American Journal of Theoretical and Applied Statistics

2020; 9(5): 173-184
http://www.sciencepublishinggroup.com/j/ajtas
doi: 10.11648/j.ajtas.20200905.11

otlenecepPG

Science Publishing Group

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

Estimation in Elusive Populations Using Multiple Frames
and Two-Phase Multiple Frames in the Presence of
Measurement and Response Errors

Mutanu Bethl, Kabhiri J amesz, Odongo Leo?

"Mathematics and Actuarial Science Department, South Eastern Kenya University, Kitui, Kenya

*Mathematics and Actuarial Science Department, Kenyatta University, Nairobi, Kenya

Email address:
mutanubeth24@gmail.com (M. Beth), jmkahiri2012@gmail.com (K. James), odongo.leo@ku.ac.ke (O. Leo)

To cite this article:

Mutanu Beth, Kahiri James, Odongo Leo. Estimation in Elusive Populations Using Multiple Frames and Two-Phase Multiple Frames in the
Presence of Measurement and Response Errors. American Journal of Theoretical and Applied Statistics. Vol. 9, No. 5, 2020, pp. 173-184.
doi: 10.11648/j.ajtas.20200905.11

Received: August 4, 2020; Accepted: August 17, 2020; Published: September 8, 2020

Abstract: Accurate survey data is important for planning and decision making. The presence of measurement and response
errors in surveys has been known to negatively affect the efficiency of estimates as well as to create biases in estimates. It is
important to investigate the effects of measurement and response errors when computing survey data so as to obtain reliable
information for use by statisticians and policy makers. Unavailability of a sampling frame in a survey for elusive populations
has led to the application of multiple frames in sample selection processes. This paper investigates the effect of measurement
and response errors in population estimation under multiple and two-phase multiple frames for elusive populations. The effect
of random errors and biases from systematic errors on simple and correlated response variances under various levels of
multiplicity adjustment factor in multiple frames is carried out. A numerical example is given assuming simple random
sampling. The net effect of the errors has been found to inflate simple and correlated response variances and hence
overestimation of the variances under different variance estimators. It is therefore recommended that both measurement and
response errors be put into consideration when designing and carrying out a survey for more accurate results.
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Simple Response Variance, Correlated Response Variance

population. In this case some units may be present in more
than one frame, leading to over-coverage. Duplication in the
same frame may also occur leading to over-coverage.

Thus imperfect frames can be dealt with by use of MF
surveys where two or more listings of units is simultaneously
used for sample selection [3]. For instance, we can have a
three-frame sampling design by carrying out a MF survey of
homeless population where eligibility is from homeless
shelters, soup kitchens and street locations [4].

Thus MF set up correspond to sampling individually at
locations and has been applied in European migration studies [5].
MF surveys allows use of more flexible strategy than
conventional single frame survey as well as use of different
modes of data collection. For example, in one frame one can use
face-to-face interviews and in another frame use email-
questionnaires with an aim of controlling coverage survey costs,

1. Introduction

When only a part of the population is studied to make
inferences about a target population, sampling errors may
occur. These errors would therefore not exist if a census is
conducted. In the course of collecting data, errors may arise
through the measurement process, interviewing or during
observations. The respondent may fail to respond leading to
non-sampling errors associated with the study variable.

Estimation in elusive population in which a direct
sampling frame may not exist can be done by use of multiple
frames (MF) surveys [1]. Multiple frames are useful for
reducing costs for a given precision constraint and improving
coverage, under-or over-coverage [2]. To overcome this
problem, the original frame is supplemented with additional
frames so that the union of all frames covers the target
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response rates and estimation accuracy. Singh and Mecatti [6, 7]
provided a simplified and unified review of available MF
estimation methods by using the multiplicity approach to MF
estimation when there are no measurement and response errors.

2. Estimation in Multiple Frames When
There Are Measurement and Response
Errors

For each frame, it is possible to partition the list of units
into disjoint sets determined by the membership of the units
in other frames. These disjoint sets are called domains of the
frame. For instance, if there are two frames say A and B the
disjoint sets or the domains of A are two, those in A and those
in both A and B i.e. a (A) and a (AB). Similarly, B has two
domains b (B) and b (AB) where a (AB) and b (AB) are same
set.

In general, if there are say L frames, then the number of
domains in a frame will have;

L-1) (L-1 L-1) &(L-1 P .
GRS G K G e p—

The number of domains in a frame is equal to 2°™' and the
total number of domains in all the frames is equal to 2% -1.
In MF surveys we use the frame membership indicator
Ik[yal:L---:L which is equal to 1 if population unit k is

included in frame / and 0 otherwise. That is,

_ |1 if X™ population unit belongs to frame I
* 0, otherwise

Let /7 be the number of frames a unit in domain d belongs

to. Let the size of frame / be N, = ZIkD, Note that ZN >N.

1=l
The population mean can therefore be written as,

ol b
,U—NZ Dy (1)

Now consider that samples are taken one from each frame
and denote the samples as S, from the /" frame. The sample

membership can be partitioned into domain membership

within frame [ as % The estimator is therefore,

Where 7[ is the inclusion probability of unit k in the

sample.

We consider estimation in multiple frames when there are
measurement and response errors. In the estimation process
the observed value for the k™ unit in frame / can be modeled

as Vi =M, e,

where the observation made is )} instead of 44, .The
estimator of the population mean is therefore

Py
N T iwa m, 1,

1 (YJk )

L
ZE]) z —— where Em (YIk) = Hy + € = :uzi

The variance of )L/ is
(7)1 (7) =18 (7)+ £, (5)
where
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and

1 &1 Vs
:E;){F;m_{zg_lzk k Zz T Iy dy i|}

k=1 "tk k#k' lk Ik

3. Generalized-multiplicity Adjusted Horvitz-thompson Estimator in Presence of
Measurement and Response Errors

The generalized-multiplicity adjusted Horvitz-Thompson estimator was introduced by Singh and Mecatti (2009, 2011). This
is defined as

. L«
Yomur :ZZi Tk 3)

=1 ks, T
where ,@ ensures that ) is counted once despite the number of replications. The multiplicity adjustment factor ,@ is such that
24,=1
-1 L y
If3,=m, ,then P, = Z Z —&_as observed earlier.

1 ks, md nl-k

For dual frames we saw that each frame has two domains.

Y Y Y Yy
yGMHT Z S IBk kDa(A) + Z = IBk kCa(AB) + z - :Bk kOb(B) + z - :Bk kOb(AB)

k04 7ty xosa Tl «se Thg se 7hg

If ,B,d = m,j , then those in a (A) and b (B) have M, = 1 and those in a (AB) and b (AB) have m, =2

Vi Vi Yk Yk
This gives Voupr = Z e Lt Z 27 —Lip t Z e Lyt Z 2T ]kEIb(AB)

kOSA 7 44 kSA A kUOSB 7 4B kUSB '%B

Using the Kalton Anderson multiplicity adjustment factor we get [8],

b= B 21 a(0) s T2 e a(am)) s 32 T (o (48) 3 21 ((8)

kosa 70, wosa L\ T, + 7T, iose T \ 7T, + 7T, wose 703 @)
-5 4 n, . + T, . 43
=V, — —— Y
(4) T+ (4B) 7T, T, b(4B) ~ Vb(B)
where
A _ Vi
Va(a) = Z g
kOSA 7Tk(A)

- — Y
ya(AB) - 2 ‘ IkDa(AB)
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A Yk
P = 207 ienin
kOSB 7k (B)
J’k
b(4B)
KISB 771;(13)
A T, 7T,
Via = ykl — = Z yk[ — &IkElb(AB) + ZﬁIka(B)
k04 7T, TO TG josq 7T 7T,4+77/§kms37£ k058 7l
(%)
J’k 4 I Vi 7L
D P S e
kCla( AB kh(B kCh( 4B
kwﬂ 77/1"'771'9 (4B) & (B) 7T, +1T, (48)
This can be extended to three frames as shown below
Vews =V T Vaian) * Vo) T Yapac) Thom + Yso) t Ye(s0)
+7, T, + 71, M +7¢ o + 77, TG, + 77,
+ YVeaoy TV Y, + Y + Y.
c) e a(ABC b(4BC ¢(4BC
m,+17, 4+ ) g
this can be written as
Vi i i 4’
Vs = Z { Lan) * Liuac) * L anc
& T, T a0 g et
o Sy L. Ty Ry —. - 0
kOb(B) kOb(4B) kOb(BC) kOb(ABC) (
ioss 7T | T, + 1T, T, + 7T, T, + 7T, + 7T, |
paa 45 45 7T
+ Z I, .+ I +—C T +— ¢
ke(C kCe( AC kCe(BC kCe( ABC
G | e g et s T s

A generalization to L frames would be

2| 1
Zzylk Z LkLde @

I=1 k[LSL d=1 Z T, IkEu

This implies the multiplicity adjustment factor is
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In the presence of measurement errors expectation of the estimator is

A Y
Epm (yGMHT) pm (;g 5 ]
1 k
=E, [ Z
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The variance is given by
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This is sampling variance assuming the general case where there could be correlation between frames.
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4. Simple Random Sampling with Equal Sample Sizes Per Frame

With equal size simple random samples per frame, we get

lde

n;k lde
1
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(11)



178 Mutanu Beth et al.: Estimation in Elusive Populations Using Multiple Frames and Two-Phase Multiple

Frames in the Presence of Measurement and Response Errors

me (-)/}GMHT) = VpEm (),}GMHT) + Eme (-);GMHT)
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Suppose the sample sizes are different for different frames. Then
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5. Estimation Under Two Phase Multiple Frames (MF) for Elusive Population When
There Are Measurement and Response Errors

Now consider the / frames.

I
Assume that an original sample §; is selected from frame / where the probability of inclusion is say 7f;; and the joint
inclusion probability is 7fy,

In phase two a subsample S, is selected from S, l’ with inclusion probability 77, and joint inclusion probability 7f;,. The
overall inclusion probability is

= P(k selected at phase l) P(k is selected at phase 2/ k selected at phase l)
=Tl

Using the generalized-multiplicity adjusted Horvitz-Thompson class of estimators.

GMHT - Z Z 2 ﬁlk

I=1 k05, 7T

We get E( GMHT) Ep,p,m (YAGMHT) Ep p, {z z Huby J

T k05, Ty

Where £ (ylk) = lulil

. _[tif kOs,
Letllk:{lf K

0, otherwise

0, otherwise

, 1if k0O
[lk:{ if S

Therefore

£, (Spfhe)opp S5 |-p S5 My,

L KOS, I=1 kOs, Ik
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To get the variance consider

Now,
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Also
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Finally,

EPIEPsz(f/GMH ) Z{Z B9, +Z Z BBy O ]*_ZZZ Z ,szﬁzk Tlllﬁk
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k — D L
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And 7 -, implies that it is considered only when k belongs to domain d for all the frames.

If we consider simple random sampling then;

V(}’}GMHT) V E E (YGMHT)+E V,E, (YGMHT)+E E V (YGMHT)

PP

Where

§

(18)
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Suppose dual frames are considered under simple random sampling with measurement errors, then using the Kalton
Anderson (1986) multiplicity adjustment factor we get

A _ y T, y T,
Via = z _k|:]kDa(A) +—k]kDa(AB):| + z _k|:]ka(B) +—kaDb(AB):|
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I 41 Y 1
Z =t { kOa(4 ) IkDa(AB):l-I- Z _k[lmb(g) +§I/<Elb(AB):|
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1 1
= — y y I } 23
" k% k|: 2 } kuzsb, k|: 2 KC(4B) (23)
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)
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n° |1
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2 kOa(A4) #2kDa(AB)

N? 1 1
_2|:z quZ (nl-cDb(B) - nlbe(B)) +Z(n/:'[lb(AB) - nl:czElb(AB)) +— Z Z (n/-cElb(B)kElb(AB) - nl-cElb(B)nl-cElb(AB))i| (24)

kCsy KOb(B) #kUb(AB)

R 1
Eme V)=V, |: Z »ni wacay T kDa(AB)) +— Z yk(IkElb(B) +5[ka(AB)):|

kOs 4 kOsg

N® 1 N? 1
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for the domains are, n =216, n, =218 andn, =227. The results
6. Empirical Results are obtained as shown in table 1.

A normal population of size N=1000 was randomly Table 1. Mean and variance when there are measurement and response
simulated with mean=60 and variance=10. The population  errors.

values were then assigned to the profiles randomly. The K i Estimate (§)  Var (@)  Estimate Var (9)
results are as shown below,

. N . N 0 0 60.2571 14.4347
Estimate 2 = 60.0550 and Estimate Var(f) =9.8058 0.05 62.9512 13.2997
A sample of size n=500 is then randomly selected from the 01 66.1512 13,4362

N=1000 simulated values to obtain 4, 1=L2..n . A 001 0.2 72.6264 16.4282
population with measurement and response errors is then 0.5 89.9158 23.8238
generated as )}, 1=L2..,n, where y, =4 +€, i=L2..,nand 8D LY LB

0.1 66.3623 16.9830
e, ~N(ki,ptt), where k and p are positive constants. The ~ 0.05 0 5 .
population with measurement and response errors is randomly 05 905796 26.7637

assigned to the domains for different k and p, The sample sizes
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In table 1, the mean and variance increase as the value of k
and p increases. This indicates that the more the
measurement and response errors the more the mean and
variance are overestimated. This implies that for an
increasing error (k) on the mean level, the measurement and
response errors consequently increase.

6.1. Two Phase Multiple Frames

A sample of size n=500 is then randomly selected from the
N=1000 simulated values as the first phase units to obtain

M, i=12..n. A population with measurement and response
then as y,i=12..n ,
v =4 +e,i=12..,nand e ~ Nk, pid) , where k and pare
positive constants. A sub sample of size n=200 is then

selected from the sample of 500 to obtain second phase units.
The second phase units with measurement and response

errors is randomly assigned to the domains for different k
and p . The sample sizes for the domains are,

n, =150, n, =105 andn, =144. The results are obtained as shown in
table 2.

errors s generated where

Table 2. Mean and variance when there are measurement and response
errors.

Table 3. Mean and variance when there are measurement and response
errors.

P k 1 Estimate ()  Var (fI) Estimate Var (9)
0 0 60.4403 11.8001
0.05 63.0278 9.8794
0.1 66.3158 10.0613
001 0.2 72.7136 12.6846
0.5 90.0096 18.5659
0.05 63.1338 11.6359
0.1 66.3750 11.6865
0.05 0.2 72.4286 15.2172
0.5 90.4635 20.5422

P k il Estimate ()  Var (i) Estimate Var (9)
0 0 59.6984 10.7458
0.05 63.3164 12.4250
0.1 66.3837 14.1045
0.01 0.2 72.3424 16.1986
0.5 90.4231 25.4393
0.05 63.3347 112118
0.05 0.1 66.3455 12.3914
0.2 72.2840 15.1299
0.5 90.4749 25.5433

In table 3 the mean and variance increases as the values of
k and p increases. The presence of measurement and
response errors lead to overestimates in mean and variances.
Comparing table 3 to table 1, the Hovitz Thompson estimator
gives better estimates.

6.3. Two Phase Multiple Frames Using Hovit; Thompson
Estimator

We now consider S, :% for domain A, B and C, and

By :% for domain AB, BC, AC and ABC

Table 4. Mean and variance when there are measurement and response
errors.

In table 2, the mean and variance are overestimated as the
values of k and p increases. Although two phase sampling is
applied to reduce the cost of surveying, sometimes the errors
can be more, compared to a single phase sampling. This
means that the estimates can be compromised in the presence
of measurement and response errors.

6.2. Multiple Frames Using Hovitz; Thompson Estimator

In the empirical example, simulation was carried out with
the assumption of three frames and hence resulting in seven
domains A, B, C, AB, AC, BC and ABC. The effect of errors
was studied by simulating the errors as percentages of the
individual  true  values. The model used s,

y=lH+e,i=12..n and, ¢ ~Mky,py) where k and p are
constants With the assumption that there are measurement

and response errors in domains the mean and the variances
vary for various error percentages as below, for varying

values of ,@(

P k i Estimate ()  Var (fI) Estimate Var (9)
0 0 59.6754 11.1655
0.05 63.1021 10.9621
0.1 66.2250 11.3204
001 0.2 72.0380 13.4313
0.5 90.1399 20.2481
0.05 63.1952 12.7641
0.1 66.2123 13.0332
0.05 0.2 72.0136 16.2225
0.5 90.3652 22.5368

In table 4 the effect of the errors is the presence of a bias
as can be seen from the elevated estimates of the population
mean. Also, the presence of measurement and response errors
result in overestimation of the variances.

7. Conclusion

The main aim of this work was to study the effect of
measurement errors in surveys that where complete sampling
frames do not exist. The process of carrying out any survey is
expensive in terms of financial resources, time, planning and
execution of set program. It is therefore of paramount
importance to identify and reduce effects of the measurement
and response errors so that the data obtained is reliable for
use in social advancement programs. This paper has shown
that the presence of measurement and response errors in
elusive surveys where multiple frames are applied in sample
selection has great effects on the results by over-estimating
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the mean and under estimating of variance of the surveyed
data. Also considered is the effect on the generalized-
multiplicity adjusted Horvitz-Thompson estimator where
there is over-estimating of the mean and under estimating of
variance of the surveyed data.
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