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Abstract: Estimation of HIV infection time is a crucial step in HIV/AIDS management as it can help to make informed 

decisions on the best intervention strategies for controlling new infections, and for taking care of the infected individuals. This 

study demonstrates three approaches for estimating the age at HIV infection in limited resource settings. Using HIV testing 

history data collected from a sample of 88 HIV positive women in Kilimanjaro region-Tanzania, we developed a model for 

estimating the most likely age at which HIV infection occurs for women under reproductive age. The sampled data were 

collected from typical poor resource settings where access to data is very challenging and the gap between last HIV negative 

test and first HIV positive test is wide. Formulation of the proposed model involved three steps. Through Modified Midpoint 

approach, we first determined the midpoint of the age at last negative HIV test and the age at first positive HIV test for each 

subject. Then, the average time at risk prior to infection, taken over all individuals was subtracted from each midpoint value to 

obtain the distribution of their estimated age at HIV infection (T). In the second step, survival analysis techniques were used to 

obtain the Kaplan Meier plots and Nelson Aalen cumulative hazards estimates in which the median age for HIV infection and 

the most risky age were estimated. The plots of Kaplan Meir survival curves for women with different marital status and levels 

of education helped to assess whether their age at infection were significantly different. In the third step, we used bootstrap 

estimation procedures to generate 200 samples of random data and obtain the bootstrap median age at HIV infection and its 

confidence intervals. The estimated median age at HIV infection from survival analysis approach was 28 years while from 

bootstrap estimation procedures was 27 years. Likewise, the Nelson Aalen cumulative hazards plot indicated that the most 

risky age for HIV infection is between 18-40 years while the most risky age from bootstrap estimation was 25 to 27 years. The 

confidence intervals obtained through bootstrap estimation approach was narrower than that obtained from the survival 

analysis approach, implying that the bootstrap approach gives more precise estimates. Generally, the study findings provide 

useful information towards the attainment of the 90-90-90 global HIV/AIDS target as it shows where to allocate more 

resources and establish more focused interventions for HIV/AIDS management and control. 
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1. Introduction 

HIV positive patients may survive with HIV infection for 

quite a long period before they are diagnosed. These 

individuals may also show no symptoms and may have a 

good functional status similar to any other HIV free people. 

As a result, undiagnosed HIV positive individuals continue to 

be at high risk of re-infection with different type of HIV and 

at the same time, transmitting the disease to other people 

unknowingly. The long interval between actual HIV infection 

and HIV diagnosis can be associated with poor attitudes 

towards HIV testing. Most people who go for HIV check-up 

especially in poor resource settings, have clear reasons for 

requesting such test like adhering to PMTCT guidelines, 

travel requirements, marriage requirements or blood donation. 
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Poor attitude towards voluntary HIV/AIDS counseling and 

testing increases the number of undiagnosed patients and 

makes the general management of HIV more complicated 

especially in low income countries. 

One way that can help to manage the HIV/AIDS is to 

determine the age at which people are more likely to be 

infected so as to establish proper HIV/AIDS intervention 

strategies that could inform how and where to allocate the 

available resources for a better and reliable outputs. Lack of 

enough information about when people are mostly infected 

can hinder the decision making related to HIV/AIDS 

interventions and may increase the problem of HIV data 

paucity. Knowledge about when the HIV infection occurred 

to an infected person can also help to understand the general 

epidemiology of the HIV/AIDS and make proper estimates of 

the number of people who are at risk. In addition, estimation 

of HIV infection time may help to track possible sources of 

infection, monitor the epidemiological aspects of the 

HIV/AIDS for a specific patient, assess the effectiveness of 

HIV/AIDS policies and guidelines for managing the disease, 

and establish the best treatment options for people living with 

HIV/AIDS. 

As we struggle to attain the 90-90-90 global HIV target, 

African countries especially those in the south of Sahara need 

to combine their efforts to make ensure that the impacts of 

HIV/AIDS in their countries are minimized. In Tanzania, the 

HIV/AIDS still rank as number three killer disease (out of 10) 

and so more efforts are needed to keep our people safe. The 

UNAIDS data for 2017 indicates that by the end of 2016 

about 1.4 million people were living with HIV in Tanzania 

and the new infections were almost 55,000 people. Another 

report from the Operational Plan for HIV prevention in 

Tanzania Mainland (2016-2018) shows that, only (51%) of 

adults, and approximately (65%) of children living with HIV 

were already enrolled on antiretroviral therapy (ART) by end 

of 2015. Since the current HIV guidelines in Tanzania 

requires that every diagnosed patient to start treatment 

immediately there is high probability that the HIV infected 

people who are not in treatment are also unaware of their 

HIV status and might have been living with such 

undiagnosed infection for quite a long time [13]. Therefore, 

we all need to join efforts in designing ways for managing 

this epidemic for both infected and uninfected populations to 

minimize its social, psychological, physical and economic 

impacts in our country. 

1.1. Challenges Associated with the Estimation of HIV 

Infection Time 

The estimation of the infection time for HIV patients have 

been very challenging since infected individuals normally 

stay for quite a long period without showing any symptoms 

though the HIV continue to affect the immunity of a person 

by destructing his/herCD4 cells slowly. During this period of 

unknown HIV status, the risk of HIV transmission becomes 

very high as the viral loads of HIV patients tends to be very 

high in the initial stage of HIV infection. Another challenge 

in determination of HIV infection time is that even when the 

early symptoms like flu, coughing and fever occurs, the 

undiagnosed patient may rarely associate it with HIV 

infection but rather with other common diseases like Malaria, 

Pneumonia or mere allergies. This lack of association is 

motivated by the fact that the early HIV/AIDS symptoms 

resembles other simple health problem symptoms and at this 

stage the level of comfortability of HIV patient is still very 

good as compared to AIDS patients. 

Several researchers in developed countries have attempted 

to estimate HIV infection time by using HIV testing history 

data for patients who had conducted multiple tests for HIV 

infection. [9, 11, 14, 16]. Using such data and statistical 

techniques, researchers were able to estimate the time when a 

HIV diagnosed patient was infected or the amount of time 

that the patient has survived with the virus in his/her body. 

Lack of enough and appropriate data for HIV testing history 

makes the process of estimating HIV time more complicated 

in low-income countries with poor resource settings as 

compared to developed countries [2]. Some statistical 

methods that were used to estimate HIV infection time in 

developed countries may not work properly in low income 

settings where people tends to go for HIV check only when 

they are forced by circumstances. Possible methods for 

estimating the HIV infection time, even in situations where 

the gap between last negative (LN) HIV test and first positive 

(FP) HIV test is very wide, are proposed in this study.  

1.2. Review of the Methods for Estimating HIV Infection 

Date 

Previous scholars have demonstrated different methods for 

estimating the HIV infection time through biological 

approaches and statistical methods [1, 3, 5, 7-8, 10]. For 

those who used biological approaches they assessed some 

common biomarkers and tests that can tell whether a person 

was recently infected or not. Such tests include Tests for 

recent infections (TRIs), BED HIV-1 Capture enzyme 

Immunoassays, and Recent Infection Testing Algorithm 

(RITA). For those who used statistical methods they based 

much on the assessment of the characteristics of the sampled 

data in estimating the population parameters. However, the 

combination of biological approaches and statistical methods 

has demonstrated by several scholars and seems to bring 

results that are more meaningful. 

Example, some researchers created a biologically 

motivated time-continuous model of the production of BED-

specific IgG data and examined critically the common 

modeling assumption that seroconversion happens at the 

midpoint between last negative and first positive HIV test 

results [10]. To achieve this goal, they collected data from 

longitudinal cohorts of patients who were tested on regular 

intervals using a maximum time span between the last HIV 

negative and first positive test, and assumed that the 

seroconversion occurred at the midpoint of such interval. 

Their study findings indicated that the date of seroconversion 

and by inference, date of HIV infection can be estimated 

using the midpoint approach for cohorts data but not for data 

which are collected from public health diagnostic testing as 
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most of the persons who seek public health services often 

have a clear reason for that HIV test. The challenge with this 

approach is on the access to quality data since the collection 

of such longitudinal data with regular intervals requires 

enough and expensive resources like skilled personnel, 

sufficient time and a financial stability. 

An extension of the modified back calculation method was 

proposed by the previous studies to make full use of currently 

available clinical data in determining the undiagnosed time 

interval for each HIV positive individual by looking at their 

CD4 depletion rates and estimating the patient’s 

seroconversion year [5]. These scholars assessed the risk of 

HIV transmission in the population by estimating the 

undiagnosed interval of each known infection, construct the 

HIV incidence curves, and apply the modified back-

calculation method to estimate the seroconversion year for 

each diagnosed patient. Based on the adequacy of CD4 count 

data, they either estimated patient’s pretreatment CD4 

depletion rate in a multilevel model or projected one’s 

seroconversion year by referring toseroconverts'CD4 

depletion rate. To determine the seroconversion year, the 

researchers randomly selected a CD4 count within the normal 

reference range of a healthy adult for 1000 times, using it as 

a starting point for CD4 depletion, and then calculating the 

seroconversion year of a particular HIV patient (for 1000 

simulations) by using equation (1) below: 

Seroconversion	year = diagnosis	year + random	normal	CD4 × ���������	�����	�. !�
"#�$%&'	()*	+&#,�∗./                                  (1) 

Where0represents thegender (male, female), 1 is ethnicity 

(1 Asian, 2 White 3 African & others), 2	is intercept of an 

individual‘s regression line in multilevel model and CD4 

slope is the adjusted coefficient of the individual’s regression 

line in a multilevel model. In applying that formula, they 

discarded simulation results that fell outside the lower and 

upper boundaries. The upper boundary was the year of HIV 

diagnosis and the lower boundaries were either the last 

negative HIV testing year, the year when the first possible 

HIV infection case was noticed in Hong Kong (1980), or the 

year of attaining 12 year-old, which they consider to be the 

possible minimum age of being sexually active. However this 

assumption that ‘12-year age’ is a minimum age at which 

children engage in sexual activities can be misleading as this 

age varies across the regions and communities depending on 

their cultural and social settings. Hence, the results may not 

be universally acceptable. Their study also demonstrated the 

possibility of reconstructing HIV epidemic curves from 

clinical data and illustrating the trends of new infections. 

However, the success of this method depended much on the 

quality of the recorded clinical data, which are sometimes 

rare in limited resource settings. 

Another study proposed the use of survival times and 

binomial models in estimating HIV incidence in United 

States [3]. To achieve this objective, they used Kaplan Meier 

estimator and Maximum likelihood function to describe the 

probability of an individual to be in the recent state of 

infection as a function of time since seroconversion. They 

first approximated the entry and exit times, which were the 

limits of the interval between transitions from recent to non –

recent time. Then they determined the seroconversion by 

using the midpoints of the time between last HIV negative 

and first HIV positive tests assuming that estimated 

seroconversion times were uniformly distributed within the 

seroconversion intervals. 

Likewise, a study to estimate the time to HIV-1 Infection 

from Next Generation Sequence (NGS) diversity was 

conducted in Sweden by using dataset obtained from 11 

untreated HIV-1 patients with known infection dates [8]. The 

selection of patients who were included in this study required 

among other criteria, to have a relatively well-defined time of 

infection or a negative HIV test obtained less than two years 

before first positive test. The findings of the study indicated 

that development of next generation sequencing could 

significantly help to determine the precise time since HIV-1 

infection even many years after the infection event. This 

method seems to be a better option than the commonly used 

biomarkers or biological approaches like RITA and BED 

assays that only indicate whether the HIV infection is recent 

or of a long term. However, its applicability is limited to rare 

HIV patients with good HIV testing history as most of HIV 

patients especially in low income countries tend to have a 

longer than two years interval between last negative and first 

positive tests. 

Previous scholars have also suggested the use of a 

generalizable method when estimating duration of HIV 

infections by referring to clinical testing history and HIV test 

results [7]. With this approach, the results obtained through 

Fiebig stages and‘4
th

gen’modified staging system methods 

were assessed and compared with the results from the two-

step method for estimating HIV infection time. They used the 

clinical data on quantitative viral load results and linear 

mixed effects regression to model the viral load ramp-up 

dynamics of HIV patients with a random slope and intercept. 

As there are still no assays, which can help to determine the 

actual HIV infection time, the researchers opted to use the 

assay–based reference standard, the Date of Detectable 

Infection (DDI). Thereafter, they applied a two-step method 

to calculate infection date estimates based on either the viral 

load information or the rest of the subjects testing history. In 

the first step, they determined whether the acute viral load –

based estimate could be used to estimate the HIV infection 

time (i.e if the last day at HIV negative test for a particular 

patient is known). For the patients whose last negative test 

data were not available, they moved to a second step in 

which they estimated the HIV infection duration, by 

analyzing the remaining HIV testing history. These 

researchers recommended for new methods for estimating 

HIV infection time for individual patients to improve the 

clinical and public health management of newly diagnosed 

HIV cases. 

This study proposes a three- step approach for estimating 
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the HIV infection time as an extension of the two - step 

method that were used by previous scholars [1, 7]. The first 

step was the construction of data by using a modified 

midpoint method while the second and third steps involved 

the estimation of HIV infection time and the determination of 

the most risky age range through survival analysis techniques 

and bootstrap methods. The modified midpoint method and 

the survival analysis techniques used a single sample data 

while the bootstrap estimation involved generation of several 

random samples derived from the real sampled data collected 

from the poor resource settings. The third step provides better 

estimates as the interval of the most risk age group seems to 

be shorter than the one that we obtained through survival 

analysis procedures. 

2. Methodology 

This section presents detailed explanation of the 

procedures that we used to estimate the age at HIV infection 

for women under reproductive age. In order to estimate the 

HIV infection time for each diagnosed patient, we employed 

three approaches and compared their results. In the first 

approach, we used the single sample data	(4 = 88) collected 

from the population of HIV positive women and the modified 

midpoint method to estimate the most likely age at HIV 

infection. In this approach, we develop a model that helped 

us to get a distribution of age at HIV infection and its 

descriptive statistics. In the second approach, we used non-

parametric modeling approach for survival data to estimate 

the most likely age at HIV infection, using the actual single 

sample data. We plotted the Kaplan Meier curves and 

estimated the median age at HIV infection directly from the 

plots. In addition, the Nelson Aalen Cumulative hazards 

estimates plot enabled us to obtain the most risky age range 

for HIV infection. With log rank test, we compared the 

survivor curves for women with different marital status and 

levels of education. The 95% confidence intervals for the 

estimated KM curves and for the median survival times were 

also constructed. 

In the third approach, we used the bootstrap estimation 

techniques to estimate the age at HIV infection. The use of 

bootstrap estimation approach was necessary as our data 

violates the normality assumption and contain some outliers. 

The bootstrap approach also allowed us to generate many 

random samples drawn (with replacement) from the actual 

sampled data, with each observation having the same 

probability [7(89) = 1/4] of being drawn. Using MINITAB 

software, we obtained the bootstrap median for 200 samples, 

each with 100 observations. We then derived the bootstrap 

confidence intervals (95% confidence level) for the median 

age at HIV infection. We finally compared the estimates 

from the three approaches for estimating age at HIV infection 

and assessed their precision. 

2.1. Order Statistics 

Analysis of order statistics is an important component of 

statistical inference in cases where the sampled or computer 

generated data for a particular study are re sorted in 

ascending order like when dealing with medians, quartiles or 

sample range. Order-statistics-based inferences can be made 

in several real life situations like in analyzing the distribution 

of survival data and in the measurement of financial risks 

[17]. In this study, we are focusing on the median age at HIV 

infection, which is an example of the order statistics. A 

sample data of size 4	drawn from an infinite population with 

a random variable<.,</,<=...<>can be considered as anordered 

statistics if we rank this random variable T from smallest to 

largest value. From the ordered values we may obtained 

another values ?. and ?> which representsthe smallest and 

largest values of<9respectively. 

That is 

?. = mini (T., T/, …… . . T�)?> = maxi 	(T., T/, … … . . T�)  (2) 

Generally, the continuous probability density D(E)of the FGHorder statistic for a random sample	(?I)	of size n drawn 

from an infinite population is given by 

JI(KI) = >!
(I!.)!(>!I)! MN D(E)OEPQ!R SI!.D(KI) TN D(E)OER

PQ U>!I
  (3) 

Note that in cases where we have only one sample 

(i.e.4 = 1) there will be only one possible order statistic r, 

hence F = 1  and so the probability function f (t) will 

beJI(KI) = D(K.). Also, for the maximum value of	(F = 4), 

the probability density function will reduce to 

J>(K>) = 4MN D(E)OEPV!R S>!.D(K>)                  (4) 

2.2. Sampling Distribution of the Median 

The median is a measure of location that is normally used 

to make statistical inference regarding a particular population 

distribution when the distribution is skewed, end values are 

unknown, or when one requires reduced importance to be 

attached to outliers [9]. Sampling distribution refers to a 

probability distribution of sample-based statistic obtained 

from a large number of samples drawn from a particular 

population. These sample statistics can be mean, standard 

deviation, proportion or median. In this study, we are 

interested with the sampling distribution of the median so we 

will focus more on it. Suppose we consider a large sample 

drawn from an infinite population with a probability density 

function 	D(E) . Apart from giving its smallest and largest 

orderstatistics ?. and ?> , wemay also find itsmedian. The 

sample median, which in this study is denoted by 8Wwill be a 

number such that approximately half of the observations are 

below that number and another half is above it. As an ordered 

statistics, we denote the median value by 

8W = X.
/ Y?Z + ?Z[.\, 0D4 = 2^	(_`_4)

?Z[.0D4 = 2^ + 1(aOO)                (5) 

where	^ is any positive integer. 

This implies that the function will have	4 independent and 

identically distributed random variables with density 	D(E) 
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itha non-zero value at the population median bW  and 

continuously differentiable in a neighborhood of 	bc . 

We therefore conclude that the median theorem should be 

used only when there is no possibility of using the central 

limit theorem to estimate the population mean, since 

practically the sample mean gives better estimates than the 

median. Likewise, the sampling distribution of the median 

may behave differently for the non-normal distributions [6]. 

In cases where normality assumptions fail, the bootstrap 

estimation may be the best option for making inferences. 

2.3. Estimation of Median Age at HIV Infection Using 

Bootstrap Approach 

Bootstrap approach for statistical estimation of sampling 

distribution is the best choice in situation where the 

functional distribution of the parent population is unknown or 

when the normality assumption cannot be met. Bootstrap 

techniques can help to obtain an approximate sampling 

distribution of a statistic, conditional on the observed data. 

While the most common procedure in statistical inference is 

to use one sample statistics to estimate population parameters, 

the bootstrap approach allows the researcher to generate 

several samples (with reference to the actual sampled data) 

and use the obtained samples statistics in estimating 

population parameters. There are several real life situations 

whose distribution cannot be easily specified in advance, one 

of them being the distribution of age at HIV infection. HIV 

infection occurs to different individual from a variety of 

causes. Children may acquire HIV infection from their 

mothers during delivery or when breastfeed. Youths and 

adults may acquire HIV infection during sexual intercourses, 

blood transfusion or through any other mode of HIV 

transmission. Hence, a drawn sample of HIV positive 

patients may have a much-dispersed data regarding age at 

HIV infection such that the common procedures for making 

inference may not work. 

Making inferences with bootstrap approach involves 

generating random data from the actual sampled data, 

determination of bootstrap statistics (like mean and median), 

estimation of the standard error of bootstrap mean or any 

other sample statistic d as well as using repeated sampling 

method to construct bootstrap confidence intervals [15]. 

3. Results and Discussion 

This section presents the summary of the main findings of 

this study and their general discussion. 

3.1. Descriptive Statistics of the Sampled Data 

Data for 114 HIV positive women were collected from 

nine health facilities that offer PMTCT services in 

Kilimanjaro region, Tanzania. The main reason for choosing 

the facilities with PMTCT services is the accessibility to data 

as we were interested with patients who had tested for HIV at 

least twice. The women who were under reproductive age 

had higher chances of testing for HIV several times, as they 

are required by the HIV guidelines and policies to perform at 

least three HIV tests from conception to delivery. We found 

that, only 88women were able to recall their age at last HIV 

negative test (LN) and age at first HIV positive test results 

(FP). Since we wanted, first to determine midpoint values for 

each subject’s interval we only used data from these 88 in 

estimating the age at HIV infection. The current mean age of 

the sampled women was 36 years with the youngest having 

22 years and the oldest, 68 years. Their minimum and 

maximum age at last negative HIV tests were 17 and 52 

years respectively, with a mean of 25 years. The mean age at 

HIV diagnosis (which we also considered as FP) was 30 

years while the minimum and maximum age at HIV 

diagnosis was 20 and 57 years respectively. The standard 

deviation and standard error for the mean age at HIV 

diagnosis were 6.9 and 0.74 respectively. In addition, their 

median age at HIV diagnosis was 29 years while the sample 

variance for age at HIV diagnosis was 47.631. 

3.2. Estimation of Age at HIV Infection by Using  

Non-Parametric Modeling of Survival Data 

We considered our study as observational, with all 

interviewed subjects infected by the time, they entered the 

study but the exact ages at which they were exposed to HIV 

infection were unknown. We also considered the subjects to 

be in an open cohort since the size of the risk set could 

increase or decrease over time unlike the closed cohorts in 

which the size of risk set always decreases over time [4]. 

Hence, we defined our outcome variable T (age at HIV 

infection) as a random variable which represents the 

difference between the age at HIV confirmation (E) and the 

average time at risk prior to study entryEI. 

That is, 

< = E − .
/ EI                                           (6) 

where, E =	The observed time on study (age at HIV diagnosis) GQ
/ =Average timeat risk prior to infection, taken over all 

individuals, which is unknown but contributes to the true 

survival time. < = The most likely age at HIV infection for each 

diagnosed individual. 

The probability plot of the obtained T values obtained 

through modified midpoint approach shows that the 

estimated age at HIV infection follows a log logistic 

distribution with location parameter 3.284 and scale 

parameter 0.1339. The three-parameter log logistic 

distribution also found to have a good fit of the data with 

location, scale and threshold parameters of2.593, 0.2680 and 

12.99 respectively. Figures 1 and 2 present the log-logistic 

and 3-parameter log-logistic probability plots respectively. 

We used model (6) to estimate the most likely (median) 

age at which a woman under reproductive age could be 

infected using single sample data collected from the field. 

We let <	be the random variable which shows the time to 

failure (age at which a woman is likely to be infected) and 
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define the survival function at a time point E as  

f(E) = 7(< > E) ⟹ f(E) = 1 − i(< ≤ E) = 1 − k(E) (7) 

where, 

k(E) = l D(m)OmG
n

 

Alternatively, T can be described by a hazard function, 

which is an instantaneous failure rate at any time point E and 

denoted by 

ℎ(E) = lim∆G→n 7I TGrstG[∆G|svG
∆G U = lim∆G→n 7I T(GrstG[∆G)

∆G.w(G) U =
xy(G)
w(G) = z(G)

w(G)                                  (8) 

 

Figure 1. Log logistic distributional fit for age at HIV infection. 

 

Figure 2. A 3-parameter log logistic distributional fit for age at HIV infection. 

In addition, survivor function can also be defined in terms 

of integrated hazard function 	{(E) , derived from the 

definition of hazard function. That is, 
ℎ(E) = z(G)

w(G) = wy(G)
w(G)                           (9) 
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⟹ − N ℎ(m)Om = N w|(})
w(})

G
n

G
n Om = log� S(t) − log� 1   (10) 

⇒ −N ℎ(m)Om =G
n log� S(t) ⟹ S(t) = e!N %(�)���

� = e!�($)  (11) 

The computer layout for our datasets in a simple counting 

process (CP) format is shown in table 1. The first two 

columns shows the age at last HIV negative test and age at 

first HIV positive test respectively. The number of subjects 

who were at risk of HIV infection at each age point is shown 

by column three while the remaining columns shows the 

cumulative failure and hazards for each individual with their 

respective standard errors and confidence intervals. 

Table 1. Women data layout in a counting process format. 

start stop Beg.Total Cum.Failure S.e Hazard S.e [95% CI] 

18 19 82 0.0244 0.0170 0.0247 0.0175 0.0000 0.0589 

19 20 80 0.0366 0.0207 0.0126 0.0126 0.0000 0.0372 

55 56 2 0.9878 0.0121 0.6667 0.6285 0.0000 1.8986 

61 62 1 1.0000 . 2.0000 0.0000 2.0000 2.0000 

 

The edited list of Kaplan Meier estimates of the hazard 

function at the midpoint of each time interval (obtained 

through STATA package) were presented in a data layout as 

shown in Table 2. The first column of the table shows the 

ordered values of the midpoint between age at last negative 

test and age at first HIV positive test. The second column 

gives the number of individuals who were still at risk (HIV 

free) at the beginning of each age interval while the third 

column shows the frequency counts of those persons who 

failed at each distinct failure time. None of the subject in the 

study was lost to follow, so the entries of the Net lost column 

was zero throughout. The estimates of the hazards function, 

standard error and the associated confidence intervals for 

each time interval is shown in column 3, 4 and 5. The data 

shows that for majority of the subjects in the study, the 

interval between their last HIV negative test and first HIV 

positive test was between 0.5 to 2.5 years. Likewise, the 

STATA output for the confidence intervals for the median 

survival times under 95% for the midpoint of the intervals 

found to be in the range 1.5-2.5 years. 

Table 2. Kaplan Meier estimates of the hazard function evaluated at the midpoint of each age interval. 

Time Beg.Total Fail Net Lost Failure Function Se [95% Conf.Int] 

0.5 86 15 0 0.1744 0.0409 0.1090 0.2725 

1 71 14 0 0.3372 0.0510 .02480 0.4475 

1.5 57 9 0 0.4419 0.0536 0.3445 0.55290 

2 48 5 0 0.5000 0.0539 0.4001 0.6095 

8 2 1 0 0.9884 0.0116 0.9436 0.9990 

9 1 1 0 1.000 - - - 

Confidence Intervals for the median age at HIV infection 

The median of the survival times was calculated by 

considering the fact that the square of the standardized 

function of the survival curve around the true but unknown 

median value (M) is asymptotically distributed in a chi 

square distribution form. That is, under 95% confidence level, 

(w���(�)!n.�)�
��I� 	Yw���(�)\ ~	�21                              (12) 

Where, M is the true, but unknown median survival time, 

f���(�) is the estimated probability from KM curve at the 

true median survival time and �2F� 	Yf���(�) is the estimated 

variance of the estimated KM survival probability given by 

Greenwood ‘s formula 

�2F� 	Yf���(�) = (f���(E))/ × ∑ � Z�
>�(>�!Z�)�z:G(�)��   (13) 

Where Ez  is theordered survival times, ^z is number of 

subjects failing at time t and 4z is the number of subjects in 

the risk set at the start of the interval. Since we have only one 

group, the CI for the median will be 

(f���(�) − 0.5)/ < 3.84	�2F� 	Yf���(�)\               (14) 

 

Figure 3. Kaplan Meier Survivor estimates for age at HIV infection. 

The KM plot for the survival time (estimated age at HIV 

infection) is shown in figure 3. From the graph, we can 

determine the estimated median survival time f���(�)  as 

27.6824, obtained at the intersection of the x-axis value at 

which y-axis is 0.5. 

In addition, the MINITAB plots for cumulative failure, 
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hazards and survivor functions of the outcome variable T 

shown in figure 4 indicates that the estimated the median age 

at which most subjects failed (acquired HIV infection) is 28 

years. 

 

Figure 4. The survivor, hazard and cumulative plots for age at HIV infection (T). 

In addition to that, the Nelson Aalen Cumulative hazards 

estimates and the Kaplan Meier failure function plots in 

figure 5 below indicate a sharp increase in hazards between 

18 and 40 years. We therefore consider this age interval as 

the most risky age group at which most of the women under 

reproductive age gets HIV infection. 

 

Figure 5. Nelson Aalen Cumulative hazards and Kaplan Meier plots for 

women age at HIV infection. 

3.3. Comparison of Age at HIV Infection for Women with 

Different Marital Status and Levels of Education 

We compared the survival curves for women from 

different groups and assess whether there is a significant 

difference in their age at HIV infection using the logrank, 

Wilcoxon, peto and Harringtone tests. The survival curves 

for women with different marital status are shown in figure 6. 

 

Figure 6. KM survival estimates for marital status. 

Using the null hypothesis that all survival curves are the 

same, we performed a log rank test and its various alternative 

tests for different weightings at 95% confidence level to assess 

whether the age at HIV infection for women with different 

marital status were significantly different. These are the 

variations of the log rank test namely Cox regression based test, 

Wilcoxon (Breslow), Tarone–Ware, Peto and Flemmington–
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Harrington [4]. The use of such tests in comparing the survivor 

curves for this study was necessary since the age at HIV 

infection is an example of a clinical problem in which patients 

are expected to acquire infection at the middle age (especially 

during the reproductive age range) as compared to young or 

old ages. This implies the risk of being infected is higher at the 

later age with the exception of those HIV patients who acquire 

HIV through vertical transmission. The weights for these 

different tests are shown in table 3. 

Note that the Flemming-Harrington may have different 

weights for different values of p and q, which are decided by 

the researcher depending on the nature of the problem. 

Example if p and q are all zero, then the value of its test 

statistic will be similar to the log rank test. If p is 1 and q is 0, 

thenthe test will give more weight to for the earlier survival 

times where weight will be equals to �̃	(E(z!.)) andclose to 1. 

If p is 0 and q is 1, the test will give more weight to for the 

later survival times where weight will be equals to 1- �̃	(E(z!.)). 

Table 3. Tests for comparing KM survivor curves. 

S/N Test Statistic Weight at  ¡¢failure time, £(¡ )) 
1 Log rank test 1 

2 Wilcoxon (Breslow) 4z  

3 Tarone wared cc ¤4z  

4 Peto-peto �̃	(E(z))  

5 Flemming-Harrington f¥(E(z!.))¦ × Y1 − f�(E(z!.)\§  

Source: Kleibaum and Klein (2012) 

The edited STATA output for the different test results for 

different marital status and education levels is shown in table 4. 

Table 4. Test results for comparison of survivor curves. 

S/N comparison test p-value for marital status p-value for education levels 

1 Log rank test 0.8145 0.7606 

2 Cox regression based test 0.8543 0.7928 

3 Wilcoxon (Breslow) 0.7973 0.3533 

4 Tarone wared cc 0.8116 0.5029 

5 Peto-peto 0.7854 0.3330 

6 Flemming-Harrington 0.8145 0.7606 

 

 

Figure 7. KM curves for women with different levels of education. 

Since all p-values are greater than the critical value, the 

test results are not significant enough to make us reject the 

null hypothesis, so we conclude that the curves for different 

marital status are not different. Likewise, all of these tests 

show that there is no significant difference in age at HIV 

infection for  women with different levels of education.  

The KM survivor plots for women with different education 

levels are shown in figure 7. 

3.4. Estimation of the Age at HIV Infection by Using 

Bootstrap Approach 

Using MINITAB package, we generated data for 200 

samples of size 100 using the original / actual sampled data 

from the population of HIV positive women in Kilimanjaro. 

Using bootstrap estimation procedures, we obtained the 

bootstrap mean and bootstrap median for each of the 

generated samples.  

The edited MINITAB output for the descriptive statistics 

of the bootstrap mean and median are shown in table 5. 

Table 5. Descriptive statistics for bootstrap mean and median. 

Variable Total count Mean (age in years) Variance SE Mean Median (age in years) Range 

Bootstrap mean 200 27.704 0.584 0.540 27.687 4.236 

Bootstrap Median 200 26.695 0.641 0.566 26.53 4.000 

 

The summary statistics show that the mean age at HIV 

infection is approximately 27 years. 

3.5. Constructing Confidence Intervals for the Bootstrap 

Median Age at HIV Infection 

To construct the confidence interval for bootstrap sample 

median we first draw 200 samples from the original sample 

collected from the field, with replacement by the aid of 

MINITAB software. Then we computed the sample median 

for each of the 200 generated samples and ranked the means 

from smallest to largest value. As finding the 95% implies 

finding the interval at which the middle 95% of the samples 

will lie, we had to determine the sample medians at the 2.5% 

and 97.5% quartiles. The 2.5
th
 percentile was assumed to be 

at the position 0.025(N+1) while the 97.5
th

 percentile will be 

at 0.975(N+1). We consider the values at these two positions 

as the interval at which the bootstrap median age at HIV 
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infection lies. 

So using such procedures we found that 95% confidence 

interval for the bootstrap sample median were (24.53, 26.53). 

This implies, women under reproductive age are more likely 

to be infected with HIV when they are between age 25 and 

27 years. 

4. Conclusion 

This study demonstrates the statistical approach for 

estimating HIV infection in poor resource settings. This 

approach involved the use of three different methods namely 

the modified midpoint method, survival analysis techniques 

and bootstrap estimation method. Using real datasets collected 

from nine (9) health facilities located in Kilimanjaro region in 

Tanzania, we were able to estimate the median age at which 

women under reproductive age are more likely to be infected 

by HIV and the most risky age range for HIV infection. Using 

the modified midpoint method, we found that the average time 

at risk prior to HIV infection was 2.47 years. The distributional 

fit of the estimated age at HIV infection (T) found to follow a 

log logistic distribution with location parameter 3.284 and 

scale parameter 0.1339. The three-parameter log logistic 

distribution also found to have a good fit of the data with 

location, scale and threshold parameters of 2.593, 0.2680 and 

12.99 respectively. The KM plot for the estimated age at HIV 

infection indicated a median survival time f���(�)of 27.6824, 

obtained at the intersection of the x-axis value at which y-axis 

is 0.5. In contrary, the MINITAB plots for cumulative failure, 

hazards and survivor functions of T indicated that the 

estimated the median age at which most subjects failed 

(acquired HIV infection) is 28 years, which does not differ 

much with the previous KM plot results. In addition to that, the 

Nelson Aalen cumulative hazards estimates and the Kaplan 

Meier failure function plots indicated the most risky age group 

at which most of the women under reproductive age gets HIV 

infection is between 18 and 40 years. The comparison of 

survivor curves for women with different marital status and 

different educational levels did not show any significant 

difference in their ages at HIV infection. This implies that we 

could not find enough evidence to conclude that the probability 

of a woman infected with HIV under reproductive age is 

influenced either by her marital status or by education level. 

The 95%confidence interval found the most likely age at 

HIV infection for women under reproductive age was 

between 18 and 40 years (from survival analysis approach) 

while for bootstrap estimation was 24.5 and 26.5 years. This 

implies the bootstrap approach provides best estimates for 

age at HIV Infection that the survival analysis approach. 

These study findings provide useful information on where to 

allocate more resources in the fight against HIV/AIDS 

epidemic. 
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