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Abstract: In this paper, extremes of quarterly maximum surface air temperature are modelled by employing the block 

maxima approach to extreme value analysis. The aim of the paper is to predict the future behaviour of the quarterly maximum 

surface air temperatures by estimating their high quantiles using the generalized extreme value distribution, an extreme value 

distribution usually used to model block maxima. The data are derived from monthly maximum surface air temperatures 

recorded at the SSSK International Airport Weather Station from January 1985 to December 2015. The Jarque-Bera normality 

test is performed on the data, and shows that the quarterly maximum temperatures do not follow a normal distribution. The 

Seasonal Mann-Kendall test detects no monotonic trends for the quarterly maximum temperatures. The Kwiatkowski- Phillips-

Schmidt-Shin test indicates that the data are stationary. Parameter values of the generalized extreme value distribution are 

estimated using the method of maximum likelihood, and both the Kolmogorov-Smirnov and Anderson-Darling goodness of fit 

tests show that the distribution gives a reasonable fit to the quarterly maximum surface air temperatures. Estimates of the T-

year return levels for the return periods 5, 10, 25, 50, 100, 110 and 120 years reveal that the surface air temperature for the 

SSK International Airport will be increasing over the next 120 years. 

Keywords: Maximum Temperature, Extreme Value, Return Level, Generalized Extreme Value Distribution, Stationarity, 

Climate Change 

 

1. Introduction 

There is growing concern around the world about 

increased emissions by the industrialised nations of 

greenhouse gases (GHG), which will cause increase in the 

global temperature and changes of other climatic variables 

such as rainfall and evaporation [38], [35] and [36]. In its 

Fifth Assessment Report, the International Panel on Climate 

Change (IPPC) concludes, among others, that future climate 

extreme events would indicate significant changes in terms of 

the frequency, intensity and duration around the world. In 

vulnerable regions, extreme weather and climate can lead to 

disasters with significant impacts on human and natural 

systems [13]. Historically, according to [13], extreme events 

were generally rare in any one location, with time between 

events when human and natural systems could recover from 

the impacts experienced. However, as climate change 

increases the frequency, intensity and duration of some 

extreme weather and climate events [26], the time between 

extreme events will shorten across this century. This means 

that as the frequency, intensity and duration of extreme 

weather and climate events increase, there will be greater 

decreases in the return periods of such events. And, shorter 



 American Journal of Theoretical and Applied Statistics 2016; 5(6): 365-375 366 

 

return periods could affect the resilience of the affected 

communities to subsequent extreme events, especially in 

communities or countries at high risk of experiencing 

extreme weather and climate events like droughts. 

Precipitation and temperature extremes are considered to be 

the most important climate events and, have been extensively 

explored over the past several decades, according to [48]. 

Although deficient rainfall is considered the chief architect of 

droughts, heat waves and temperature extremes, though 

underestimated, often play crucial roles in drought 

development and intensification [11] and [3]. Regions with 

arid and semi-arid climate are more susceptible to drought, 

since they are more sensitive to rainfall deficiency and 

temperature extremes [6] and [3]. The present study focuses 

on temperature extremes. 

Global temperature has increased since the beginning of 

the last century and will most likely continue to do so in the 

next decades [24] and [37]. [37] further warn that this 

increasing trend may induce more frequent and more intense 

heat waves in the future as pointed out by [34], [14] and [4]. 

In their study on climate variability and trends in 

meteorological time series in semi-arid Botswana, [8] studied 

the variability in rainfall, maximum and minimum air 

temperatures at 14 synoptic stations in Botswana for a period 

of 1960 to 2014. The results from the study indicate a 

significant increasing trend in minimum and maximum 

temperatures at most of the stations. The recent years have 

been marked by exceptional heat waves in Botswana, 

especially in the southern parts of the country. According to 

the Daily News of 21
st
 August, 2016, Botswana had been 

experiencing searing heat since the 20
th

 August 2016, with 

temperatures ranging between the 40°C and 43°C marks in 

several parts of the country. The same newspaper reports Mr 

Radithupa Radithupa, the Chief Meteorologist at the 

Department of Meteorological Services (DMS), which is 

responsible for weather forecasting, had explained early that 

week that the heat wave was anticipated to break high 

temperatures in some places. Mr Radithupa indicated that the 

current maximum temperature record was 43.3°C recorded in 

Gaborone almost 72 years ago in 1944. 

MAGICC/SCENGEN results indicate an increase in 

temperature of 2°C, on average, for all areas of Botswana in 

the year 2030, with the temperature increasing from 0.5°C to 

over 2°C, according to Botswana’s Second National 

Communication to the [44]. 

Gaborone, located in the south east of semi-arid Botswana, 

characterized by very low and erratic rainfall patterns, suffers 

from regular extreme temperatures and is highly drought 

prone. The city has been experiencing chronic water scarcity 

and power outages as the Gaborone dam, which contributes 

38% supply to Greater Gaborone, reaches unprecedented low 

levels due to low rainfall amounts and high temperatures. As 

at August 23, 2016, the Gaborone Dam, with a capacity of 

141.4 million cubic meters, stood at 15.2% with a supply 

period of 7 months without inflow. As pointed out by [3], in 

spite of normal or above-average rainfall (no meteorological 

drought) in a season or year, heat waves and extreme 

temperatures may affect vegetation health and trigger 

vegetative/agricultural drought. A heat wave is considered 

only when the maximum temperature of a station reaches at 

least 40°C for plains and at least 30°C for hilly regions [39]. 

Understanding and predicting the trends of extreme 

weather events is crucial for the protection of socio-economic 

well-being. Quantifying extremely high surface air 

temperature changes and trends in extremes is also crucial for 

understanding global warming and mitigating its regional 

impact [16]. As pointed out by [16], often of interest to 

scientists is the T-year return level for annual maximum of 

daily temperatures, which is defined as the quantile Tq  (from 

the distribution of the extreme temperatures) which has 

probability 1/T  of being exceeded in a particular year. The 

return level is a fundamental quantity in the description of the 

behaviour of the upper tail of a distribution as it represents a 

rare event. And, to calculate return levels, we need to 

determine the most appropriate probability model for the 

distribution of the extreme temperatures. The current 

investigation attempts to provide a better understanding of 

trends in temperature extremes as a possible source of 

vulnerability to residents of the City of Gaborone by studying 

the patterns in the quarterly maximum surface air 

temperatures and estimating their return levels for different 

return periods. 

Extreme Value Theory (EVT) provides a rigorous 

framework for analysis of climate extremes and their return 

levels [28] and [10]. It is widely applicable in a wide range of 

disciplines including finance, insurance, engineering, 

hydrology and climatology. Statistical methods for modelling 

extremes of stationary sequences have receivedmuch 

attention and though different methods for inference do exist 

the modelling strategies are basically identical [10], [5] and 

[12]. Given the potentially disastrous social, economic and 

public health impacts of weather-related events such as heat 

waves, droughts and floods, and given the relative rarity of 

such events, applying the insights of extreme value theory to 

environmental risk analysis is both a necessity and natural 

evolution [40]. In practice, there are two commonly used 

approaches to model extreme values of a series of 

independent observations. The first approach is called the 

block maxima approach, in which data are blocked into 

sequences of observations of length n, for some large value 

of n, producing a series of block maxima. The generalized 

extreme value (GEV) distribution provides a model for the 

distribution of block maxima. However, modelling only the 

block maxima is a wasteful approach if other extreme values 

are available. The alternative approach is the peaks over 

threshold (POT) method, which focuses on exceedances over 

a fixed high threshold. The advantage of the POT method in 

modelling extremes is that more observations are 

incorporated into the analysis. [43] made an attempt along 

these lines by modelling monthly maximum temperature for 

Shakawe in Botswana using the generalized Pareto 

distribution. However, for the current investigation 

preliminary analysis of the data supports the modelling of the 

data using the GEV distribution. The modelling of extreme 
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temperature using the GEV distribution introduced by [26], is 

gaining currency (see [41], [19], [9], [37], [48]). Most 

recently, [2] model a 20-yeartime series of maximum 

temperatures from the Cameroon Development Corporation 

(C.D.C) for Mbonge using the generalized extreme value 

family of distributions. The authors find that the three-

parameter generalized extreme value model best fits 

maximum temperature data as compared to the Weibull, 

Frechet and Gumbel models. 

Despite the potentially disastrous effects of high 

temperatures on public health and the socio-economic 

wellbeing of the people, not much research work has been 

done in terms of applying extreme value methods to study the 

behaviour of extreme temperature data for Botswana. This 

study seeks to fill this gap. The results of the study will 

provide useful information to decision-makers in 

government, those involved in early warning systems and the 

health sector to prepare the public for the negative impacts of 

weather changes due to extreme temperatures 

The objective of this study is to quantify and describe the 

behaviour of extreme surface air temperature at the Sir 

Seretse International Airport in Gaborone, Botswana. Our 

aim is to model the quarterly maximum temperatures through 

the use of the GEV distribution and predict their future 

behaviour by estimating high quantiles of the maximum 

temperature distribution. The return levels are important for 

prediction and planning purposes, and must be estimated 

from a stationary model. Thus, the main purpose of 

developing a stationary GEV model for the SSK Airport 

quarterly maximum is to compare the estimated return levels 

(expected quantiles) from the GEV distribution with the 

currently used design value based on the some guideline, for 

example, the optimal temperature for human health. The 

paper is organised as follows. Section 1 gives the 

introduction. The remainder of the paper is organised as 

follows. Section 2 provides a description of the historical 

maximum temperature data and the extreme value 

methodology employed in the study. The results and 

discussion are provided in Section 3 while Section 4 contains 

the conclusions of the study. 

2. Data and Research Methodology 

2.1. Data 

The data consist of monthly maximum surface air 

temperatures, measured in degrees Celsius (°C), over the 

period January, 1985 to January, 2016, recorded at the Sir 

Seretse Khama (SSK) Airport weather station, in Gaborone, 

the capital city of Botswana. The dataset was obtained from 

the Department of Meteorological Services (DMS) of the 

Government of Botswana. This particular weather station 

was chosen based on availability and good quality of the 

data. For performing the analysis, the R software packages 

tseries, nortest, evir and extremes were used. 

2.2. Generalized Extreme Value Distribution 

Extreme value theory relies on the Extremal Types 

Theorem ([15], [18] and [30]), which identifies three distinct 

types of extremal behaviours: Let 1 2, ..., nX X X  be a series of 

independent and identically distributed random variables 

with a common distribution function F, and let 

1 2max( , ..., )n nM X X X= . If there exist normalising 

constants na  and nb  such that, as n → ∞ ,  

( ){ } ( )( )
nn n

n n
n

M b
P x F a x b G x

a

− ≤ = + →      (1) 

for all x ∈ℝ , where G is a non-degenerate distribution 

function, then G must be either Frechet, Gumbel or negative 

Weibull. [26] shows that the three types based on Equation 

(1) ca be combined to form a single parametric family called 

the generalized extreme value (GEV) distribution with 

cumulative distribution function (cdf) 
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                                   (2) 

with  and 0.µ σ−∞ < < ∞ >  The quantities µ, σ  and �	 are 

the location, scale and shape parameters, respectively. The 

shape parameter determines the rate of tail decay. The three 

types of extreme value distributions are obtained when 
0ξ >  (heavy-tailed Frechet), 0ξ →  (light-tailed Gumbel) 

and 0ξ <  (short-tailed negative Weibull). Interested readers 

are referred to [10], [5] and [42]. 

2.3. Choice of Block Size 

In the block maxima approach, extreme values are 

obtained by selecting the maximum values from equal length 

blocks such as a year. The GEV distribution provides a 

model for the distribution of block maxima. Its application 

consists of blocking the data into blocks of equal length, and 

fitting the GEV distribution to the set of block maxima [10]. 

The block size is very important in GEV modelling as the 

size of a block and the number of block maxima form a 

crucial trade-off between bias and variance of parameters 

estimates. A small block size generates a long sequence of 

block maxima, leading to a violation of the asymptotic 

validity of the model, which results in bias in parameter 

estimates and poor extrapolation; a large block size produces 
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a shorter sequence of block maxima, leading to a large 

estimation variance. In implementing the GEV model, the 

choice of block size has to be chosen so that individual block 

maxima have a common distribution. Furthermore, the data 

generating process is assumed to be stationary. 

However, in practice, extreme value data, especially 

environmental time series, may show some violation of the 

assumptions mentioned above due to one of or a combination 

of local temporal dependence, long term trends and seasonal 

variation. For instance, quarterly temperatures are likely to 

vary with the season, which violates the assumption of a 

common distribution for the individual block maxima. In 

many situations concerning climate studies a reasonable 

choice is to consider the annual maxima [10]. However, for 

this study due to scarcity of the temperature data, an annual 

block size would lead to only 10 annual maximum 

temperatures, since we are using a 10-year data set, which is 

too small a sample size for any meaningful inference. Hence, 

in this paper, we use the quarter of a year as the block and 

partition the series of monthly maximum temperatures for 

each year into four blocks of equal length: November – 

January (Q1), February – April (Q2), May – July (Q3) and 

August – October (Q4), with �� , � = 1,2,3,4, denoting the i
th

 

quarter of the year. 

2.4. Testing for Trend and Stationarity 

Before carrying out the modelling process one should first 

test a time series to see if it is stationary. A stationary series 

is one whose statistical properties, such as the mean, variance 

and covariance, do not change over time or space. As 

mentioned before, non-stationarity may be due to local 

temporal dependence, long term trends and seasonal 

variation. Violation of stationarity in climate extremes can 

lead to wrong estimates of return levels derived from a given 

extreme value model. 

Statistical tests that are used to detect time series trends are 

broadly grouped into two categories: parametric and non-

parametric methods. Non-parametric tests are more 

appropriate for hydro-meteorological time series data, which 

are generally non-normally distributed and censored ([49] 

and [7]). One of the well-established non-parametric 

(distribution-free) tests for trend detection is the Mann-

Kendall (MK) test, first proposed by [32], further studied by 

[29] and improved by [21], who modified the test to take 

seasonality into account. The MK test is used when the series 

values can be assumed to be independent and identically 

distributed and, thus, seasonality is not expected in the series. 

However, quarterly temperatures are likely to vary with the 

season. Therefore, in this paper, we apply one extension of 

the Mk test which takes seasonality into account, namely, the 

Seasonal Mann-Kendall (SMK) test (due to [21]) to detect 

trends in the quarterly maximum temperatures for the SSK 

Airport in the period under study. 

The purpose of a trend test is to determine if the time 

series has a monotonic trend. However, monotonicity of a 

series does not always indicate non-stationarity. Therefore, 

when the purpose is to identify non-stationarity in a time 

series, it is necessary to perform further tests on the series. 

The most commonly used stationarity test, the KPSS test, is 

due to [27]. Hence, in this paper, to investigate non-

stationarity in the quarterly maximum surface air temperature 

time series data for the SSK Airport, we apply the KPSS test. 

The test is selected due to its common use in environmental 

studies (see [46], [47], [50] and [19]). If the test of 

stationarity indicates non-stationarity in a particular way, 

then that non-stationarity can be modelled using models for 

non-stationary extremes; if the test indicates stationarity, we 

do modelling under the stationary assumption. In fact, as 

pointed out by [49], it is useful to develop non-stationary 

GEV models when there is evidence of statistically 

significant trends even if stationarity tests do not indicate 

non-stationarity. 

2.4.1. Seasonal Mann Kendall Trend Test 

The Seasonal Mann-Kendall test is described in detail in 

[21], [22], [17] and [20]. It is used to test for a monotonic 

trend of the variable of interest when the data collected over 

time are expected to have seasonality and serial correlation. 

The test assumes that when no trend is present, the 

observations in the time series are not serially correlated. 

Adopting the notation of [21] and [22], let ijx  denote the 

observation obtained in season �  in year 
 , where a season 

may be a day, week, month, quarter or any other period of 

time. In the present paper, the season is a quarter of a year. 

Hence, let 1 2 3 4( , , , )X x x x x=  represent the entire dataset 

collected over years consisting of data subsets 1 2 3 4, , ,x x x x  

where 1 2( , ,.., ), 1,2,3,4i i i inx x x x i= = , denotes the set of data 

for the ith quarter for n years,  

The null hypothesis H0 for the two-sided (homogeneity) 

SMK test is that there is no monotonic trend in the series and 

the alternative hypothesis HA is that for one or more seasons 

there is an upward or downward trend over time. 

If we denote the difference ik ijx x−  for the ith quarter, 

with k j> , and let sgn( )ik ijx x−  be the indicator function 

for quarter i , then the Mann-Kendall statistic for the ith 

season is calculated as 
1

1 1

sgn( ), 1, 2,..,

n n

i ik ij

j k j

S x x i m

−

= = +

= − =∑ ∑ , where m is the 

number of seasons, in our case 4m = , and 

1 0

sgn( ) 0 0

1 0

ik ij

ik ij ik ij

ik ij

if x x

x x if x x

if x x

 − >
− = − =
− − <

 

And, [21] have shown that the seasonal Mann-Kendall 

statistic for the entire series is given by 
1

ˆ
m

i

i

S s

=

=∑ , with 

variance 
1

ˆvar( ) var

m

i

i

S S

=

=∑  and  
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1
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var( ) [ ( 1)(2 5) ( 1)(2 5)]
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p

S n n n t t t

=

= − + − − −∑ , where 

�� is the number of tied groups for the ith quarter and ��� is 

the number of data points in the pth group for the ith quarter. 

Then the SMK test statistic smkZ  is given by 

ˆ 1
ˆ 0

ˆvar( )

ˆ0 0

ˆ 1
ˆ 0

ˆvar( )

smk

s
if s

s

Z if s

s
if s

s

− >

= =
 +
 <


                    (3) 

Thus, under the null hypothesis, ����  (Equation (3)) is 

equal to zero. On the other hand, a positive (negative) value 

of ����  is an indicator of an increasing (decreasing) trend. 

Thus, we reject the null hypothesis in favour of the 

alternative if |����| ≥ ���∝
��
, where ���∝

��
 is the 100(1 −

∝
2� )

th
 percentile of the standard normal distribution, that is, 

if |����| is improbably large. 

2.4.2. Kwiatkowski-Philips-Schmidt-Shin (KPSS) 

Stationary Test 

The KPSS test tests the null hypothesis that a time series is 

stationary against the alternative that the series is non-

stationary due to the presence of a unit root. The test is 

derived by starting with the model 

't t t tx D uβ µ= + + , with 2
1 , (0, )t t t t WN εµ µ ε ε σ−= + ∼  

where β  is a vector of regression coefficients, tD  contains 

deterministic components (constant or constant plus time 

trend), tµ  is a pure random walk with innovation variance 

2
εσ , and tu  is a random error term of tx  and may be 

heteroskedastic., tε  denotes the error term of tµ  and is 

assumed to be a series of identically distributed independent 

random variables of expected value equal to zero and 

constant variance 2
εσ . 

The KPSS test is a one-sided test with the null hypothesis 

of stationarity being equivalent to the assumption that the 

variance 2 0εσ = , which implies that tµ  is a constant and, 

hence, that tx  is trend stationary. Thus, the KPSS test 

statistic is the Lagrange multiplier (LM) or score statistic for 

testing 2 0εσ =  against the alternative that 2 0εσ >  and is 

given by Equation (4) as 

2

2
1

2

1 ˆ

ˆ

T

t

t

S
T

K
λ

==
∑                             (4) 

where j

1

ˆ û

t

t

j

S

=

=∑ , tû  is the residual of a regression of tx  

on �  and 2λ̂  is a consistent estimate of the long-run 

variance of !  using tû . 

As the KPSS stationary test is a one-sided right-tailed test, 

one rejects the null of stationarity at the 100"% level if the 

KPSS test statistic K is greater than the 100(1	 − 	")% 

quantile from the appropriate asymptotic distribution. 

2.5. Parameter Estimation 

Many methods are available in statistical literature for 

estimating the parameters of a probability distribution. These 

include the commonly used ones such as the methods of 

moments, maximum likelihood estimation, probability 

weighted moments and the L-moments method. In this study, 

we estimate the parameter of the GEV distribution using the 

widely used maximum likelihood estimation (MLE) method. 

Suppose %&�, &�, … , &()  is a set of independent and 

identically distributed random variables having the GEV 

distribution. Then, the log-likelihood for the GEV parameters 

( , , )µ σ ξ  when 0ξ ≠  is 

[ ]
1/

1 1

1
, , log 1 log 1 1

n n
i i

i i

x x
l n

ξµ µµ σ ξ σ ξ ξ
ξ σ σ= =

     − −   = − − + + − +        
        

∑ ∑                                     (5) 

provided 1 0ix µξ
σ
− + > 

 
, for � = 1, 2, … , *..  

The MLEs of ,  and µ σ ξ  are determined by maximising 

Equation (5) with respect to the parameter vector ( , , )µ σ ξ . See 

[23] for details. No analytical solution to Equation (5) exists and 

numerical optimisation algorithms have been used in practice. In 

this study, the Newton-Raphson method was used to solve the 

likelihood equations above, following [23] and [31]. 

2.6. Model Assessment 

2.6.1. Diagnostic Plots 

Though it is impossible to check the validity of an 

extrapolation based on a GEV model, assessment can be 

made with reference to the observed data [10]. In this paper, 

we use the probability plot, quantile plot, return level plot 

and density plot for model checking. However, graphical 

diagnostic techniques are subjective in nature and should, 

therefore, be supported by more rigorous statistical tests such 

as the well-known Kolmogorov-Smirnov and Anderson-

Darling as they allow for quantitative assessment of model 

fit. 

2.6.2. Goodness-of-Fit and Model Selection 

The two commonly used goodness-of-fit tests for extreme 

value models are the Kolmogorov-Smirnov test and the 

Anderson-Darling test, both of which are based on the 

empirical distribution function (edf). We apply these to the 
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quarterly maximum surface air temperature for the SSK 

Airport data. 

i. Kolmogorov-Smirnov Test  

The Kolmogorov-Smirnov (K-S) test is defined as the 

largest vertical difference between the empirical cumulative 

distribution function (edf) +((,)  to and the theoretical 

cumulative distribution function (cdf) +(,) . It is used for 

testing the null hypothesis that a sample of size n comes from 

a population with a specified distribution. That is, if 

,(�), ,(�), … , ,(()	denote an ordered sample of independent 

observations from a population with distribution function 

+(,), the K-S test statistic is given by Equation (6). 

max 1
,

1 n 1
i i

i
D u u

i n n

 = − − ≤ ≤ + 
             (6) 

where ( ) ,i iu F x= the cdf evaluated at the ��ℎ	 ordered 

observation of the ordered sample, 1, 2, 3,...,i n= , and n is 

the number of observations. The null hypothesis of the test is 

rejected in favour of the alternative if the calculated value of 

D is improbably large. 

ii. Anderson-Darling Test 

The Anderson-Darling (A-D) test due to [1] is used for 

testing the null hypothesis that a sample of size n comes from 

a population with a specified distribution. It is based on the 

discrepancy between the empirical cumulative distribution 

function +((,) to and the theoretical cumulative distribution 

function +(,). This test gives more weight to the tails of the 

distribution than the Kolmogorov-Smirnov test. Let 

,(�), ,(�), … , ,(()  denote an ordered sample of independent 

observations from a population with distribution function 

+(,). The test statistic of the Anderson-Darling test is 

( ) ( ) { }2
1

1

1
2 1 ln ln 1

n

n i n i

i

A n i u u
n

+ −
=

 = − − − + − ∑      (7) 

where, as before, ( ) ,i iu F x=  1, 2, 3,...,i n= . 

The distribution function of the A-D statistic is 

complicated, even asymptotically. However, [33] provide a 

computational method to evaluate the accuracy of the cdf for 

any sample size. And, the null hypothesis of the test is 

rejected in favour of the alternative if the calculated value of 
2
nA  is improbably large. 

2.7. Return Level Estimation 

In extreme value analysis, often of interest to scientists is 

the T-year return level for annual extremal data, which is 

defined as the quantile Tq  (from the distribution of the 

extreme values) which has probability 1 .⁄  of being 

exceeded in a particular year. The main purpose of 

developing stationary models is to compare estimated return 

levels (expected quantiles) from the GEV distribution with 

the currently used design values based on some guideline, 

where available. Extreme value theory is often used to find 

return values for return periods that amply exceed the record 

length [45]. This implies extrapolation of the GEV fit to a 

domain outside the range of the observations. In this study, 

we consider the 5-year, 10 -year, 25-year, 50-year, 100-year, 

110-year and 120-year return levels. The T-year return level 

Tq  is obtained by inverting the GEV distribution function 

given by Equation (2). Thus, if 
1

( ) 1TF q
T

= − , then Tq  is 

given by (see [5], Equation 5.9) 

1
[1 { log(1 )} ], 0

1
log{ log(1 )}, 0

T

T
q

T

ξσµ γ
ξ

µ σ γ

− − − − − ≠= 
 − − − =


        (8) 

And, the maximum Likelihood estimates for the return 

levels are obtained by substituting ,µ σ
∧ ∧

 and ξ
∧

 into Equation 

(8). 

3. Results and Discussions 

3.1. Descriptive Statistics 

Summary statistics for the SSK Airport quarterly 

maximum temperatures are contained in Table 1. The 

minimum (Min) and maximum (Max) surface air 

temperatures recorded at the SSK Airport during the study 

period are 26.5°C and 41.5°C, respectively. The small value 

of the coefficient of variation (CV) indicates little variability 

in the quarterly maximum temperatures. The p-value of 

0.0005 of the Jarque-Bera (BP) normality test shows 

overwhelming evidence against the null hypothesis that the 

quarterly maximum temperatures follow a normal 

distribution. The negative values of the coefficients of 

skewness and excess kurtosis, respectively, indicate that the 

data are negatively skewed and not heavy-tailed. A kurtosis 

measure of less than 3 (excess kurtosis <0), as compared to 

that of a normal distribution (3), depicts a central peak that is 

lower and broader with tails that are shorter and thinner. 

These results and the histogram imposed on the density plot 

in Figure 2, which represents a left-skewed distribution, 

support the use of the GEV to model the quarterly maximum 

temperatures. 

Table 1. Summary statistics for the SSK Airport quarterly maximum temperatures. 

n  Min Max Mean Median Mode S.D CV Skewness Kurtosis J.B (P-value) 

124 26.5 41.5  35.975 37.150 39.50 3.45 0.0958 -0.851 -0.17 15.049 (0.0005) 

 

Figure 1 shows a time series plot of the quarterly 

maximum surface air temperatures for the SSK Airport under 

the study period. From the figure, there appears to be no 

increase in the quarterly maximum temperatures through 
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time. And, there is no strong indication that the pattern of 

variation in the quarterly maximum temperatures has 

changed over the years. 

 

Figure 1. Time series plot for quarterly maximum temperature at SSK Airport, January – December, 2016. 

3.2. Testing for Trend and Stationarity 

3.2.1. Seasonal Mann-Kendall Test Without Correlation 

Table 2. Results of the Seasonal Mann-Kendall trend test. 

Statistics for Quarter (Season) 01 Var (01) Z tau p-value 

Individual 

season 

1 -48 3451.3 -0.8 -0.103 0.4139 

2 120 3454.7 2.0 0.258 0.0412 

3 -187 3457.7 -3.2 -0.402 0.00147 

4 -62 3447.3 -1.1 -0.133 0.291 

Total series  -177 13811 -1.5 -0.095 0.13204 

The results contained in Table 2 show that the quarterly 

maximum temperature at SSK Airport for Quarter 2 (April to 

June) have a positive value of 23, 23 � 120 , with p-

value=0.0412, which indicates a significant increasing trend 

in the maximum temperatures for the season. The result 

suggests that the months of April, May and June are getting 

warmer with time possibly due to the effects of climate 

change. The results from the Seasonal Mann-Kendall test 

further reveal that the maximum temperatures for Quarter 3 

(July to September), with 23 � �187  and p-value=0.00147 

are showing a significant decreasing trend. This result is also 

interesting since in Botswana, surface air temperatures 

normally begin to increase during July through September, 

after the winter season, with the coldest month of the year 

being June. The results seen here may be due to the effect of 

climate change but, the conclusion cannot be made 

definitively because the series consists of only 124 

observations and, so, may not be long enough to us to discern 

the effects of climate change. However, according to the 

Seasonal Mann-Kendall trend test, for the total series 	23 �

�177 , with p-value=0.13204, indicating that though the 

value of 23 suggests a decreasing trend in the series, there is 

has not been a significant monotonic trend in the overall 

quarterly maximum temperatures for the area.  

3.2.2. KPSS Test for Stationarity 

The observed KPSS test statistics is 6 � 0.323 with a p-

value greater than the printed p-value of 0.1, indicating that 

the test is not significant. Therefore, we conclude that the 

given series of quarterly maximum surface air temperatures 

at the SSK Airport indicate that the data are stationary. 

From the results of the Seasonal Mann-Kendall trend test 

and the KPSS stationarity test, the series of the quarterly 

maximum temperatures for the SSK Airport for the period 

under study exhibit neither a monotonic trend nor non-

stationarity. Hence, we fit the GEV under the assumption of 

stationarity. 

3.3. Parameters Estimates 

Table 3 contains maximum likelihood estimates (MLEs) of 

the parameters of the GEV for the quarterly maximum 

surface air temperatures at the SSK Airport. The numbers in 

brackets indicate the standard errors of the estimates. The 

standard errors are generally small, indicating small 

estimation variance. The goodness-of-fit of the model is 

discussed in Section 3.5 

Table 3. MLE parameter estimates of the GEV for the quarterly maximum temperature s. 

Parameter Location (8) Scale (9) Shape (�) 

Estimate (standard error) 35.2761 (0.3530) 3.6956 (0.2733) -0.5833(0.0457) 

 

3.4. Model Assessment 

3.4.1. Model Diagnostics 

Figure 2 shows four diagnostic plots for goodness-of-fit 

test of the GEV distribution and it reflects the fitting degree 

between the theoretical distribution, GEV, and the actual 

sample series. The upper left plot is the probability plot. The 

upper right plot is the quantile plot. All the dots that represent 

sample data in the probability plot and the quantile plot are 

virtually located on a straight line with a slope of 1. The 

lower left plot is the return level plot. Its ordinate is the 

return level of the maximum temperature and its abscissa is 

the return period in year on a logarithmic scale. In the return 
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level plot, the upper and the lower curves represent the 

confidence upper limit and confidence lower limit of the 

return level, respectively. All the dots representing sample 

data (quarterly maximum temperatures) are within the range 

of the confidence interval, concentrated near the middle 

convex curve and approaching a certain finite value. 

Therefore, like both the probability plot and the quantile plot, 

the return level curve supports the GEV model. The lower 

right plot is the density plot, which consists of the estimated 

probability density curve imposed on the histogram for the 

data. Its abscissa is maximum temperature (z) and its ordinate 

is the associated frequency. The estimated density curve also 

fits in with the histogram. Therefore, all the four diagnostic 

plots indicate the plausibility of the GEV (35.2761, 3.6956, -

0.5833) distribution as a model for the SSK Airport quarterly 

maximum temperatures. 

 

Figure 2. Model diagnostic for quarterly maximum temperatures at SSKA. 

3.4.2. Goodness-of-Fit Tests: Kolmogorov-Smirnov and 

Anderson-Darling Test 

Table 4 shows the Kolmogorov-Smirnov and Anderson-

Darling test results, obtained using Equations (6) and (7), 

respectively, for the SSK Airport quarterly maximum 

temperatures. An inspection of the p-value of each test leads 

to a non-rejection of the null hypothesis that the series 

follows the generalized extreme value distribution. 

Table 4. Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) statistics. 

Test Statistic p-value Significance level Reject 

A-D 1.0482342 - 0.05 no 

K-S 0.099 0.164 0.05 no 

Thus, we conclude that the SSK Airport quarterly 

maximum temperature series follows the GEV distribution 

which is the specified distribution under the null hypothesis.  

3.5. Return Level Estimates 

Once the best model for the data has been selected, interest 

is now in deriving the return levels of extreme quarterly 

maximum temperatures at the SSK Airport. The quarterly 

maximum temperature for the past 31 years was 41.5°C. 

Hence, to predict the probability that a quarterly maximum 

temperature exceeding 41.5°C will occur in a longer period, 

return levels were used based on maximum likelihood 

estimation method. The results, contained in Table 5, reveal 

that the surface air temperature for the SSK International 

Airport will be increasing over the next 120 years. 

Table 5. Return level estimates. 

Return period T (years) Estimated return level (°C) 

5 38.98 

10 39.91 

25 40.63 

50 40.96 

100 41.18 

110 41.20 

120 41.22 

From the table, the return level corresponding to a 5-year 

event for the SSK Airport maximum temperature is 38.98°C. 

This is the temperature which has a probability 

: � 1 5 � 0.2⁄  of being exceeded, on average, once every 

year in the next 5 years. The return temperatures for the 10-

year to the 120-year return periods range from about 40 to 

41°C. Thus, the 120-year return level estimate (41. 22°C) 

means that in the SSK Airport, a maximum surface air 

temperature of 41. 2°C is expected to be exceeded, on 

average, once in 120 years with probability 0.008, a rare 

event, in deed.  

The return level estimates above are actually not far from 

the upper end-point of the GEV distribution. Let <�,0 = : =

1 denote the maximum likelihood estimate of the return level 

associated with the return period 1/:, with the abscissa of 

the return level plot the return period on a logarithmic scale. 

If ? = 0, the right endpoint (asymptotic limit as : → 0) of 
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the GEV distribution is finite and is given by <A,B = C − D ?⁄  

([10] and [5]). For the SSK Airport quarterly maximum 

temperature series, the MLEs of the GEV parameters,(C =
35.2761, D = 3.6955806, ? = −0.5833) , imply that <A,B =
35.2760870 − 3.6955806 −0.5832625 = 41.61	⁄ °C. This 

finite right endpoint is evident on the return level plot in 

Figure 2, and means that, on the basis of the available data, 

we can conclude that the maximum surface air temperature 

will most likely never reach 41.6°C in the SSK Airport even 

beyond 120 years. However, the authors caution the reader 

that trend detection using extreme value analysis requires 

long-term and reliable data as currently observed trends may 

not persist in the future. As a result, great care must be 

exercised in extrapolating historical trends into the future, 

more particularly when making long-term projections of 

weather or climate extremes, as these may be affected by 

very different natural and anthropogenic causes than 

historical events. Hence, further studies involving larger data 

sets are necessary to identify trends in extreme temperatures 

in the SSK Airport and their timing, as well as possible links 

to climate change. 

It is inarguable that unusually high temperatures observed 

in the study area pose risks to public health and safety and 

the environment. Prolonged dry conditions due to low and 

erratic rainfall coupled with very high temperatures will no 

doubt jeopardise access to clean drinking water, result in 

extreme heat events and flash flooding. Among the possible 

consequences of extremely high temperatures are deaths that 

may occur due to direct impacts and the indirect effects of 

heat-exacerbated, life-threatening illnesses, such as heat 

exhaustion, heatstroke, and cardiovascular diseases. The 

results of this study should, therefore, be of help to members 

of the public in the City of Gaborone and all other 

stakeholders to take precautionary in the event of extremely 

high surface air temperatures. 

4. Conclusions 

The generalized extreme value distribution is used to 

model quarterly maximum temperatures using data obtained 

from the Sir Seretse Khama international Airport weather 

station in Gaborone for the period January 1985 to December 

2015. The Kwiatkowski-Philips-Schmidt-Shin test of 

stationarity on the series reveals that the maximum 

temperatures are stationary. The Seasonal Mann-Kendall 

trend test reveals no presence of monotonic trend. Parameters 

of the GEV distribution are estimated using the maximum 

likelihood method. Model diagnostics, which include the 

probability plot, quantile plot, return level plot and density 

plot, show a good fit of the GEV model to the quarterly 

maximum temperature series in the SSK Airport area. In 

addition, the Kolmogorov-Smirnov and Anderson-Darling 

goodness-of-fit tests support the plausibility of the GEV 

(35.2761, 3.6956, -0.5833) distribution as a model for the 

SSK Airport quarterly maximum temperatures. 

T-year return levels for the return periods 5, 10, 25, 50, 

100, 110 and 120 years, respectively, are estimated. The 

results show that the surface air temperature for the SSK 

International Airport will be increasing over the next 120 

years. On the basis of the available data, it is also revealed 

that the observed quarterly maximum temperature of 41.5°C 

cannot be exceeded even in the next 120 years.  

This study has demonstrated how extreme value theory can 

be used in the estimation of extreme quantiles of surface air 

temperature in a weather station in Gaborone. Our hope is 

that the study will be used to understand and predict the 

trends of extreme weather events in other stations around 

Botswana and elsewhere. The main limitation of this study is 

a lack of availability of data on extreme temperatures in the 

SSK Airport prior to the year 1985. However, further studies 

involving larger data sets are necessary to identify trends in 

extreme temperatures and their timing, as well as possible 

links to climate change. Further studies will be carried out to 

model joint (multivariate) data on air temperatures at several 

sites around south eastern Botswana in order to understand 

how extremely high temperatures in one weather station 

relate to those in nearby stations. 
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