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Abstract: This study investigates the errors of misclassification associated with Edgeworth Series Distribution (ESD) with a 

view to assessing the effects of sampling from non-normality. The effects of applying a normal classificatory rule when it is 

actually a persistent non-normal distribution were examined. These were achieved by comparing the errors of misclassification 

for ESD with ND using small sample sizes at every level of skewness factor. The simulation procedure for the experiment of 

the study was implemented using numerical inverse interpolation method in R program to generate a uniformly distributed 

random variable N. A configuration size of 1000 was obtained for the two training samples drawn at every level of skewness 

factor (λ3), in the range (0.00625, 0.4). This was repeated for different small sample sizes by comparing errors of 

misclassification of ESD with ND. The simulation results showed that the optimum probabilities of misclassification by ESD: 

(E12E) decreases and (E12E) increases, as the skewness factor (λ3) increases. The optimum total probability of misclassification 

is stable as 3λ  also increases. The probability of misclassification E12E ≥ E12N and E21E ≥ E21N at every level of λ3. Thus, the 

total probabilities of misclassification are not greatly affected by the skewness factor. This asserts that the normal classification 

procedure is robust against departure from normality. 

Keywords: Errors of Misclassification, Edgeworth Series Distribution, Skewness Factor, Classificatory Rule,  

Optimum Probability of Misclassification 

 

1. Introduction 

1.1. Background to the Study 

The study of discrimination and classification problems 

with a view to assessing the effects of departure from the 

usual assumptions of normality cannot be overemphasized. In 

discrimination, we are concerned with the existence of two or 

more groups and a sample of observations from each of the 

groups. We are therefore required to design a rule based on 

measurements from these observations to the correct 

population when we do not know from which of the two 

populations it emanates [1, 22]. 

Classification is concerned with prediction or allocation of 

observations into groups in which a sample of observations is 

also given. The problem is to classify the observations into 

groups which are as distinct as possible [16]. 

Classification problem occurs when a researcher makes a 

number of measurements on observations and wishes to 

classify the observations into one of several groups on the 

basis of the measurements. The observations cannot be 

identified with a group directly without recourse to the 

measurements. Fisher [8], illustrating this concept, classified 

iris flower from unknown group (specie) to any of the three 

known species (Iris Setosa red, Iris Versicolour green, and 

Iris Virginica black) on the basis of their attributes (Sepal 

length in cm, Sepal width in cm, Petal length in cm and Petal 

width in cm). 

The general procedure for classifying an observation, 
X

with p observed characters 
( )1, ..., pX X

consists of 

determining a function of 
( )1, ..., pX X

approximately, and 

assigning 
X

to one of two populations depending on the 

value of the observations [2]. Since the observation vector is 
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random and the parameters for determining this function are 

often unknown, the procedure could result into two types of 

errors defined by errors of misclassification. Errors of 

misclassification occur when there is selection of criteria that 

is not suitable for classification [10]. 

The observation 
X

 may be classified as belonging to 

population 1π
 when it actually comes from population two 

2π
 or vice versa. These errors are of serious concern in the 

choice of the procedure and as such, one is required to reduce 

the errors or more appropriately their probabilities are made 

as small as possible. 

Let 1( )f x
 and 2 ( )f x

 be the probability density functions 

associated with X  for population 1π
 and population 2π

 

respectively. If the prior probabilities for populations 1π
 and 

2π
 are 1P

 and 2P
 respectively with the regions of 

classifying observations into iπ
into

( 1, 2)iR i =
, then the 

probabilities of correctly or incorrectly classifying 

observations are: 

Pr (object is correctly classified into 1π ) 

= ( ) ( )
1

1 1 1 1Pr | Pr 1 |1 ( )

R

X R P f x dxπ∈ = = ∫            (1) 

Pr (object is misclassified into 1π ) 

= ( ) ( )
1

1 2 2 2Pr | Pr 1 | 2 ( )

R

X R P f x dxπ∈ = = ∫     (2) 

Pr (object is correctly classified into 2π ) 

( ) ( )
2

2 2 2 2Pr | Pr 2 | 2 ( )

R

X R P f x dxπ= ∈ = = ∫        (3) 

Pr (object is misclassified into 2π ) 

= ( ) ( )
2

2 1 1 1Pr | Pr 2 |1 ( )

R

X R P f x dxπ∈ = = ∫      (4) 

 

 

Figure 1. Probabilities of Misclassification. 

In constructing a classification procedure, it is needful to 

minimize on the average, the bad effects of misclassification 

since a good classification procedure results to few 

misclassifications [18]. 

The Linear Discriminant Function (LDF) is a statistical 

procedure constructed as ( ) ( )1 1
1 2 1 2

1
.

2
Xµ µ µ µ−  − Σ − − 
 

 It 

assigns p dimensional observation vector X  into one of the 

two populations iπ  (i = 1, 2) and it is employed as an 

assignment rule when: 

(a) The density functions of observations from populations 

1π and 2π  are multivariate normal: 

( , ), 1,2N ipi iπ µ Σ =�

 

(b) The variance-covariance matrix 1( )Σ  in population 1π  

is the same as 2Σ in population 2π ; 

(c) The prior probabilities of observations coming from 

populations 1π and 2π  are known; 

(d) The parameters of the density functions in (a) are 

known. 

Suppose the assumptions specified above are satisfied, 

then the Linear Discriminant Functions (LDF) provides 

optimal assignment rule in that it cannot be improved upon 

and the errors of misclassification are minimized. However, 

when some or all the assumptions are violated, it would be of 

interest to researchers to determine the effects of the violation 

on the procedures using LDF. If the parameters in (a) above 

are estimated from the samples, two problems may arise from 

the estimation stage. We may have missing values in the data 

and the initial sample may not be properly assigned due to 

inaccuracy in the initial assignment. 

1.2. Statement of the Problem 

For an experimenter who does not recognize an 

observation to be non-normal, he proceeds to use the normal 
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regions for classification. The question that emanates is: 

“how does this failure to transform to normality, prior to 

classification, affect the probability of misclassification”? 

This problem was investigated by comparing the errors of 

misclassification associated with Johnson’s system 

distributions in the appropriate transformable non-normal 

case with that of normal distribution [6]. Errors of 

misclassification associated with Gamma were also examined 

by [15]. Considerable work has been done by researchers in 

connection with errors of misclassification when the 

underlying distribution is transformable non-normal 

distribution, but the errors of misclassification associated 

with persistent non-normal distribution remain unresolved 

[12]. 

For any classification rule, the associated error rates are 

often used as criteria for evaluation of classification 

performance. These error rates are easily calculated when 

population parameters are known. However, when these 

parameters are unknown and must be estimated from the 

samples, the exact overall expected rate for the Fisher’s 

Linear Discriminant Function becomes virtually intractable. 

There is also a loss of information which affects the 

estimation of the probabilities of misclassification, in that it 

may be underestimated or overestimated. In order to rectify 

this problem, we derive the asymptotic distribution for the 

expected probability of misclassification of the distribution 

under consideration [17]. 

The aim of this study is to investigate errors of 

misclassification associated with Edgeworth Series 

Distribution (ESD). The research work seeks to achieve the 

following objectives: 

i. To examine the effect of applying the normal 

classificatory rule when the distribution is ESD by 

comparing the errors of misclassification using the 

Normal Distribution (ND) and ESD classification rules. 

ii. To use simulated data to validate the established results 

of the study. 

2. Literature Review 

The problem of estimating probabilities of 

misclassification has received remarkable attention in the 

literature ever since [8] introduced the Linear Discriminant 

Function. An extensive bibliography on this subject has been 

published by [21] since the probabilities of misclassification 

provide a way of evaluating the performance of the 

classification procedure. 

Several investigations have also been conducted on the 

effects of non-normality on classification rules: 

The robustness of the LDF and QDF with respect to 

certain types of non-normality was studied by [4], 

considering Johnson’s system of distributions which are 

transformable to normality. They considered three members 

of the family: log normal transformation

log( ), 0Y x xi i i= < < ∞ , Logit normal transformation 

1
log ,0 1i

i

x

x
Y xi i

 
 − 

= < <  and Inverse hyperbolic sine normal 

transformation 1sin ( ),Y x xi i i
−= −∞ < < ∞ . Sampling studies 

were conducted in order to examine the behavior of the errors 

of misclassification, and they found out that the total error of 

misclassification is greatly increased as individual errors are 

distorted for all transformations in the case of the LDF. 

Approximate minimax rules were investigated because of the 

distortion in the errors and are found to reduce the errors of 

misclassification greatly. 

The effect of non-normality on the QDF was investigated 

by [13]. They assumed that the data were transformable to 

normality. They derived random samples from non-normal 

distributions in order to study the effect of non-normality on 

QDF. Their results indicated that the actual error rates were 

considerably larger than the optimal rates in the case of zero 

mean difference. 

The robustness of the Linear Discriminant Function (LDF) 

to non-normality using three Johnson system’s of 

distributions was examined by [6]. Though their work was 

restricted to transformable normality only, they opined that 

further work be carried out on a distribution that is non-

normal with robustness on small sample sizes. 

The effect of applying normal classificatory rule with 

focus on non-normality was also examined by [12]. He also 

obtained the asymptotic distribution of errors of 

misclassification in the non -normal case using Johnson’s 

system of distribution. The distribution function 1( )G z  and 

the expected value of the conditional distribution ( )12E e

were evaluated for various values of given parameters 

theoretically using Johnson system of distributions. It was 

observed that the presence of outliers in one sample does not 

affect the behavior of the error rates in general. 

Errors of misclassification for classification problems with 

two classes of univariate-gamma distribution were studied by 

[15]. The gamma density functions given as 

( ) ( ) ( )1 exp , 1, 2i
i if x x x i

θ
θλ λ

θ
−= − =

Γ
               (5) 

were reparameterized to the form 

( ) ( )
1, , exp , , 0,i i i

i

x
f x x

θ

θ

θ
µ θθ µ µ θ

θ µ
−

 
    = − > Γ  

           (6) 

The effects of applying the normal classificatory rule to 

non-normal transformable gamma distribution were studied 

and assessed by comparing probabilities of misclassification 

(optimum and conditional). This was based on the Linear 

Discriminant Function (LDF) for normality and the 

likelihood ratio rule (LR) for gamma populations for various 

combination of 1 2,λ λ
 
and θ . They concluded that for small 

values of θ, n1 and n2, the distribution functions do not 

become large and fast enough. This indicates that with a high 

probability, the errors of misclassification are likely to be 

large. 
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In this study, we examine the persistent non-transformable, 

non-normal distribution by investigating the effects of 

applying the normal classificatory rule when the distribution 

is ESD using empirical approach. We also develop expected 

probability of misclassification for ESD and its asymptotic 

distribution. 

3. Method 

The effects of non-normality in a two population 

discriminatory problem on the errors of misclassification are 

examined when the Anderson’s statistic (W) defined by 

means of Edgeworth Series Distribution (ESD) is used for 

classifying an observation as emanating from population 1π  

or 2 .π The effects would be studied for varying values of 

skewness factor based on the boundary of unimodal region 

for Edgeworth Series Distribution. 

Optimum probabilities of misclassification for ESD are 

computed from known parameters and subsequently, the 

apparent probabilities of misclassification in respect of ESD 

for known and estimated parameters are generated. 

3.1. Edgeworth Series Distribution (ESD) 

Edgeworth Series Distribution (ESD) constitutes an 

expansion which is a series that approximates a probability 

distribution in terms of its cumulants and the Hermite 

polynomials. It relates the probability density function to that 

of a standard normal distribution [19]. 

The use of ESD is expedient because approximations to 

distribution of sample statistics of higher order than 

1

2n
−

 is 

of concern interest in asymptotic theory of statistics. An 

important tool that evaluates the refinements is provided for 

by ESD. Its expansions take cognizance of a method of using 

information about a higher order moment to increase 

approximations accuracy [17]. 

Let F(x) be the distribution to be approximated, { }nk  its 

cumulants, kγ  the cumulants of a standard normal 

distribution function and D the differential operator with 

respect to x. Also, let Φ  and φ  be the standard normal 

distribution and standard normal density function 

respectively. Then 

F(x) = exp ( ) ( )
( )

1
n!

n

n n x

n

D
k γ

∞

=

−
− Φ∑                 (7) 

This is identical with the expansions in Hermite orthogonal 

function for a probability density function 

( ) ( )
0

(x)k n

n

P x c H xφ
∞

=

=∑                         (8) 

where ( )n
H are Hermite polynomials and 

( ) ( ) ( )1

!
k n

C P x H x dx
k

∞

−∞
= ∫                           (9) 

By considering the standardized sum of n independent and 

identically distributed random variables, Edgeworth Series is 

obtained by collecting terms in equation (10) according to the 

power of n [11]. 

Let 1, 2,... nX X X  be independent and identically distributed 

random variables with mean 0θ µ=  and finite variance 2σ . 

If $nθ  is constructed from a sample of size n and 

$

1

2
0( )nn θ θ

−
−  is asymptotically and normally distributed, 

then Edgeworth Series expansions are developed as 

approximations to distribution of estimates �nθ  of unknown 

quantities 0.θ  Thus the distribution functions of 

$

1

2
0( )nn θ θ

−
−  is expanded as a power series in

1

2n
−

 so that 

$( ) 1

2

1

2
0

2
1 2( ) ( ) ( ) ... n ( ) ( ) ...

j
nn

P x x x x P x xn P
θ θ

φ φ
σ

− −
+

 
 −
 ≤ = Φ + + +
 
 
 

 (10) 

where ( )xφ = ( )
2

2
1

1 222

x

e σσ π
−−−  is the standard normal 

density function 

and 

( )xΦ = ( )

x

x duφ
−∞
∫  is the standard normal distribution 

function 

Equation (10) is the Edgeworth Series expansion. The 

functions jP  are polynomials with coefficients depending on 

cumulants of $ 0nθ θ− . In particular, jP  is a polynomial of 

degree at 3j -1. 

Suppose , 1,2, 1,2, ,ij iX i j n= = K  denote two 

independent random samples from populations , 1,2i iπ =
respectively. The observations ijX emanate from the 

common distribution defined by the density function 

3 3( ) 1 , 1,2
6

i
i

x
f x D x i

λ µφ
σ

  − = − − ∞ < < ∞ =       
 (11) 

The parameter 3 , ( 1,2)i iλ µ =  satisfies the conditions:

3 , iλ µ−∞ < < ∞ − ∞ < < ∞  and, where D denotes the 

differential operator
d

dx
, 

( ) ( )
1
2

2

2

2
exp

2

ixx
i µπ

σ σ

µ
φ σ

−  − − 
 = 
    

−
              (12) 
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and 3λ  is the skewness factor [4]. 

 

3.2. Proposed Method of Estimating Probabilities of 

Misclassification 

Let , 1,2; 1,2...ij iX i j n= =  be independent samples of 

sizes 1 2,n n  from populations π1, π2. To estimate the apparent 

probabilities of misclassification, we define 

1

12
11

n
j

E

j

E
n

γ

=

=∑                             (13) 

where 1jγ = if 1 jX  is classified as belonging to π2 and 0iγ =  

if 1 jX  is classified as belonging to π1, 11, 2,...j n= . 

The sample 11 1,... nX X  is taken from 1π  and each 

observation is classified in accordance with the rules in 

equations (35) and (36). 

Similarly, 

2

21
21

n
j

E

j

E
n

δ

=

=∑                               (14) 

where 1jδ = if 2 jX  is classified as belonging to π1 and 

0jδ =  if 2 jX  is classified as belonging to π2, 21,2,...j n=  

The sample 21 2,... nX X  is taken from 2π  and each 

observation is classified in accordance with the rules in 

equations (35) and (36). 

The notation E12E and E21E represent the apparent 

probabilities of misclassification when observations from 

populations 1 2andπ π  are misclassified respectively by ESD 

rule. 

For the purpose of comparison, the classification rule in 

equation (37) is successively applied to 1 2, .j jX X The 

proportion misclassified is estimated by the same procedure. 

Thus, 

1

12
11

n
j

N

j

E
n

γ

=

=∑                                (15) 

And 

2

21
21

n
j

N

j

E
n

σ

=

=∑                                 (16) 

represent the two errors of misclassification. 

3.3. Classification Rules for Normal Distribution 

Let the probability density function of X in (i 1, 2)iπ =  be
 

1 1
( ) exp[ ], , 1,2

22

i
i

x
f x x i

µ
σσ π
− = − −∞ < < ∞ = 

 
  (17) 

If θ is the mean of the observation X and 

1 2: :0H vs Haθ µ θ µ= = , then the likelihood when 

1 2µ µ<  

2 2

1 1 2

2

2 2

1 1 2

( ) 1 1
exp

( ) 2 2

1 1

2 2

f x x x
L

f x

x x
L

µ µ
σ σ

µ µ
σ σ

 − −   
 = = − +   
     

− −   = − +   
   

          (18) 

( ) ( )

( )

1 2 2 12

1 2
1 2

1
2

2

1

2

x

x

µ µ µ µ
σ

µ µµ µ
σ

 = − − + − 

−  = − +   
   

               (19) 

Equation (19) is the Anderson’s discriminant function (W) 

when the distributions in the two populations are univariate 

normal with the same variance but different means [20]. We 

reject H0 if L< K, where K is a constant. 

From Equation (19) and the decision rule made, the 

classification rule specifies as follows: 

1

2

0

0

Classify X if W

Classify X if W

π
π

∈ >
∈ ≤                       (20) 

Equation (20) reduces to 

( )

( )

1 1 2

2 1 2

1

2

1

2

Classify X if X

Classify X if X

π µ µ

π µ µ

∈ < +

∈ ≥ +
          (21) 

Similarly, when 1 2µ µ>  the classification rule becomes 

( )

( )

2 1 2

1 1 2

1

2

1

2

Classify X if X

Classify X if X

π µ µ

π µ µ

∈ < +

∈ ≥ +
            (22) 

When the parameters 1, 2µ µ  are unknown, and estimated 

by 1 2,X X  from the sample sizes of 1 2n and n respectively, 

the classification rule becomes: 

1 2
1 1 2

1 2
1 1 2

,
2

,
2

X X
Classify X if X X X

and

X X
Classify X if X X X

π

π

+
∈ < <

+
∈ > ≥

           (23) 
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( )1 2

2 1 2

1 2
2 1 2

, ,
2

,
2

X X
Similarly X if X X X

X X
and classify X if X X X

π

π

+
∈ ≥ <

+
∈ ≤ ≥

        (24) 

3.4. Classification Rule for Edgeworth Series Distribution 

(ESD) 

Let the pdf of X in iπ be 

33( ) 1 , , 1,2
6

i
i

x
f x D x i

λ µφ
σ
−   = − −∞ < < ∞ =  

   

 (25) 

When 1 2µ µ< , the likelihood ratio becomes 

3

3 31 1 1

3 3

1

3
2

3 32 2 2

3 3

1
2 6( )

( )
1

2 6

x x x

f x
L

f x x x x

λ λµ µ µφ
σ σ σσ σ

λ λµ µ µφ
σ σ σσ σ

 − − −        − +         
          = =

 − − −        − +         
          

 (26) 

Equation (26) becomes 

2

1

2

2

1
exp

2

1
exp

2

x
P

L
x

Q

µ
σ

µ
σ

 − −  
   =

 − −  
   

                 (27) 

3

3 31 1

3 3
1

2 6

x x
where P

λ λµ µ
σ σσ σ

 − −   
 = − +   
     

    (28) 

and 

3

3 32 2

3 3
1

2 6

x x
Q

λ λµ µ
σ σσ σ

 − −   
 = − +   
     

        (29) 

We reject H0 by if 

ln L < K                                     (30) 

Taking K =1 reduces equation (30) to ln L< 0 

Thus, we reject 1X ifπ∈  

2 2

1 2

1 2 1 2

2

1 1
ln ln 0

2 2

ln 0
2

x x
P Q

This reduces to

P
x

Q

µ µ
σ σ

µ µ µ µ
σ

− −   − − + <   
   

   + −   + − <      
      

      (31) 

From equation (30), the classification rule takes the form: 

1 2

1

,

ln 0

For

P
classify X if W

Q

µ µ

π

<

 
∈ + > 

 

          (32) 

and 

2

1 2

1

ln 0

,

ln 0

P
classify X if W

Q

For

P
classify X if W

Q

π

µ µ

π

 
∈ + ≤ 

 

>

 
∈ − > 

 

               (33) 

and 

2 ln 0
P

classify X if W
Q

π
 

∈ − ≤ 
 

                 (34) 

When the parameters 1 2,µ µ are unknown, they are 

estimated by 
1 2
,X X respectively and plugged in equation 

(34) before classification begins. 

In the process of comparing errors of misclassification 

using ESD and ND classification rules, and data generated 

from the ESD, the effect of applying normal classification 

rule(likelihood ratio) when the distribution is ESD would be 

investigated by empirical method. Thus, the classification 

rule for ESD is given in the form: 

1 2

2

1

1 2

2

,

1
exp
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where P and Q remain as earlier defined in equations (35) 

and (36) 

The normal classificatory rule for 1 2µ µ<  is 

1 2
1

2

2
classify X if X

and

classify X if otherwise

µ µπ

π

+ ∈ <  
 

∈
               (37) 

 



 American Journal of Theoretical and Applied Statistics 2019; 8(6): 203-213 209 

 

3.5. Comparison of Errors of Misclassification 

We estimate the errors of misclassification with focus on 

the small sample sizes. This is based on the fact that the 

asymptotic expansion of the errors does not indicate the 

behaviour of the error for small sample sizes [5, 9]. 

Estimation of the optimum probability of misclassification 

in the ESD when the skewness factor is in the range 

(0.00625, 0.4) is considered. 

The apparent error rate for the Normal Distribution and 

ESD classification rules are examined using simulated data 

from ESD. The classification rules for the two distributions 

are also derived using likelihood criterion. The form of the 

estimators and the choice of values for skewness factor are 

also presented. The errors of misclassification are 

subsequently compared using the likelihood ratio rules for 

the Normal Distribution and ESD. 

3.6. Choice of Skewness Factor Values 

The choice of the values for skewness factor ( 3λ ) is 

anchored on the boundary of the positive unimodal regions 

for ESD where its probability density function is only valid. 

Thus, the skewness factor is chosen to lie within the range 

( )0.00625,0.4  as suggested by [3, 7]. 

3.7. Optimum Probability of Misclassification of ESD 

When all the parameters of the distributions in the 

populations are known, the probability of misclassification is 

optimal in the sense that we cannot improve upon it. When 

an observation from 1π is misclassified, the optimum 

probability of misclassification is given by 
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 (38) 

where 1 2

2

µ µδ + =  
 

and ( )nH x is Chebyshev’s-Hermite 

polynomial of degree r and defined by the identity: 

( ) ( ) ( ) ( )n
nH x x D xφ φ= −                             (39) 

See [11]. 

If ( )xφ  denotes the standard normal density function, then 

we define the Hermite polynomial ( )nH x  for any integer n 

by 
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e e dt x H x x
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φ φ
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∞ −
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and setting 1x
z

µ
σ
−

= as in equation (38), we have 
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 (41) 

If an observation from 2π is misclassified, the optimum 

probability of misclassification is given by 
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 (42) 

where 
( )1 2

2

µ µ
δ

+
= . 

Using the result in equation (38) and setting 2x
z

µ
σ
−

= , 

we have 
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4. Results 

The optimum probabilities of misclassification are 

generated from equations (41) and (42). We assume that the 

known parameters: 1 20, 1µ µ= = and 2 1σ = . This implies 

that equations (41) and (42) are now functions of the 

skewness factor ( )3λ  in the range ( )0.00625,0.4 .  The 

probabilities of misclassification ( )12 21andE EE E  are also 

computed and the results displayed in Table 1. 

The apparent probabilities of misclassification are also 

examined when 1 2andµ µ are known and when the 

parameters are estimated from the samples. 

Two independent samples of configuration size of 1000 

each are at each value of the skewness factor ( )3λ from 

populations π1 and π2. Their distributions are of ESD with 

respective parameters 
2

1 20, 1, 1µ σ µ= = = and. 

Using the ESD and Normal Distribution (ND) 

classification rules, the proportions misclassified in 

populations 1 2andπ π  are obtained and repeated for small 

samples (n = 5, 10, 15, 20 and 25). The probabilities of 
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misclassification obtained from the samples are averaged and 

the results displayed in Tables 2-6. 

The notation 12EE  is the apparent probability of 

misclassification when an observation from 1π  is misclassified 

by ESD and 21EE  is the apparent probability of 

misclassification when an observation from 2π  is misclassified 

by ESD. Similarly, 12 21N NE and E  are apparent probabilities of 

misclassification when observation from populations 1π  and 

2π  are misclassified respectively by ND classification rule. 

The simulation experiments have been implemented using 

R programs and all the simulation results are obtained and 

displayed along with the total probabilities of 

misclassification in Tables 1-6. 

Table 1. Optimum Probabilities of Misclassification at Different Values of Skewness for ESD. 

Skewness Factor (λ3) 
Optimum Probability of Misclassification 

E12E E21E Total 

0.00625 0.3082 0.3088 0.6170 

0.0125 0.3079 0.3091 0.6170 

0.025 0.3074 0.3096 0.6170 

0.05 0.3063 0.3107 0.6170 

0.10 0.3041 0.3129 0.6170 

0.15 0.3019 0.3151 0.6170 

0.20 0.2997 0.3173 0.6170 

0.25 0.2975 0.3195 0.6170 

0.30 0.2953 0.3217 0.6170 

0.35 0.2931 0.3239 0.6170 

0.40 0.2909 0.3261 0.6170 

The results in Table 1. show that 12EE decreases as the skewness factor 3λ  increases and 21EE  increases as 3λ  increases. 

The total probability of misclassification is also stable (constant) as 3λ  increases. 

Table 2. Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 5 Samples. 

Skewness Factor (λ3) 
ESD ND 

E12E E21E Total E12N E21N Total 

0.00625 0.140 0.400 0.540 0.140 0.400 0.540 

0.0125 0.220 0.410 0.630 0.220 0.410 0.630 

0.025 0.225 0.465 0.690 0.220 0.475 0.695 

0.05 0.210 0.395 0.605 0.205 0.400 0.605 

0.10 0.205 0.475 0.680 0.175 0.495 0.670 

0.15 0.260 0.285 0.545 0.230 0.320 0.550 

0.20 0.305 0.365 0.670 0.295 0.395 0.690 

0.25 0.455 0.185 0.640 0.420 0.230 0.650 

0.30 0.195 0.465 0.660 0.115 0.545 0.660 

0.35 0.225 0.465 0.660 0.125 0.520 0.645 

0.40 0.440 0.180 0.610 0.360 0.250 0.610 

From Table 3, E12E is either equal to or greater than E12N and E21E is either equal to or less than or greater than E21N at every 

level of skewness factor. The equality of the probability also occurs when the skewness factor λ3 is very small. 

Table 3. Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 10 Samples. 

Skewness Factor (λ3) 
ESD ND 

E12E E21E Total E12N E21N Total 

0.00625 0.252 0.249 0.501 0.252 0.315 0.567 

0.0125 0.236 0.236 0.472 0.236 0.236 0.472 

0.025 0.266 0.219 0.485 0.231 0.295 0.526 

0.05 0.224 0.282 0.506 0.216 0.314 0.530 

0.10 0.290 0.278 0.568 0.208 0.336 0.544 

0.15 0.387 0.203 0.590 0.215 0.220 0.435 

0.20 0.277 0.320 0.597 0.270 0.337 0.607 

0.25 0.255 0.245 0.500 0.230 0.292 0.522 

0.30 0.248 0.334 0.582 0.182 0.394 0.576 

0.35 0.216 0.339 0.555 0.175 0.354 0.529 

0.40 0.253 0.209 0.462 0.170 0.196 0.366 
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From Table 3, E12E is either equal to or greater than E21Nand E21E is also equal to or less than E21N at every level of skewness λ3. 

Table 4. Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 15 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.345 0.145 0.490 0.345 0.150 0.495 

0.0125 0.310 0.310 0.620 0.310 0.310 0.620 

0.025 0.405 0.280 0.685 0.400 0.285 0.685 

0.05 0.230 0.390 0.620 0.225 0.395 0.620 

0.10 0.375 0.305 0.680 0.350 0.315 0.665 

0.15 0.405 0.180 0.585 0.360 0.225 0.585 

0.20 0.355 0.325 0.680 0.320 0.355 0.675 

0.25 0.295 0.340 0.635 0.235 0.395 0.630 

0.30 0.320 0.350 0.670 0.230 0.385 0.615 

0.35 0.260 0.345 0.605 0.200 0.430 0.630 

0.40 0.315 0.375 0.690 0.145 0.415 0.560 

From Table 4, E12E is equal to or greater than E21N and E21E is either less or greater than or equal to E21N at every level of 

skewness factor λ3. 

Table 5. Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 20 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.220 0.206 0.426 0.220 0.206 0.426 

0.0125 0.280 0.280 0.560 0.192 0.295 0.487 

0.025 0.330 0.210 0.540 0.290 0.230 0.520 

0.05 0.345 0.205 0.550 0.295 0.250 0.545 

0.10 0.265 0.300 0.565 0.230 0.390 0.620 

0.15 0.340 0.350 0.690 0.330 0.375 0.705 

0.20 0.350 0.240 0.590 0.320 0.255 0.575 

0.25 0.295 0.270 0.565 0.270 0.295 0.565 

0.30 0.300 0.195 0.495 0.265 0.200 0.465 

0.35 0.310 0.350 0.660 0.270 0.360 0.630 

0.40 0.405 0.285 0.690 0.380 0.400 0.780 

From Table 5, E12E is either equal to or greater than E12N and E21E is either equal to or less than E21Nat every level of 

skewness λ3. 

Table 6. Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 25 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.270 0.220 0.490 0.270 0.220 0.490 

0.0125 0.290 0.330 0.620 0.290 0.235 0.525 

0.025 0.390 0.295 0.685 0.375 0.310 0.685 

0.05 0.340 0.270 0.610 0.335 0.280 0.615 

0.10 0.375 0.305 0.680 0.360 0.315 0.675 

0.15 0.360 0.230 0.590 0.345 0.245 0.590 

0.20 0.275 0.430 0.705 0.225 0.480 0.705 

0.25 0.375 0.255 0.630 0.320 0.290 0.610 

0.30 0.390 0.240 0.630 0.300 0.330 0.630 

0.35 0.290 0.300 0.590 0.240 0.345 0.585 

0.40 0.405 0.225 0.630 0.305 0.290 0.595 

 
From Table 6, E12E is equal to or greater than E12N and E21E 

is either equal to or greater than E21N at every level of 

skewness λ3. 

5. Discussion 

From the simulation results, It is evident that the total 

probability of misclassification at every value of 3λ is either 

under or overestimated when small samples are employed to 

estimate 1 2andµ µ . The differences between taking small 

sample sizes are also not apparent. 

The fact that 12 12E NE E≥ and 21 21E NE E≤ at every level 

of skewness factor needed some algebraic justification and 

that has been established in this study. The actual 

probabilities of misclassification E12E and E21E as well as 

their sum remain close to the corresponding errors induced 

by the normal rule when 3λ is small. As 3λ  increases, E12E 

tends to be larger than E12N and E21E is smaller than E21N. 

Also, from Tables 4-6, the total probabilities of 

misclassification for the ESD and ND classification rules 

indicate no major difference between them at each value of 

3λ . The behaviours of the individual probabilities of 

misclassification 12 12andE NE E  at every level of 3λ  show 
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that for small sample sizes, 12 12E NE E≥ and 21 21E NE E≤ . 

The observed equality occurs when 3λ  is very small with an 

increasing parity as 3λ  increases. The observed equality of 

probabilities requires some algebraic justification. 

From Normal Distribution (ND) classification rule and 

ESD classification rule, we earlier specified that 

3
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When 1 20, 1µ µ= = and 1,σ = we have, 

3
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We consider the error of misclassifying an observation

1X π∈ . By normal classification rule, we classify an 

observation 2X π∈  wrongly if we use the rule: 

Classify 1X π∈ if 0W ≤ .                     (48) 

The corresponding wrong classification of an observation    

1X π∈ using ESD classification rule is to use 

Classify 1X π∈  if ln 0.
P

W
Q

 
+ ≤ 

 
                 (49) 

From equation (49), ln P
Q
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 
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 is a function of random 

variable X and the skewness factor ( )3 .λ
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But then 
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The quadratic function in equation (51) is equal to zero if 

the solutions of (51) are 

1.457 and 0.457X = + −                       (52) 

The parabola of equation (52) faces upwards and indicates 

that when 0.457 1.457,X P Q− < < <  

Since  P < Q, ln ln ln 0.
P

P Q
Q

 
 
 
 

= − <             (53) 

With this, the cut-off point of the ESD classification rule is 

higher than the ND classification cut-off point. This  results 

to 12EE  being greater than 12NE . 

Also, if an observation from 1π  is wrongly classified, the 

cut-off point of the ESD classification rule is lower than the 

ND classification rule cut-off point. 

Hence, 21 21E NE E<
 

6. Conclusion 

We have investigated the effect of sampling from 

persistent non-normal distribution by examining the 

normal classificatory rule when it is actually an Edge 

worth Series Distribution (ESD). From the results 

obtained in this study, it is asserted that the normal 

procedure is sturdy against departures from normality. 

Thus, the skewness factor ( )3λ  has a very little effect on 

the total probability of misclassification, which implies 

that it is not affected by the departures from normality. 

Nevertheless, the skewness factor indicates an increase or 

decrease in their errors of misclassification. Besides, the 

estimation of the errors when small sample sizes are used 

to estimate the means is an indication that the optimum 

probability of misclassification is underestimated or 

overestimated. This is anchored on the data generated and 

strictly restricted to this work. 
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