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Abstract: In multilevel modeling, the relationships between the criterion and predictors are investigated at different levels. 

Often, the cluster-level predictors are measured by aggregating the individual-level measures. However, the aggregated cluster-

level predictors do not always reliably measure the cluster-level regression coefficient, and therefore the context coefficient. 

This study investigates an alternative approach: estimating cluster-level predictor on the latent cluster mean by using multilevel 

latent. A comparison is made of the accuracy of the context coefficient and standard error under a wide range of conditions. 

Results reveal that bias for context effect is small in multilevel latent model. Maximum likelihood (ML) estimator yields more 

accurate standard error estimation than robust maximum likelihood (MLR) when cluster number is small (less than 50). Very 

small cluster sample sizes (less than 10) should be avoided because they lack power and empirical sampling variance. 
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1. Introduction 

Data collected in educational research are often multilevel, 

for example with students clustered within schools or 

repeated measures clustered within individuals. When data 

are multilevel and a predictor variable varies both within 

clusters and between clusters (such as individual social 

economic status, SES) scores varying within schools and 

average SES scores varying between schools), researchers 

are frequently interested in estimating within-cluster and 

between-cluster relationships of the predictor to the criterion. 

Often people are interested in estimating the context 

coefficient [1, 2, 3], that is, the difference in the regression 

coefficients for the between- and within-cluster relationship. 

Contextual analysis evaluates whether the aggregated group 

characteristic (L2) has an effect on the outcome variable after 

controlling for individual level characters (L1). 

In many cases, L2 variables are based on the aggregation of 

L1 variables. One problematic aspect of the context effect 

analysis is that the observed group average obtained by 

aggregating individual observations may not be a very reliable 

measure of the unobserved group average if only a small 

number of L1 individuals is sampled from each L2 group [1, 

4]. A few researchers explored the integration of structural 

equation modeling (SEM) and multilevel modeling (MLM) to 

the issue of contextual analysis with the consideration of 

measurement error and sampling error [1, 4, 5]. The software 

Mplus is recommended as being particularly versatile for all 

forms of latent variable modeling, including the integration of 

SEM and MLM [1]. 

In the multilevel latent mean approach to estimating 

context effects the following equation is estimated 

( )0= + − + + +ij W ij jX B jX j ijY Xγ γ µ γ µ δ ε           (1) 

[4, 6]. In this equation, jXµ  is the expected value of the 

predictor scores within the j th cluster, 
jδ  is a between-

cluster residual, ijε  is a within-cluster residual, 0γ  is the 

intercept, Wγ  is the within-cluster regression coefficient, and 

Bγ  is the between-cluster regression coefficient. 

A multilevel latent mean approach corrects the bias in 

parameter estimates of contextual effects due to sampling 

error associated with aggregating L1 variables to L2 
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constructs [1]. The cluster-level averages (
jX ) are estimates 

of the cluster-level expected values (���) In the traditional 

multilevel approach to estimating context effects, 
jX  is used 

in place of jXµ : 

( )0 .= + − + + +ij W ij j B j j ijY X X Xγ γ γ δ ε         (2) 

In this approach, the cluster-level averages are assumed to 

be measured without sampling error [3, 7]. The unreliability 

of the sample cluster average will lead to biased estimation of 

the between-cluster regression coefficient which in turn leads 

to bias in the context coefficient. 

In the present study, the multilevel latent model is the 

focus and an alternative set of conditions was investigated. 

Specifically, the study investigated level-2 sample sizes 

(smaller than were investigated by Ludtke et al. [4]) and a 

range of intraclass correlation coefficients (ICCs) for the 

outcome variable. Ludtke et al. did not investigate the latter 

factor and the range of ICCs no doubt varies across 

multilevel studies. The smaller level-2 sample size was 

investigated because it is not unusual to find multilevel 

studies with the number of groups smaller than 50 [8]. 

In multilevel analysis, the problem with sample size is 

usually at the group level [9, 10, 11]. Previous research 

shows that a small sample size at level two leads to biased 

estimates of the second-level standard errors [10]; increasing 

the higher level sample size will improve more on power 

than increasing the within-cluster sample size [11]. However, 

in practical research, increasing the number of groups may be 

difficult because of the cost of bringing in new organizations 

and the inconvenience of finding new organizations [10, 12]. 

Thus seeking an alternative strategy to obtaining the accurate 

estimates of parameters and standard errors seems essential 

in the multilevel latent model. 

A few researches have investigated the various estimation 

methods in the multilevel framework. Hox et al. [9] 

compared full information maximum likelihood (ML), robust 

maximum likelihood (MLR), and diagonally weighted least 

squares (DWLS) estimations in multilevel structural equation 

modeling. They found a clear interaction effect between 

number of clusters and estimation methods. They also found 

ML yield the most unbiased estimation than DWLS and 

MLR when the sample size is small. Maas and Hox [13] 

showed that restricted ML estimation had better coverage 

rates for the main fixed effects than robust estimation. 

Although the studies are not completely in agreement, they 

all conclude that the coefficients estimated are unbiased and 

the standard errors tend to be underestimated when the 

sample size is small [1, 9, 13]. In this study, MLR and ML 

are chosen to compare for context effect estimate. MLR is the 

default estimator in the multilevel model in Mplus because it 

offers some protection against the heterogeneity. The robust 

standard errors are developed to use the observed residual 

variance to correct the asymptotic standard errors. The 

likelihood function of the multilevel full ML approach in the 

context of SEM is defined as follows [9]: 

N N
1

i i i i ii
i 1 i 1

F log | | log(x ) ' (x )µ µ−

= =

= + − −∑ ∑ ∑ ∑        (3) 

where the subscript i refers to the observed cases, ix  refers to 

the variable observed for case i, and iµ  and 
i∑  contain 

the population means and covariances of the variables 

observed for case i. Multilevel data applies in the way that 

clusters are as observations and individuals as variables. 

In this simulation study, the accuracy of context effect was 

examined under various conditions by using two estimators. 

The study varies the conditions at different levels and those 

conditions are within cluster sample size, number of clusters, 

ICC for predictor variable, ICC for criterion variable, 

between coefficient and context effect. The two estimators 

are MLR and ML. 

2. Methodology 

2.1. Data Generation 

Simulated data were generated by using the multilevel 

latent model. The first step was to generate the data on the 

predictor. The predictor variable was decomposed into two 

uncorrelated components: ( ) .= + − = +ij jX ij jX jX XijX X Rµ µ µ  

The corresponding decomposition of the variance of the 

predictor is 
2 2 2

XX X R
σ τ σ= + . Without loss of generality, the 

predictor variance was set equal to one. Then 
2

Xτ  is equal to 

XICC  and 
2

XR
σ  is equal to 1 .− XICC  Therefore scores on the 

valuable jXµ  were generated by multiplying a standard 

normal variable by Xτ  and scores on ijR  were generated by 

multiplying a standard normal variable by .
XR

σ  The criterion 

variable and its variance can be decomposed as 

= +ij jY YijY Rµ  and 
2 2 2 .= +

YY Y R
σ τ σ  The criterion variance 

was also set equal to one without loss of generality. Then 
2

Yτ  

is equal to YICC  and 
2

YRσ  is equal to 1 .− YICC  

The relationship between the cluster-level means for the 

criterion and predictor is 00 01 0= + +jY jX jµ γ γ µ µ  [12]. Using 

standard results in regression theory,
2 2 2 2

01 .= +Y X uτ γ τ σ  Thus 

once the ICCs and the between-cluster coefficient are set, the 

variance of the cluster-level residual is determined and can 

be generated by multiplying a standard normal variable by 

.uσ  The relationship between the R variables for the 

predictor and criterion is 
ij ijY 10 X ij

R R rγ= +  [12] and 

2 2 2 2

10
.= +

Y XR R r
σ γ σ σ  Once the ICCs and the within-cluster 

coefficient were set, the variance of the individual-level 

residual was determined and can be generated by multiplying 

a standard normal variable by .rσ  Once ,jXµ ,
ijX

R  0 ,ju  and 

ijr  are generated, substitution in the equation of multilevel 
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latent model yields scores on the criterion. The data were 

generated in Statistical Analysis System (SAS) 9.2 which 

was also used to call Mplus 7.0 to estimate the multilevel 

latent models. 

2.2. Conditions 

The within-cluster sample size was set to n = 5, 10, 15, or 

30. A group size of 5 is usual in small-group educational 

research and in longitudinal research. A group size of 15 or 

30 is a typical class size in school. The number of clusters 

was K =20 or 40. The reason we chose 20 and 40 is that a 

cluster sample size smaller than 50 is not unusual in 

multilevel empirical research, and simulation studies often 

focus on larger cluster sample size. 

The ICCs for the predictor variable, 
XICC = .05, .10, .20, 

and .30. The values of the ICC for the criterion variable were

=YICC .15, .2, and .3. These values are representative 

values found in educational research. 

The between coefficients were set at 
Bγ = 7 and 5, and the 

context effects were Cγ  = .3 and .1. Following the 

relationship B W Cγ γ γ− = , the four combinations of 
Bγ  and 

Cγ  were used to investigate whether the size of the between-

cluster coefficient affects the accuracy of estimation of the 

context effect, as well as to investigate the accuracy of 

estimation for smaller context effects. 

Overall, there were 4 2 4 3 2 2× × × × × = 384 conditions. 

Each condition was replicated 5000 times. 

2.3. Data Analysis 

For every condition, the generated data were analyzed by 

using the multilevel latent model to estimate the context 

effects with two estimators respectively in Mplus. Two 

estimators were MLR (maximum likelihood estimation with 

robust standard errors) and ML (maximum likelihood 

estimation). MLR is the default estimator for multilevel 

model in Mplus and is increasingly chosen by default in 

available software. MLR is assumed to offer the protection 

against unmodeled heterogeneity, however, Hox et al. [9] 

found that when number of clusters is small (less than 50) 

and the data follow the normality assumption, MLR does not 

perform as well as ML. Thus both MLR and ML were chosen 

for data analysis and compared the results. 

To investigate accuracy of estimation, the interval 

estimation was estimated by using the coverage of the 95% 

confidence interval. Coverage, that is whether or not the CI 

contained the population context effect value, was coded 0-1 

for each replication. Estimated coverage probability was then 

calculated as the mean of the dichotomous variable over the 

5000 replications in each condition. Power was also 

investigated. Rejection of 0 : 0=CH γ  against 0 : 0≠CH γ
was coded 0-1, with a value of 1 if the CI did not contain 

zero (reject 0 : 0=CH γ ). Estimated power was calculated as 

the mean of the dichotomous variable over the 5000 

replications in each condition. 

Bias and sampling variability of context effect estimation 

were also investigated. Bias assesses whether the expected 

value of the estimator of the context effect is equal to the 

population value of the context effect. The sampling variance 

of the estimator of the context effect measures how close 

estimates are to the expected value of the context effect. This 

variance was referred as the empirical sampling variance 

(ESV). 

To investigate which factors significantly affected 

coverage probability and power, an analysis including seven 

main effects was conducted by using PROC GENMOD in 

SAS. Seven main factors were investigated as independent 

variables: 
B

γ , Cγ , n, K, 
XICC , 

YICC , and estimator. Based 

on the results of effective factors, the ML results were 

analyzed by using logistic regression for six main factors 

excluding estimator. 

To investigate how the conditions in the study affected bias 

and empirical sampling variance (ESV), ANOVAs were 

conducted by using six factors as independent variables: 
B

γ ,

Cγ , n, K,
XICC  and 

YICC . Since the estimator method 

affects the standard error estimation but not the parameter 

itself, the ANOVA for bias and empirical sampling variance 

used the combined MLR and MLR results. 

ESV refers to the variance of the context effect estimates. 

That is for q
th

 condition of the study, ESV is 

ɵ ɵ( )5000 2

2 1

4999

=

−
=
∑ Ciq Ciq

i
q

S

γ γ
                        (4) 

where ɵ
Ciqγ  is as defined earlier and ɵCqγ  is the mean context 

effect for the q
th

 condition. To investigate how the conditions 

in the study affected the empirical sampling variance, the 

recommendation by O’Brien [14] was followed and an 

ANOVA was conducted using 

ɵ ɵ( ) ( )
( ) ( )

2
2( 1.5) .5 1

1 2

− − − −
=

− −

Ciq Cq q

iq

N n S N
r

N N

γ γ
         (5) 

as the dependent variable, where n  is the number of 

replicates for a condition (i.e., 5000). It can be shown that 
2 .=q q

r S  Thus O’Brien’s method uses ANOVA to test 

hypotheses on variance. 

The results of these analyses were used to calculate effect 

sizes. The PROC GENMOD analysis was selected to take 

into account the dichotomous nature of the dependent 

variable. To measure the relative size of the effects, the 

proportion of effect variance (PEV) was used. 

ɵ

ɵ

2

63
2

1

.

=

=
∑

effect

effect

t

PEV
δ

δ
                               (6) 

where 2

effectδ  is a measure of the size of the effect, ɵ
63

2

1=
∑ effect

t

δ  is 
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the sum of ɵ
2

effectδ  for the 63 effects in the ANOVA and is 

subsequently referred to as the total effect variance. 

3. Results 

3.1. Coverage Probability 

The percentiles of the coverage probability by the between 

coefficient and context effect using MLR and ML estimators 

are presented in Table 1. When using the MLR estimator, the 

coverage rates range from 0.895 to 0.946 among all the 

conditions, which indicates the estimated standard errors of 

the context effect are typically negatively biased. While using 

the ML estimator, the coverage rates range from 0.933 to 

0.983, and the median coverage rates are closer to 0.95. It 

shows that the ML estimator improves the estimation 

accuracy of standard errors and has more appropriate control 

of Type I error rate. 

Table 1. Percentiles of Coverage Rate by Between Coefficient ( Bγ ) and Context Effect (γC
). 

 Bγ  
Cγ  Minimum 5th 10th 25th 50th 75th 90th 95th Maximum 

MLR 0.5 0.1 0.895 0.899 0.903 0.910 0.927 0.933 0.939 0.942 0.946 

 0.5 0.3 0.902 0.904 0.907 0.913 0.926 0.931 0.934 0.937 0.943 

 0.7 0.1 0.901 0.906 0.907 0.914 0.927 0.932 0.936 0.938 0.952 

 0.7 0.3 0.901 0.905 0.909 0.915 0.927 0.932 0.936 0.939 0.946 

ML 0.5 0.1 0.933 0.939 0.940 0.943 0.947 0.953 0.965 0.972 0.979 

 0.5 0.3 0.935 0.937 0.939 0.942 0.946 0.955 0.968 0.970 0.979 

 0.7 0.1 0.934 0.938 0.941 0.944 0.948 0.956 0.971 0.976 0.983 

 0.7 0.3 0.933 0.937 0.940 0.944 0.948 0.960 0.971 0.973 0.978 

 
To further investigate which factors influence the 

coverage rates, the logistic regression analysis was 

conducted first by seven main factors: n, K, ICCX, ICCY, 

Bγ , Cγ and estimator. Results showed the factor estimator 

accounted for the majority of the effect variance (62.2% of 

the total effect variance) and ML estimator showed more 

accurate estimation than MLR. Thus the following section 

focuses on the analysis of variance on ML results only. 

Six factors along with their interactions were 

investigated for the ML coverage results by using logistic 

regression, and the main factors were n, K, ICCX, ICCY, 

Bγ  and 
C

γ . A number of effects were significant, which is 

to be expected given that each cell of the design was 

replicated 5000 times, so the proportion of the effect 

variance was the focus. Cluster sample size (n) accounted 

for 50.6% of the total effect variance followed by ICCY for 

10.6% and n by K for 9.7%. 

Table 2 presents mean probability coverage as a 

function of sample size by using the ML estimator. The 

effect of n on coverage probability is different than 

expected. Inspection of the estimated standard errors 

indicated that there were exceptionally large estimated 

standard errors for some replications and the prevalence of 

these large standard errors was declined as n increased, 

especially when K =20. The appropriate estimation 

occurred when within cluster sample size i10 and 15. 

When numbers of clusters increase from 20 to 40, the 

estimated standard errors tend to be more accurate at all 

levels of within cluster sample size. For the factor
YICC , 

mean coverage probability decreases from 0.955, 0.950 to 

0.947 as 
YICC  increases from 0.15, 0.20, 0.30, 

respectively. It tends to yield the most accurate estimation 

of standard errors when 
YICC  equals to 0.20. 

Table 2. Mean Coverage Probability by Within Cluster Sample Size (n) and 

Number of Clusters (K). 

n K=20 K=40 

5 0.968 0.956 

10 0.952 0.947 

15 0.946 0.947 

30 0.941 0.945 

3.2. Power 

Power for detecting the context effect is higher when 
C

γ
gets larger. ML estimator appropriately control type I error 

rates even it costs the price of power. Similar to the variance 

analysis of coverage, six factors along with their interactions 

were investigated for the ML power results by using logistic 

regression. The factors 
XICC  and 

C
γ  play an important role 

individually and interactively, which altogether accounted for 

60.2% of the total effect variance. The within cluster sampler 

size (n) accounted for 9.6%. 

As shown in Table 3, power increases as XICC  and Cγ  

increase. The effect of XICC  is much larger when Cγ  is 

larger. As expected, power increases when n increases. When 

n increases from 5 to 30, power increases from 0.076 to 

0.212. Even though the number of clusters K does not 

account for more than 5% of the total effect (PEV of K is 

4.2%), the results showed that power increases from 0.115 to 

0.181 as K increases from 20 to 40. 

Table 3. Power by Context Effect (γC
) and Predictor Variable (

XICC ). 

  XICC    

Cγ  .05 .10 .15 .20 

0.1 0.05 0.060 0.079 0.106 

0.3 0.07 0.123 0.267 0.427 
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3.3. Bias 

Results indicate that bias tends to be small in most 

conditions. Percentiles of bias by the between coefficient and 

context coefficients by using two estimators were checked. 

Among all conditions when using MLR, bias ranged from -

0.078 to 0.151. Similar results were found when using the 

ML estimator. Bias ranged from -0.004 to 0.175. Median bias 

was 0.024 or smaller for Cγ  being 0.3, and 0.010 or smaller 

for Cγ  being 0.1. 

Since the estimator method does not have an impact on the 

estimation of coefficient itself, the six-way ANOVA was 

conducted based on the MLR and ML-combined results 

which contain 10000 replications in each condition. 
X

ICC , 

n, Cγ  along with their interactions account for 79.2% of the 

total effect variance. They all have the considerate influence 

on the effect variance of bias. 

Table 4 shows mean bias by these three factors. When 

XICC  increases, bias decreases when n is 10 or larger. Bias 

tends to increase as the context effect Cγ  increases. When 

Cγ is .3 and 
XICC  is .10 or larger, bias decreases as n 

increases. 

Table 4. Mean Bias by Context Effect ( C
γ ), Within Cluster Sample Size (n), 

Predictor ICC ( XICC ). 

  n 

Cγ  
X

ICC  5 10 15 30 

0.1 0.05 0.008 0.031 0.038 0.013 

0.1 0.10 0.024 0.025 0.015 0.010 

0.1 0.15 0.016 0.009 0.005 0.007 

0.1 0.20 0.006 0.004 0.002 0.004 

0.3 0.05 0.006 0.089 0.106 0.051 

0.3 0.10 0.075 0.072 0.042 0.014 

0.3 0.15 0.045 0.023 0.013 0.006 

0.3 0.20 0.015 0.008 0.004 0.003 

3.4. Empirical Sampling Variance 

The percentiles of the ESV of ɵCγ  by the between 

coefficient and context effect by using MLR and ML 

estimators were also checked. Overall, the ESVs range form 

from 0.002 to 7.239 across estimators. Similar to the variance 

analysis of bias, the six-way ANOVA was conducted based 

on the MLR and ML combined results of ESV. The factors 

XICC , n and K accounted for 84.9% of the total effect 

variance for empirical sampling variance. These effects were 

large relative to the other effects. 

For the effect of 
XICC , mean ESVs get smaller when 

XICC  gets larger (Figure 1 and Figure 2). Figure 1 also 

shows that the mean ESV declines as n gets larger. Results in 

Figure 2 indicate that the mean ESV decreases when K 

increases even though the number of clusters K is small (K = 

20 and 40). 

 

Figure 1. Mean Empirical Sampling Variance by Predictor ICC (
XICC ) 

and Within Cluster Sample Size (n). 

 

Figure 2. Mean Empirical Sampling Variance by Number of Clusters (K) 

and Predictor ICC (
XICC ). 

4. Discussion 

One notable result in this study is that ML yields more 

accurate parameter estimates than MLR in terms of the 

appropriate standard error estimation. The parameter 

estimates for ML and MLR are identical, so the estimates of 

standard errors can be compared directly. MLR, as a robust 

standard error estimator, performs well only when the 

number of clusters is large. If the data violates the 

distributional assumption, robust-method MLR is found to be 

more accurate than ML, but still requires a large sample size 

[9]. In the simulation study, all data are normal distributed 

and the sample size (especially the level-2 sample size) is 

relatively small. The results clearly showed that ML has 

more accurate parameter estimates than MLR. It is 

worthwhile to note that a Bayesian approach may have a 

great potential for estimating the latent covariate model even 

with a small number of groups [15, 16]. 

The results also indicate that the coverage probability 

improves as the number of clusters increases even they are 

both small. Unexpectedly, the coverage rates are not 

improved when the within-cluster sample size increased. The 

most appropriate estimates occurred when the cluster sample 

size are 10 and 15. The results in Ludtke et al. [4] 

demonstrated an inconsistent effect of cluster sample size on 

coverage probability. Mass and Hox [13] argued that more 

groups lead to a better coverage but having larger groups 

does not improve the estimation. However, Maas and Hox 

[10] found coverage rates slightly improved when cluster 
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sample size increased, but the effect of cluster sample size is 

smaller than the number of clusters. Therefore, the findings 

suggest that number of groups has a positive effect on the 

coverage probability and the effect of group size shows an 

inconsistent situation. Besides, coverage probability 

decreases as 
YICC  increases, but 

YICC  has a smaller effect on 

coverage than sample size. 

Statistical power, in essence, is the probability of detecting an 

effect when it does exist. When the effect is smaller, the power 

to detect such an effect would be lower as expected. The results 

show that when context effect increases the power increases. 

The simulation study of Scherbaum and Ferreter [10] found that, 

at a small effect size level, the estimates of statistical power 

varied from approximately .05 to .28, and they considered 

ES=0.20 as small effects and ES=0.50 as medium effects. To 

investigate the power of detecting context effect ( Cγ ) in this 

study, the choice of the size of context effect is relatively small. 

At Cγ  = 0.1 the power ranges from 0.05 to 0.106 when 
XICC  

increases from .05 to .20; at Cγ  = 0.3 the power ranges from 

0.07 to 0.427. 

A number of factors can influence statistical power in both 

single-level design and multilevel design. One of these 

factors is the Type I error. There is an inverse relationship 

between the Type I error and the power. In other words, when 

Type I error increases, the power decreases. This study 

showed that the MLR estimator consistently underestimated 

the Type I error given the studied conditions. The ML 

estimator, on the other hand, improved the accuracy of the 

standard error estimates. Thus the loss of power in the study 

is partially due to the appropriate control of Type I error by 

using the ML estimator. 

Statistical power for multilevel models is more 

complicated than the single-level design since some 

additional factors need to be taken into account. The 

results show that, as expected, power increases as ,Cγ  

,XICC  n, and K increase. These results are expected and 

support the validity of the simulation method. Further, Bγ  

and Y
ICC did not play an important role in power. 

Scherbaum and Ferreter [11] argued that the intraclass 

correlation, the total sample size and the sample size at 

each level, and the inclusion of covariates all affected the 

computation of power. They also found that increasing the 

number of clusters will improve more on the power than 

increasing the cluster sample size. However, the results of 

K and n on power do not reflect this argument. Power 

increased much more rapidly when n increased from 5 to 

10 than from 10 to a higher level. Thus it is suggested that 

cluster sample size should be at least 10 in terms of power 

in practical research. 

Bias and variance are the two parameters that assess the 

accuracy of parameter estimation. In regard to bias, the 

results show that even when the number of clusters was 

quite small, that is between 20 and 40, bias of the context 

effect estimator was quite small and relatively unaffected 

by 
B

γ , K, and .YICC The factors with the largest effects 

on bias were 
XICC  and n. Bias decreased as 

XICC  and n 

increased. The direction of each of the effects of n and 

XICC  is consistent with results in Ludtke et al. [4]. The 

study also indicated that bias increases as size of context 

effect ( Cγ ) increases. The effect of 
XICC  and Cγ  on the 

bias of the context effect estimator was unstable when n 

was 5 but not when n was 10 or larger. Consequently, we 

suggest that the within-cluster sample size should be at 

least 10. Furthermore, ,YICC Bγ  and K do not play an 

important role in the bias of the context effect estimator 

under the condition in the present study. 

5. Conclusion 

The context effect is often an important feature of 

multilevel data analysis. Past research has shown that, when 

the within-cluster sample is regarded as a sample from a 

larger population, the multilevel latent model, rather than the 

traditional multilevel model, should be used to estimate the 

context effect. The results suggest that the estimator ML 

should be used rather than MLR when the sample size is 

small especially the higher level sample size. ML yields more 

accurate estimates of the standard error so that it 

appropriately controls the Type I error rate. The results also 

suggest that bias of context effect estimation tends to be 

small even when the number of clusters is small. Very small 

within-cluster sample sizes (less than 10) should be avoided 

in term of power and empirical sampling variance. If the ICC 

for the predictor is small (.10 or less), bias is more of a 

problem. The fact that bias is small even when the number of 

clusters is small should not be taken as an argument to 

routinely use a small number of clusters. The number of 

clusters has a relatively strong effect of the sampling variance 

of the context effect estimator. Therefore, even an increase 

from 20 to 40 of cluster number is desirable in practical 

educational research. 
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