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Abstract: In biomedical and public health studies, interval-censored data arise when the failure time of interest is not exactly 

observed and instead only known to lie within an interval. Furthermore, the failure time and censoring time may be dependent. 

There may also exist a cured subgroup, meaning that a proportion of study subjects are not susceptible to the failure event of 

interest. Many authors have investigated inference procedure for interval-censored data. However, most existing methods 

either assume no cured subgroup or apply only to limited situations such that the failure time and the observation time have to 

be independent. To take both cured subgroups and informative censoring into consideration for regression analysis of interval-

censored data, we employ a mixture cure model and propose a sieve maximum likelihood estimation approach using Bernstein 

Polynomials. A novel expectation-maximization algorithm with the use of subject-specific independent log-normal latent 

variable is developed to obtain the numerical solutions of the model. The robustness and finite-sample performance of the 

proposed method in terms of estimation accuracy and predictive power is evaluated by an extensive simulation study which 

suggest that the proposed method works well for practical situations. In addition, we provide an illustrative example using 

NASA’s hypobaric decompression sickness database (HDSD). 

Keywords: Interval-censoring, Cure Rate Model, Informative Censoring, Sieve Maximum Likelihood Estimation,  

EM Algorithm, Bernstein Polynomial 

 

1. Introduction 

This paper discusses regression analysis of interval-

censored data when there exists the informative censoring 

issue and a cured subpopulation. Interval-censored data occur 

naturally and frequently in randomized clinical trials, where 

the exact time of event occurrence is unknown but the event 

time is only known to lie within an interval. In regular 

survival analysis, it is usually assumed that every subject is 

susceptible to the failure event. However, there may exist a 

subpopulation which is cured or immune to the failure event. 

Several type of cure models are proposed to deal with this 

scenario [1-4]. In addition, [3], [5-6] studied the cure rate 

model for the analysis of interval-censored failure time data. 

Another challenging issue for this problem is having 

correlated failure time and censoring. Many authors have 

developed regression procedure to deal with informative 

censoring [2-3], [7-9]. Furthermore, [8-9] considered the cure 

rate models with informatively right censored data. It is also 

proved by [10] that ignoring of the cured subpopulation 

could result in an overestimation of the survival time. And 

the estimation could be seriously biased if the informative 

censoring is not considered in the model [11]. However, it 

does not seem to exist an established inference procedure for 

interval-censored data that takes both cured subgroup and 

informative censoring into account. 

In this paper, we present a sieve estimation procedure for 

analyzing interval-censored data that is able to address both 

cured subgroups and informative censoring using the mixture 

cure rate model. Cox’s proportional hazards model is used for 

modeling both failure time and censoring time. A latent 

variable is introduced in order to directly characterize the 

correlation between failure time and the dependence between 

failure time and censoring time. The remainder of the article 

is organized as follows. Section 2 introduces notation, 

underlying model as well as the parameter estimate 

procedure for informative interval censored data. A sieve 

maximum likelihood estimation procedure is then be 
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described in Section 3. An EM algorithm is developed and 

Bernstein polynomials is used to approximate unknown 

functions. Section 4 presents some results obtained from an 

extensive simulation study conducted to assess the 

performance of the proposed methodology and an illustrative 

example is provided in Section 5. Section 6 contains some 

discussion and concluding remarks. 

2. Assumptions, Models and Likelihood 

Function 

In a clinical study with a cured subpopulation, let � denote 

the failure time and assume the failure event of each patients 

is observed within a time interval [L, R]. � is the covariates 

of patients. Now have interval-censored survival data. Define 

the cure indicator variable � = 0 if the subject is cured and 

nonsusceptible and � = 1  otherwise, and suppose that we 

can write � as 

�  =  � �∗  +   (1 − �) ∞ , 
where �∗ < ∞ denotes the failure time of a susceptible subject. 

The cure indicator � is modeled by the logistic model [6] 

 �(� = 1|�) = ���	(���)
�����	(���)                   (1) 

Here � denotes the vector of covariates that may have effects 

on �, which may be the same as, a part of or different from �, 

and �  denotes a vector of regression parameters as �  and � . 

Now assume a clinical study that has � independent subjects. 

For the  -th subject , let �!  denote the event time and let "! and 

#! be the left and right endpoint of the interval censored data. 

Also assume that the interval censored time is correlated with 

failure time �! . Define $! = #! − "! , the gap time between the 

two observation times. In the following, we model the hazard 

functions of �! , #!  and $!  through an unobserved or latent 

vector %! = (%�! , %&! , %'!)  by assuming that �! , "!  and $!  are 

independent conditional on �! and %! . For subjects with � = 1, 
the cumulative hazard function of � at ) is specified by 

*!
(+)()|�! , %!) = *,-())exp{�,2�! + %�!}.     (2) 

Conditional on �!  and %! ,  we assume that the hazard 

functions for "! and $! follow the Cox model: 

*!
(4)()|�! , %!) = *5-())exp{�5��! + %&!}        (3) 

*!
(6)()|�! , %!) = *7-())exp{�72�! + %'!}      (4) 

respectively, where �, ,  �5  and �7  are 8 × 1  vectors of 

unknown regression parameters, and *,-()),  *5-())  and 

*7-()) are unknown baseline hazard functions. Moreover, we 

assume that %! ∼ i.i.d. ;(0, Σ). The baseline covariates � and 

� may share some common components and � includes 1 so 

that �  contains the intercept term. Denote = = >(# < ∞). 
Denote the observation from a single subject by ?! =
("! , $! , =!, �! , �!).  The parameter need to be estimated 

@ = (�, �, , �5 , �7 , Λ,(⋅), Λ5(⋅), Λ7(⋅)).  

@- = (�-, �, , �5 , �7, Λ,-(⋅), Λ5-(⋅), Λ7-(⋅))  where Λ,- =
C 	,
- *,-(D)ED, Λ5- = C 	,

- *5-(D)ED, Λ7- = C 	,
- *7-(D)ED  Denote 

FG()|�, �, %) = 8(�) + {1 − 8(�)}{1 − exp(−exp(�,2�! +
%�)Λ,-()))}.  HG()|�, �, %) = 1 − FG()|�, �, %).  Conditional 

on ("! , $! , �! , �! , %!), the likelihood of the observation from 

subject   has the following form: 

"IJ|4J,6J,KJ = {FG("!|�, �, %) − FG(#!|�, �, %)}IJ{FG("!|�, �, %)}�LIJ                                                (5) 

Conditional on (�! , %!), the likelihood functions related to "! and $! are given by 

"4J|KJ = {*5-("!)exp{�52�! + %&!}exp{−exp{�52�! + %&!}Λ5-}.                                                     (6) 

"6J|KJ = {*7-("!)exp{�72�! + %&!}exp{−exp{�72�! + %&!}Λ7-}IJ .                                                 (7) 

Then likelihood function of @  for a single observation 

? = (", $, =, �, �) is 

"(@, ?) = C 	"I|4,6,M,�,K"4|M,K"6|M,KN(%; Σ)E%.       (8) 

where N(%; Σ) is the density function of %. 
The full likelihood function of @  given P  is "(@) =

Π!R�S "(@, ?!). 

3. Inference Procedure 

We propose to use a sieve method to approximate Λ,  for 

alleviating the computation burden. We approximate Λ,(⋅) by 

Bernstein polynomial functions on > = [U, %], where U, % are 

the lower and upper bounds of the finite observation times 

{"! , #!=!:  = 1,2, ⋯ , �}.  Λ,-(⋅),  Λ5-(⋅)  Λ7-(⋅)  are 

approximated by 

Λ�S()) = ∑ 	[\R- exp]�\^_\(), `, U, %) = _())2a.          (9) 

where _()) = (_-(), `, U, %), ⋯ , _[��(), `, U, %))′, 
a = (exp(�-), ⋯ , exp(�[��))′ and _\(), `, U, %) =
`c (,Ld

KLd)\(1 − ,Ld
KLd)[L\ , ` = e(�f) for some g > 0. 

Because the integrated form of the log-normal frailty is 

very complicated, the EM algorithm is used to perform the 

maximum likelihood estimates (MLEs) [6]. 

EM Algorithm 

E-step: 

The density function of log-normal frailty %! is 

N(%!|?! , @) = "!L�(@; ?!)"IJ|4J,6J,KJ"4J|KJ"6J|KJN(%! ; Σ)  (10) 

Then write the complete data likelihood as 
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"i(@; ?, %) = ∏ 	S!R� "IJ|4J,6J,KJ"4J|KJ"6J|KJN(%! ; Σ)   (11) 

Take the logarithm of the likelihood function (11) as 

ki(@; ?, %) = ∑ 	S!R� {log"IJ|4J,6J,KJ + log"4J|KJ + log"6J|KJ +
logN(%!; Σ)}              (12) 

Compute the conditional expectation of the complete 

likelihood function, and compute the following integration 

o{ℎ(%!)|?! , @q(r)} = C 	ℎ(%!)N(%!|?! , @q(r))E%!           (13) 

where ℎ(%!)  is a function involving %!  and @q(r)  is the 

estimate of @ after the sth iteration. We calculate this integral 

the Monte Carlo method. Let oq{ℎ(%!)|?! , @q(r)}  denote the 

approximate value of o{ℎ(%!)|?! , @q(r)}  using the Monte 

Carlo approach. 

Let t!(%! ; ?! , @) = "IJ|4J,6J,KJ"4J|KJ"6J|KJ ,  u! = ΣL�/&%! .  It 
follows trivially that 

o{ℎ(%!)|?! , @} = C 	w(KJ(xJ))yJ(KJ(xJ);?J,z)���(LxJ�xJ){xJ
C 	yJ(KJ;?J,z)���(LxJ�xJ){xJ

    (14) 

Then we approximate o{ℎ(%!)|?! , @} by the Monte Carlo 

approach. 

oq{ℎ(%!)|?! , @} = ∑ 	|}~� w(KJ(xJ}))yJ(KJ(xJ});?J,z)
∑ 	|}~� yJ(KJ(xJ});?J,z)             (15) 

where {%!5 , k = 1, ⋯ , "}  are generated from multivariate 

standard normal distribution with mean zero and covariance 

matrix >, where is the identity matrix. 

M-step: 

Maximizing the conditional expectation of (13) with respect 

to @  at the (s + 1) th iteration yields the updated estimator 

@(r��). Denote by *5- (*7-) the vector of the discrete baseline 

hazard function of the observation time points "  ($! ),  =
1, ⋯ , �.  Let � = (@′, *5-′, *7-′)′  and �q = (@q′, *�5-′, *�7-′)′  the 

estimate for �.  Also let k(�; ?, %)  be the logarithm of the 

complete data likelihood function. It can be checked that 

k(�;?, %) = � 	
S

!R�
[=!log{FG("!|�, �, %) − FG(#!|�, �, %)} + (1 − =!)log{FG("!|�, �, %)}] 

+ ∑ 	S!R� [log*5-("!) + {�52�! + %&!} − exp{�52�! + %&!}Λ5-] + ∑ 	S!R� =![log*7-("!) + {�72�! + %&!} − exp{�72�! + %&!}Λ7-].   (16) 

Then the components of �k(@; ?, %)/�@ are 

�5(�;?,K)
���

= ∑ 	S!R�
����4�J||J,�J,�J

���
, c = 0, ⋯ , ` + 1                                                             (17) 

�5(�;?,K)
���

= ∑ 	S!R�
����4�J||J,�J,�J

���
                                                                        (18) 

�5(�;?,K)
��}

= ∑ 	S!R� �![1 − exp{�!2�5 + %&!}Λ5-("!)]                                                          (19) 

�5(�;?,K)
��}�(4J) = ∑ 	S!R�

�
�}�(4J) − ∑ 	SrR� >("r ≥ "!)exp{�r2�5 + %&r}                                                    (20) 

�5(�;?,K)
���

= ∑ 	S!R� =!�![1 − exp{�!2�7 + %'!}Λ7-("!)]                                                   (21) 

�5(�;?,K)
����(6J)

= ∑ 	S!R� =!{ �
���(6J)

− ∑ 	SrR� >($r ≥ $!)exp{�r2�7 + %'r}}                                          (22) 

�k(�; ?, %)
�ΣL� = �Σ − � 	

S

!R�
%!%!2 − 1

2 	E U�	{�Σ − � 	
S

!R�
%!%!2} 

First let F(+)(�, , �; ?! , %!) = (�5(z;?J,KJ)
����

, �5(z;?J,KJ)
��2 )′. Then we update the parameter estimators for (�,2, �′)′, 

F(+)(�, , �) = ∑ 	S!R� oq{F(+)(�, , �; ?! , %!)|?!}                                                               (23) 

Note that the estimates of �, , �, �5  and �7  are updated at the (s + 1)th iteration using the one-step Newton–Raphson 

algorithm. Solving (20) and (22) actually yields Aalen-Breslow type estimators for *5- and *7- as follows: 

Λ�5-()) = ∑ 	S!R� C 	,
-

{�}J(�)
∑ 	��~� �(4���)���{�}�M�}�{K��|?�}                                                             (24) 

and 

Λ�7-()) = ∑ 	S!R� C 	,
-

{��J(�)
∑ 	��~� I��(6���)���{���M�}�{K��|?�}.                                                        (25) 

Plugging them into (19) and (21) leads to score equations 
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F(4)(�5) = ∑ 	S!R� C 	�
- [�! − � (5)(); �5)]E;5!())                                                            (26) 

F(6)(�7) = ∑ 	S!R� =! C 	�
- [�! − � (7)(); �7)]E;7!())                                                       (27) 

where ;5! = >("! ≤ )), ;7! = >($! ≤ )), and 

� (5)(); �5) = ∑ 	SrR� >("r ≥ ))�rexp{�52�r}oq{%&r|?r}
∑ 	SrR� >("r ≥ ))exp{�52�r}oq{%&r|?r}  

� (7)(); �7) = ∑ 	SrR� =r>($r ≥ ))�rexp{�52�r}oq{%'r|?r}
∑ 	SrR� =r>($r ≥ ))exp{�52�r}oq{%'r|?r}  

Once the new estimates of �5 and �7 are obtained, Λ5- and Λ7- can be estimated by the (24) and (25). Finally, the closed-

form maximum likelihood estimate of Σ is 

Σq = �L� ∑ 	S!R� oq{%!%!2|?!}.                                                                         (28) 

For the variance estimation of the parameters, we employed the Louis formula [12], and calculate the observed information 

matrix >(�q) by 

>(�q) = −o{��5(�;?,K)
����2 |?, �q} − o{�5(�;?,K)

��
�5(�;?,K)

��2 |?, �q}                                                   (29) 

4. A Simulation Study 

In this section, an comprehensive simulation study is 

conducted to evaluation the finite sample performance of the 

proposed estimator. The uniform distribution and normal 

distribution is used to generate the covariates. To generate the 

data, we first generated the �!’s and the %!’s and then the "! 
and #!′D  from model (3) and (4) with Λ5()) = 0.01 )&  and 

Λ7()) = 0.02 )& . We first generate the cure indicator 	�! ’s 

based on model (1) and generate the �!∗’s based on model (2) 

with Λ+()) = 0.05 )& . The simulation results is based on 

1000 replications with the sample size of 200 or 400. 

The estimated regression parameters �,�, , �5 , �7 	and ¤  is 

given in tables 1-4. In the simulation setup, �!’s follow the 

uniform distribution over (0,2) , �! ’s follow ;(0,1) , and 

�- = 1 , (�, , �5 , �7) = (0,0,0) , (0,0.5,1) , (1,0.5,0) , or 

(0.5,0.5,0.5) . Table 1 corresponds to the non-informative 

censoring situation with ¤- = 0, and Tables 2-3 correspond 

to the informative censoring situation with ¤- =0.5 and 

¤- = 1  respectively. The results in these tables include 

estimated bias (Bias), the sample standard deviation (SSD) of 

the estimates, the estimated standard errors (SEE), and the 

95% empirical coverage probability (CP). Similar to [13], we 

took the degree of the Bernstein Polynomials ` = [��/¥] =
3 for � = 200 and ` = [��/¥] = 4 for � = 400. 

The simulation results indicate that the proposed estimator 

performs pretty well as the bias is small and variance 

estimation is close to sample variance of the simulated data. 

In addition, the coverage probability is close to 95% which 

indicates that the proposed estimator is asymptotically 

normally distributed. Moreover, as the sample size increases, 

both the biased and estimated variance decreases which is to 

be expected. 

The simulation results for the two covariate scenario are 

displayed in Table 4 with �, = (1,1.5)2, �5 = (0.5,1)2, �- =
(1,1)2, �7 = (1,1)2 or (1,−1)2, and ¤- = 0.5. The covariates 

for cure model �� and �& were generated from the standard 

normal distribution and the uniform distribution over (−1,1), 

respectively, and the covariates for Cox model ��  and �& 

were generated from the Bernoulli distribution with 8 = 0.5 

and the standard normal distribution, respectively. The results 

indicate that our proposed method also works well for 

multiple covariates scenarios. Furthermore, we tried different 

values for the degree of Bernstein Polynomials and found 

they all gave similar simulation results. Thus, the results are 

robust for different degree of polynomial. 

Table 1. Results on estimations of the regression coefficients based on the simulated data with one covariate and ¤=0. 

Z∼ Unif(0,2), X∼ N(0,1), §=1, Cure%=35%  

¨  ©  Par Bias SSD SEE CP Bias SSD SEE CP 

   �,� =0, �5� =0, �7ª=0, Cr=45% �,� =0, �5� =0.5, �7ª=1, Cr=50% 

200 3 �«  0.023 0.145 0.131 0.935 0.063 0.148 0.169 0.955 

  �,�   0.048 0.171 0.178 0.938 0.061 0.173 0.198 0.971 

  �5�   -0.019 0.124 0.134 0.958 0.027 0.136 0.142 0.935 

  �7ª   0.025 0.136 0.141 0.951 0.020 0.125 0.141 0.950 

  ¤«  0.005 0.095 0.081 0.943 0.007 0.082 0.105 0.965 

400 4 �«  0.018 0.118 0.125 0.953 0.029 0.113 0.106 0.947 

  �,�   0.026 0.138 0.132 0.946 0.045 0.179 0.185 0.942 

  �5�   0.016 0.097 0.103 0.955 -0.021 0.091 0.86 0.955 

  �7ª   0.022 0.111 0.109 0.941 0.019 0.128 0.147 0.970 

  ¤«  -0.005 0.061 0.055 0.948 0.002 0.081 0.088 0.953 

   �,� =1, �5� =0.5, �7ª=0, Cr=35% �,� =0.5, �5� =0.5, �7ª=0.5, Cr=40% 
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Z∼ Unif(0,2), X∼ N(0,1), §=1, Cure%=35%  

¨  ©  Par Bias SSD SEE CP Bias SSD SEE CP 

200 3 �«  0.051 0.178 0.162 0.938 0.058 0.161 0.168 0.967 

  �,�   0.056 0.201 0.206 0.961 0.054 0.149 0.132 0.944 

  �5�   0.031 0.141 0.144 0.951 0.047 0.138 0.142 0.938 

  �7ª   0.012 0.112 0.103 0.957 0.060 0.151 0.156 0.960 

  ¤«  -0.004 0.081 0.075 0.940 0.003 0.072 0.077 0.951 

400 4 �«  0.048 0.146 0.159 0.948 0.051 0.126 0.131 0.956 

  �,�   0.044 0.128 0.126 0.962 0.062 0.151 0.160 0.958 

  �5�   0.031 0.115 0.119 0.947 -0.027 0.132 0.145 0.944 

  �7ª   0.025 0.109 0.101 0.955 0.042 0.172 0.161 0.946 

  ¤«  0.008 0.041 0.052 0.951 -0.001 0.035 0.032 0.942 

Table 2. Results on estimations of the regression coefficients based on the simulated data with one covariate and ¤=0.5. 

Z∼ Unif(0,2), X∼ N(0,1), §=1, Cure%=35%  

¨  ©  Par Bias SSD SEE CP Bias SSD SEE CP 

   �,� =0, �5� =0, �7ª=0, Cr=45% �,� =0, �5� =0.5, �7ª=1, Cr=50% 

200 3 �«  0.036 0.138 0.144 0.967 0.043 0.151 0.164 0.957 

  �,�   0.018 0.131 0.148 0.947 0.068 0.189 0.199 0.971 

  �5�   0.020 0.129 0.131 0.953 0.032 0.166 0.142 0.946 

  �7ª   0.014 0.122 0.127 0.956 0.021 0.116 0.110 0.947 

  ¤«  0.009 0.072 0.077 0.944 0.004 0.057 0.063 0.959 

400 4 �«  0.031 0.108 0.115 0.953 0.027 0.113 0.106 0.947 

  �,�   0.022 0.128 0.122 0.946 0.029 0.149 0.140 0.942 

  �5�   0.014 0.145 0.167 0.955 0.036 0.156 0.163 0.953 

  �7ª   0.035 0.152 0.145 0.939 0.048 0.172 0.178 0.942 

  ¤«  -0.010 0.051 0.035 0.949 0.003 0.061 0.078 0.937 

   �,� =1, �5� =0.5, �7ª=0, Cr=35% �,� =0.5, �5� =0.5, �7ª=0.5, Cr=40% 

200 3 �«  0.051 0.128 0.112 0.938 0.048 0.113 0.133 0.970 

  �,�   0.068 0.161 0.168 0.963 0.041 0.169 0.173 0.941 

  �5�   0.042 0.141 0.145 0.954 0.038 0.150 0.156 0.946 

  �7ª   0.038 0.132 0.135 0.943 0.046 0.138 0.141 0.953 

  ¤«  -0.002 0.042 0.053 0.961 0.004 0.072 0.065 0.934 

400 4 �«  0.038 0.092 0.105 0.946 0.041 0.106 0.102 0.953 

  �,�   0.064 0.178 0.176 0.965 0.035 0.131 0.140 0.956 

  �5�   0.042 0.125 0.139 0.945 0.027 0.112 0.105 0.944 

  �7ª   0.029 0.112 0.105 0.951 0.044 0.123 0.135 0.962 

  ¤«  0.001 0.038 0.047 0.953 -0.006 0.055 0.042 0.941 

Table 3. Results on estimations of regression coefficients based on the simulated data with one covariate and ¤=1. 

Z∼ Unif(0,2), X∼ N(0,1), §=1, Cure%=35%  

¨  ©  Par Bias SSD SEE CP Bias SSD SEE CP 

   �,� =0, �5� =0, �7ª=0, Cr=40% �,� =0, �5� =0.5, �7ª=1, Cr=45% 

200 3 �«  0.051 0.127 0.148 0.943 0.060 0.162 0.153 0.965 

  �,�   0.046 0.181 0.177 0.935 0.041 0.178 0.192 0.971 

  �5�   0.065 0.169 0.163 0.952 0.057 0.176 0.182 0.940 

  �7ª   0.058 0.203 0.199 0.959 0.071 0.210 0.203 0.953 

  ¤«  0.010 0.092 0.084 0.946 0.003 0.087 0.102 0.966 

400 4 �«  0.047 0.118 0.135 0.953 0.049 0.123 0.146 0.941 

  �,�   0.052 0.138 0.142 0.949 0.038 0.159 0.168 0.942 

  �5�   0.074 0.145 0.157 0.958 0.069 0.176 0.183 0.953 

  �7ª   0.063 0.133 0.147 0.952 0.081 0.190 0.198 0.960 

  ¤«  0.002 0.051 0.065 0.948 0.005 0.034 0.048 0.934 

   �,� =1, �5� =0.5, �7ª=0, Cr=35% �,� =0.5, �5� =0.5, �7ª=0.5, Cr=40% 

200 3 �«  0.035 0.148 0.157 0.935 0.049 0.123 0.111 0.970 

  �,�   0.077 0.185 0.180 0.944 0.054 0.154 0.161 0.957 

  �5�   0.061 0.174 0.179 0.959 0.066 0.160 0.150 0.949 

  �7ª   0.045 0.156 0.147 0.930 0.061 0.179 0.170 0.952 

  ¤«  -0.006 0.072 0.063 0.937 0.012 0.082 0.090 0.948 

400 4 �«  0.038 0.116 0.109 0.942 0.041 0.119 0.128 0.959 

  �,�   0.071 0.168 0.156 0.964 0.072 0.141 0.160 0.953 

  �5�   0.056 0.145 0.149 0.948 0.047 0.132 0.145 0.944 

  �7ª   0.038 0.126 0.137 0.959 0.056 0.161 0.148 0.937 

  ¤«  0.009 0.068 0.052 0.955 -0.004 0.065 0.052 0.967 
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5. An Application 

In this section, we illustrate our methodology by applying 

it to the NASA’s Hypobaric decompression sickness database 

(HDSD). There are 238 subjects aged between 20 and 54 in 

the study (177 male and 61 female). The subjects are tested 

by a dehydrogenation process in a hypobaric environment. 

The response variable is the time of developing grade IV 

venous gas emboli (VGE). The goal of the study is to find 

out association between VGE and potential risk factors 

(NOADYN, TR360, age and gender). NOADYN is an 

indicator of the conditional of test subjects (NOADYN=1 for 

ambulatory and NOADYN=0 for lower body adynamic). 

TR360 represents the tissue ratio at 360 degrees.  

We have interval-censored data here since the failure event 

(Grade IV VGE) is only observed to occur within two 

examination time points. We also have informative censoring 

scenario since the subjects who develop Grade IV VGE are 

more likely to have their examination earlier. Also some 

subjects are immune to Grade IV VGE and will never 

develop any related symptom. Therefore, cure rate model 

would fit the scenario here. It is pointed out that only 

covariates relate to the characteristic of the subject can affect 

the immunity of the failure event [14]. Thus, we only include 

age and gender in the logistic model for the cure rate. The 

estimation results are given in table 5. For comparison, we 

also include the estimation results given by a naïve 

estimation procedure that ignores the dependence between 

censoring time and failure time. 

Table 4. Results on estimations of regression coefficients based on the simulated data with two covariates and ¤=0.5. 

¬­ ∼ N(0,1), ¬® ∼ Unif(-1,1), ¯­ ∼ Bernoulli(0.5), ¯® ∼ N(0,1), §=(0,1), Cure%=30% 

¨  °  Par Bias SSD SEE CP Bias SSD SEE CP 

   �, = (1,1.5)2, �5 = (0.5,1)2, �7 = (1,1)2, Cr=42% �, = (1,1.5)2, �5 = (0.5,1)2, �7 = (1,−1)2, Cr=46% 

200 3 ��±  0.024 0.285 0.263 0.943 0.028 0.244 0.258 0.953 

  �&±  -0.019 0.261 0.245 0.931 0.015 0.245 0.249 0.961 

  �,�ª   0.051 0.339 0.352 0.960 0.037 0.351 0.338 0.943 

  �,&ª   -0.044 0.364 0.352 0.943 0.051 0.356 0.372 0.949 

  �5�ª   0.023 0.126 0.141 0.975 -0.012 0.154 0.161 0.935 

  �5&ª   0.018 0.183 0.165 0.939 0.015 0.163 0.182 0.957 

  �7�ª   0.038 0.158 0.167 0.945 0.042 0.191 0.211 0.951 

  �7&ª   0.041 0.183 0.191 0.962 0.036 0.205 0.216 0.947 

  ¤«  0.005 0.051 0.064 0.971 -0.006 0.068 0.051 0.933 

400 4 ��±  0.018 0.242 0.236 0.941 0.021 0.191 0.216 0.965 

  �&±  -0.017 0.184 0.191 0.956 0.008 0.162 0.178 0.951 

  �,�ª   0.048 0.256 0.263 0.952 0.031 0.241 0.235 0.948 

  �,&ª   -0.022 0.272 0.287 0.963 0.025 0.292 0.286 0.941 

  �5�ª   0.017 0.077 0.086 0.955 0.008 0.091 0.085 0.948 

  �5&ª   0.021 0.096 0.103 0.953 0.012 0.116 0.108 0.956 

  �7�ª   0.029 0.176 0.169 0.961 0.027 0.164 0.156 0.961 

  �7&ª   0.018 0.163 0.181 0.954 0.020 0.180 0.185 0.944 

  ¤«  -0.002 0.056 0.071 0.961 -0.005 0.046 0.057 0.937 

Table 5. Analysis results of NASA’s Hypobaric Decompression Sickness Data (Assuming u = 0.05). 

   
Ignore informative censoring With informative censoring 

EST SEE ²-value EST SEE ²-value 

` = 3  Cure model Intercept -2.712 0.494 <0.001 -2.943 0.573 <0.001 

  Age 0.912 0.320 0.005 1.116 0.372 0.003 

  Gender 1.356 0.503 0.009 1.507 0.617 0.012 

 PH model Age -0.281 0.061 <0.001 -0.326 0.083 <0.001 

  Gender -0.142 0.161 0.327 -0.170 0.196 0.416 

  TR360 -0.667 0.383 0.103 -1.128 0.517 0.032 

  NOADYN 0.826 0.359 0.018 0.751 0.317 0.009 

` = 4  Cure model Intercept -2.506 0.520 <0.001 -2.883 0.584 <0.001 

  Age 0.893 0.323 0.005 1.018 0.361 0.006 

  Gender 1.237 0.477 0.008 1.396 0.556 0.012 

 PH model Age -0.266 0.060 <0.001 -0.342 0.082 <0.001 

  Gender -0.128 0.157 0.399 -0.178 0.210 0.472 

  TR360 -0.632 0.389 0.123 -1.049 0.512 0.048 

  NOADYN 0.791 0.310 0.007 0.818 0.300 0.014 

` = 5  Cure model Intercept -2.501 0.521 <0.001 -2.751 0.536 <0.001 

  Age 0.831 0.303 0.003 1.007 0.331 0.005 

  Gender 1.121 0.480 0.015 1.274 0.511 0.011 

 PH model Age -0.231 0.038 <0.001 -0.299 0.079 <0.001 

  Gender -0.102 0.135 0.367 -0.125 0.154 0.391 

  TR360 -0.610 0.371 0.131 -0.952 0.387 0.054 

  NOADYN 0.761 0.277 0.011 0.808 0.310 0.007 
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From table 5, we can see that the estimation is robust with 

respect to the degree of Bernstein polynomials. Both 

proposed and naïve approach give similar estimates to the 

coefficient of NOADYN, gender and age. Moreover, the 

results showed that subjects with higher TR360 had longer 

survival time in terms of Grade IV VGE. Nevertheless, only 

the proposed approach detected a significant effect of TR360. 

Whereas the naïve estimation procedure that ignores the 

informative censoring failed to detect the significance of risk 

factor TR360. In addition, our proposed sieve estimation 

procedure detected the significance of risk factor age and 

NOADYN. Therefore, we conclude that younger people 

develop Grade IV VGE more quickly and subjects who are 

ambulatory develop Grade IV VGE more quickly that those 

who are lower body adynamic. The estimation on cure rate 

suggest that older and male subjects are more likely to 

develop Grade IV VGE than younger and female subjects. 

6. Discussions and Conclusions 

In this article, we considered the analysis of informatively 

interval-censored data when there is a cured subpopulation. In 

order to deal with informative interval-censoring and cured 

subpopulation at the same time, we used a log-normal frailty 

variable to account for the independence between censoring 

time and failure time. A mixture cure rate model was 

developed to account for the cured subpopulation. To estimate 

the model parameters, we proposed a sieve maximum 

likelihood estimation procedure. Bernstein polynomials are 

used as the sieve functions to estimate the non-parametric 

component of the model. Furthermore, we derived an EM 

algorithm to obtain the numerical solutions of the model 

parameters. The EM algorithm has the advantage of reducing 

the computational burden of the problem and provide efficient 

estimators. We also conducted an extensive simulation study 

that showed our method has an advantage over the traditional 

method that ignores the informative censoring and cured 

subpopulation. In addition, the simulation results suggested our 

method performed well for different practical scenarios.  

There are a few future research directions on this topic. In 

our paper, we employed the Cox model under the 

assumptions of proportional hazards. Obviously, in some 

practical situations, other survival models such as the 

semiparametric transformation model or proportional odds 

model may be more appropriate. Therefore, it would be 

interesting to develop different estimation procedure for these 

models. Moreover, we developed a mixture cure rate model 

for the problem. Several researchers have developed a non-

mixture cure model which has the advantage of modeling 

event time uniformly [15-16]. Another research direction is 

to develop a sieve estimation procedure using the non-

mixture cure model.  

In general, when dealing interval-censored data with 

informative censoring and cured subgroup, we recommend 

the sieve maximum likelihood approach. However, this 

approach may be less reliable when the data is subject to 

measurement error. Note that in the application section 

above, the tissue ratio at 360 degrees (TR360) may subject to 

measurement error. It is well known that ignorance of 

measurement error could lead to biased estimates. In the 

future, it would be interesting to establish an estimation 

procedure to address the measurement error and informative 

censoring at the same time. 

Acknowledgements 

The authors are grateful to the editor and anonymous 

referee for their beneficial and accurate comments that 

improved this paper. 

 

References 

[1] Farewell, V. T. (1982). The use of mixture models for the 
analysis of survival data with longterm survivors. Biometrics. 
38, 1041–1046. 

[2] Lam, K. F. & Xue, H. (2005). A semiparametric regression 
cure model with current status data. Biometrika. 92, 573–586. 

[3] Ma, S. (2010). Mixed case interval censored data with a cured 
subgroup. Statistica Sinica. 20, 1165–1181. 

[4] Balogun, O., Gao, X. Z., Jolayemi, E. T. & Olaleye, S. (2020). 
Generalized cure rate model for infectious diseases with 
possible co-infections. PLoS ONE. 15, 1-16. 

[5] Hu, T., and L. Xiang. (2016). Partially linear transformation 
cure models for interval-censored data. Computational 
Statistics and Data Analysis. 93, 257–69. 

[6] Liu, Y., Hu, T. & Sun, J. (2020). Regression analysis of 
intervalcensored failure time data with cured subgroup and 
mismeasured covariates. Communications in Statistics - 
Theory and Methods. 49(1): 189-202. 

[7] Riester, K., Kappos, L., Selmaj, K., Lindborg, S., Lipkovich, I. 
& Elkins, J. (2019). Impact of informative censoring on the 
treatment effect estimate of disability worsening in multiple 
sclerosis clinical trials. Multiple Sclerosis and Related 
Disorders. 39, 101865. 

[8] Li, Y., Tiwari, R. & Guha, S. (2007). Mixture cure survival 
models with dependent censoring. Journal of the Royal 
Statistical Society: Series B. 69, 285–306. 

[9] Othus, M., Li, Y., Tiwari, R. (2007). A class of semiparametric 
mixture cure survival models with dependent censoring. 
Journal of American Statistical Association. 104, 1241–1250. 

[10] Rondeau, V., Schaffner, E., Corbiere, F., Gonzalez, J. & 
Pelissier, S. (2011). Cure frailty models for survival data: 
application to recurrences for breast cancer and to hospital 
readmissions for colorectal cancer. Statistical Methods in 
Medical Research. 22 (3): 1–18. 

[11] Huang, X., Wolfe, R. A. (2002). A Frailty Model for 
Informative Censoring. Biometrics. 58 (3): 510–520. 

[12] Louis, T. A. (1982). Finding the observed information matrix 
when using the EM algorithm. Journal of the Royal Statistical 
Society: Series B. 40, 226–233. 



 American Journal of Theoretical and Applied Statistics 2021; 10(3): 167-174 174 

 

[13] Zhou, Q., Hu, T. & Sun, J. (2017). A sieve semiparametric 
maximum likelihood approach for regression analysis of 
bivariate interval-censored failure time data. Journal of the 
American Statistical Association. 112 (518): 664–72. 

[14] Conkin, J. & Powell, M. (2001). Lower body adynamia as a 
factor to reduce the risk of hypobaric decompression sickness. 
Aviation. Space and Environmental Medicine. 72 (3): 202–14. 

[15] Liu, H. & Shen, Y. (2009). A semiparametric regression cure 
model for interval censored data. Journal of the American 
Statistical Association. 104 (487): 1168–78. 

[16] Zeng, D., Yin, G., and Ibrahim, J. G. (2006). Semiparametric 
Transformation Models for Survival Data with a Cure 
Fraction. Journal of the American Statistical Association. 101, 
670–684. 

 


