08 0.20427 1.6957e-10 -0.01102 5.1655e-12 0.06645 5.7165e-11 -0.01955 1.7770e-12 
SPW A -21.60885 7.7450e-10 0.14864 2.5578e-12 -0.01118 9.2353e-14 0.07652 9.3822e-13 -0.01929 2.9830e-14 
 B 26.61728 4.9624e-10 0.08191 1.8309e-12 -0.01491 5.8573e-14 0.01473 6.8968e-13 -0.01984 2.3004e-14 
 C -21.60913 3.8547e-04 0.23908 1.1342e-06 -9.9980e-03 1.3266e-08 0.05820 4.5258e-07 -0.01946 2.0363e-14 
HTWE A -68.33828 4.4372e-08 0.58190 1.6172e-10 -0.02928 5.2694e-12 0.07680 5.6618e-11 0.01894 1.9212e-12 
HTWE (w=1)  26.75116 7.48091e-08 0.08164 3.0336e-10 -0.01492 7.7339e-12 0.01457 8.8192e-11 -0.01984 3.3560e-12 

The simulated standard error and bias for most of the estimator are lower than for the Horvitz–Thompson weighted estimator option A, except for HTWE w = 1. 

Table 4. Summary of the Performance of Estimators based on Standardized (Beta) Regression Coefficients. 

Estimators Plan ��� ��� ��� ��� ��� 

WCPE (MOM) A -4.2317e-15 1.0510e+00 8.3729e-01 6.5699e-01 5.2401e-01 

 B -1.6718e-15 8.2424e-01 1.2161e-01 -2.0638e-01 7.2585e-01 

 C 1.6697e-16 1.0642e+00 3.9770e-01 2.3048e-01 5.1152e-01 

WCPE (MASS) A 1.5269e-15 9.3284e-01 8.4169e-01 6.9271e-01 7.6632e-01 

 B -3.3346e-15 8.2408e-01 1.2133e-01 -2.0675e-01 7.2581e-01 

 C -1.1667e-15 9.9878e-01 9.0068e-01 4.0943e-01 4.8786e-01 

WCPE (STATS4) A 4.4415e-16 8.6397e-01 9.0014e-01 7.3247e-01 8.2153e-01 

 B 1.7106e-15 8.2407e-01 1.2134e-01 -2.0677e-01 7.2581e-01 

 C -2.8381e-15 1.0369e+00 7.5675e-01 7.1347e-01 5.7631e-01 

SPW A 6.1736e-16 8.7213e-01 7.9371e-01 9.5627e-01 7.1912e-01 

 B 1.0540e-16 8.2416e-01 1.2149e-01 -2.0655e-01 7.2584e-01 

 C -2.9349e-15 1.0456e+00 8.2519e-01 5.1056e-01 5.2668e-01 

HTWE A 2.7255e-16 7.2067e-01 1.0512e+00 9.3430e-01 8.3798e-01 

 B -1.0039e-15 1.0630e+00 4.0809e-01 1.9436e-01 4.9729e-01 

 C -9.1776e-16 1.0718e+00 6.1968e-01 5.2272e-01 5.3370e-01 

HTWE (w=1)  -5.2853e-15 8.2268e-01 1.1821e-01 -2.1060e-01 7.2512e-01 

Simulated Standardized (Beta) Regression Coefficients for each coefficient for over 10,000 repeated simulations. 
A standardized beta coefficient compares the strength of the effect of each individual independent variable to the dependent variable. The higher the absolute 
value of the beta coefficient, the stronger the effect, here we make comparison with HTWE option A. 

Additional techniques of variance estimation can be found 
in [6]. 

4. Conclusion 

In this paper, we propose two estimators for regression 
coefficients for analyses: an SPW estimator and a WCPE 
estimator. The estimators proposed provide an alternative to 
the conventionally used weighted (Horvitz–Thompson) 
estimator that can be very inefficient when applied to data 
with highly variable weights [4]. 

The two proposed estimators show significant 
improvement in efficiency and can be readily applied to the 
real data. The WCPE estimator and its standard errors can be 
computed using existing R software [16]. Therefore, its 

implementation is straightforward and requires only 
knowledge of the individual values of the weights and 
covariates observed in the sample.  

The SPW estimator can be sensitive to the misspecification 
of the selection model, and hence it may not be appropriate 
for the analyses in which the selection model cannot be 
specified and estimated accurately. Also, unlike the WCPE 
estimator, computing the SPW estimator requires additional 
programming to incorporate the selection model into the 
estimating equations. 

In survey research, regression and post stratification 
calibration of the sample weights are used in weighted 
estimation [3, 9] to reduce the variance and bias (such as 
from deficient coverage of the sample frame) of the weighted 
estimators. Both types of calibration require knowledge of 
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population proportions or means of design variables that are 
often available from population census data. In this paper, the 
sample weights we used were calibrated to real data 
categories. 

To summarize, we recommend using the WCPE estimator 
because our simulations show it to be nearly as efficient as 
the SPW estimator. We recommend that the choice of the 
adjusted sample weights provided for analyses should be 
made without regard to any specific analysis but according to 
a general criteria of efficiency such as the CV of the weights. 
This will avoid choosing adjusted sample weights that 
provide the ‘desired’ results for a particular analysis. Further 
empirical research would be useful to investigate the finite 
sample properties of these estimators under other sample 
designs and types of sample weighting. Also, it would be 
useful to further extend the SPW and WCPE estimations to 
other types of studies. It is now evident that weighted 
regression is a viable option for obtaining estimators [19-21].  
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