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Abstract: There are many bootstrap methods that can be used for statistical analysis especially in econometrics, biometrics, 

Statistics, Sampling and so on. The sole aim of this paper is to ascertain the accuracy and efficiency of the estimates from the 

independent and identically distributed (iid) simple linear regression (SLR) model under a variety of assessment conditions 

using bootstrap techniques. Analysis was carried out using S-plus statistical package on hypothetical data sets from a normal 

distribution with different group proficiency levels to buttress the arguments in the paper. In the course of the analysis, 268,800 

scenarios were replicated 1000 times. The result shows a significant difference between the performances of the bootstrap 

methods used, namely; residual and parametric bootstrap techniques. From the analysis, the largest bias and standard error 

were always associated with model HP311 while the smallest bias and standard error values were associated with models 

HR311. The exception was found in the group proficiency level 3 - N (1, 0.25), when the sample sizes were 200, 1000 and 

10000 instead of model HR311 producing the smallest bias and standard error, model RP311 did. The significantly better 

performance of the residual bootstrap indicates the possible use of this technique in assessment of comparative performance 

and the capability of yielding very accurate, consistent, faster and extra-ordinarily reliable statistical inference under several 

assessment conditions. 
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1. Introduction 

Bootstrap is not simply another statistical technique but is 

rather a general approach to statistical inference with very 

broad applicability and very mild modeling assumptions. It is 

the result from the way the sample information is processed. 

For instance, in the case of samples from a normal 

distribution, all the information about the distribution of the 

sample mean is summarized in the sample mean and variance 

(standard error for samples), which are jointly sufficient 

statistics. Thus, other ways of processing sample information 

in this case does not yield any better results. In most 

econometric applications, where there is no readily available 

finite sample distribution of the test statistics that’s when one 

gets the most mileage out of the bootstrap methods. Even 

though, it is computationally more demanding than other 

sampling techniques. There are several forms of the bootstrap 

techniques but two methods (residual and parametric) are 

usually used when the dataset is independent and identically 

distributed (iid). This study examines them to ascertain 

which one is more efficient and sufficient statistic with 

respect to their proficiency level, bias and standard error on 

SLR models. Secondly, to estimate the test statistics of the 

functional models and to determine the best model under 

those conditions. 

This will be aided by an S-plus program (stat 4); the 

residual and parametric methods and functions were also 

incorporated. In addition, a hypothetical data sets from a 

normal distribution with different group proficiency levels 

will be used to buttress the arguments in the paper. 

2. Literature Review 

[1] considered as a special case where a parametric 

regression model yi= mL (xi) + ei, i = 1, where mL (xi) is the 
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regression function and ei denotes the associated ith error. 

For fixed design and parametric regression function, we may 

proceed by resampling the residuals eri = yi -mLh (xi) where 

Lh is a parameter estimator. Naive bootstrap samples e*i 

drawn from the empirical distribution of the centered 

residuals eri, are used to get the bootstrap regression model 

y*i = mLh (xi)+ e*i. This approach is called model-based 

parametric bootstrapping. Each of the bootstrap samples can 

provide an estimate of the regression parameter (s) following 

the same estimation procedure that was used with the original 

fitted model (e.g., ordinary least squares). From all the 

bootstrap replicates we get a simulation approximation to the 

bootstrap distribution of the regression parameter (s) and this 

is then used to make inferences about the parameter (s) based 

on this approximation to the sampling distribution (s) for the 

parameter estimate (s). When an explicit parametric equation 

is not available, an alternative is the block bootstrap, which 

consists of resampling blocks of subsamples, trying to 

capture the dependence in the data. When bootstrap 

replicates obtained from block bootstrap is not stationary, a 

bootstrap method called stationary bootstrap proposed by [2] 

will be used. [3], introduced the tapered block bootstrap. The 

idea of the block bootstrap has also been extended to the 

spatial setting, [4]. In model-based inference, [5] underscored 

the importance of the choice of residuals for the residual 

bootstrapping. Different modifications of this simple idea 

allow for adapting to random design, heteroscedastic models 

or situations where the regression function is not totally 

specified or is unknown [6], [7], [8]. For example, similar to 

the ideas of bootstrap in regression models, given an explicit 

dependence structure such an autoregressive model, [yi = m 

(yi-1, yi-2,..., yi-p)] and proceed by resampling from the 

residuals. Moreover, an overview of the residual bootstrap 

methods for estimation and prediction in time series and 

regression can be found in [9], [10], [11], [12], [13]. Though, 

[14] and [15], [16], [17] worked on the general efficiency of 

the bootstrap. In this study, the particular bootstrap method 

that is more efficient over the other in independent and 

identical distribution (iid) on the SLR will be established and 

added to literature. 

3. Methodology 

In this section, hypothetical data sets will be bootstrapped 

using the procedures below to develop residual and 

parametric bootstrap (PB) models aided by an S-plus 

package. 

3.1. The Residual Bootstrap 

Assuming the error terms in SLR are independent and 

identically distributed with common variance σ
2
, then we can 

generally make very accurate inferences by using the residual 

bootstrap. We do not need to assume that the errors follow 

the normal distribution or any other known distribution. The 

first step in the residual bootstrap is to obtain OLS estimates 

β and residuals �̂�. Unless the quantity to be bootstrapped is 

invariant to the variance of the error terms, if not, it is 

advisable to rescale the residuals so that they have the correct 

variance. The simplest type of rescaled residual is 

��� ≡ � �
��	


�/

�̂�                               (1) 

The bootstrap errors here are said to be ‘resampled’ from 

the üt. That is, they are drawn from the empirical distribution 

function, or EDF, of the üt. This function assigns probability 

1/n to each of the üt. Thus, each of the bootstrap error terms 

can take on n possible values, namely, the values of the üt, 

each with probability 1/n. 

3.2. Parametric Bootstrap 

The reason parametric bootstrap often works well is that 

least squares estimates and test statistics are generally not 

very sensitive to the distribution of the error terms. Of 

course, interest lies on when the distribution is assumed to be 

known, the parametric bootstrap DGP is; 

��
∗ = ���� + ��

∗,  ��
∗~����0, �
�                   (2) 

Here it is assumed that the errors are normally distributed, 

and so the bootstrap error terms are independent normal 

random variates and the usual use ordinary least square 

estimate of the error variance. Similar methods can be used 

with any model estimated by maximum likelihood, but their 

validity generally depends on the strong assumptions 

inherent in maximum likelihood estimation. 

3.3. Evaluation Criteria 

The following statistics evaluation criteria were used to 

investigate and understand the bootstrap DGP methods. Also, 

used to investigate the impact of different proficiency level, 

bias, standard error, root mean square (RMSE) on SLR 

models and to estimate the test statistics of the functional 

models. To achieve this, a satisfactory degree of smoothness 

for the distributions including nineteen assessment conditions 

will be used to estimate proficiency level, bias and standard 

error from the two bootstrap methods, in order to determine 

the best model. In bias test by [18], [19], a difference of 0.1 

standard deviation units is generally considered relatively 

large, whereas a difference of 0.25 is regarded as very large. 

This style will be adopted in this study. They ten assessment 

conditions can be classified into two categories. The first 

category describes the five factors and the second category 

describes kernel density, three test lengths and quantile- 

quantile plot. It is pertinent to note that 268,800 scenarios 

were replicated 1000 times. 

These nineteen assessment conditions are described below, 

starting with; 

The First Category - Five Factors; 

a. Factor 1: 

Bootstrap method; as indicated earlier, the residual and 

parametric bootstrap methods were considered. 

b. Factor 2: 

Restrictions; in the bootstrap methods the total of two re-

scaled and seven transformations were carried out to improve 
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the bootstrap data generating processes in the study. 

c. Factor 3: 

Degree of group proficiency difference; the populations do 

not need to be equivalent in ability levels. Therefore, it is 

essential to investigate this factor since it is reflected by the 

magnitude of differences in the means of the examinees’ 

ability distributions. The bootstrapped proficiency levels, 

investigation and evaluation will be described in four forms; 

N(0, 1), N(0, σ
2
), N(0, s

2
), and N�� , �
� denoted as (X, M, Z 

Q). Here, we use the standard error to get the group 

differences except in the last form were both were 

considered. Though, [20], [21] used only the mean 

differences in their study. Since σ
2
 = 1.00001, the two forms 

(X, M) are approximately the same based on the simulated 

values, so they are treated as one form. 

d. Factor 4: 

Different sample sizes 10, 14, 20, 28, 40, 50, 56, 80, 113, 

160, 200, 226, 320, 452, 500, 640, 905, 1000, 3000 and 

10,000 were studied. These levels represented typical small, 

medium, and large sample sizes. 

e. Factor 5: 

Bootstrap levels (PB and NPB levels); B-Level will be 99, 

199, 499, 999, 1999. These levels also represented typical 

small, medium, and large sample sizes and satisfies the 

pivotal conditions. 

Next section will be the analysis and interpretation of the 

estimates from the iid hypothetical data set aided by an R-

Statistical package. 

4. Data Analysis 

i. The results obtained from the Residual bootstrap data 

generating process (DGP), when applied on the 

hypothetical data sets with fixed sample size are as 

follows; 

4.1. Hypothetical Model (HR311), B=99, N(0, 1), n1=10000 

HYPt = bo + b1A+ b2B+ e                      (3) 

HYPt = 23.0231205b1 + 0.043451351 b2            (4) 

Standard error (0.05458350) (0.014030)             (5) 

Bias (0.00652269) (0.0162333)                  (6) 

ii. The results obtained from the Parametric bootstrap 

DGP when applied on the hypothetical data sets with 

fixed sample size using (3) are as follows; 

4.2. Hypothetical Model (HP311), B=99, N(0, 1), n1=10000 

HYPt = 23.00661205b1 + 0.039991390 b2             (7) 

Standard error (0.67646) (0.0329180)                (8) 

Bias (0.011196) (0.033732)                        (9) 

5. Interpretation of Results 

This section will be based on the hypothetical bootstrap 

models when bootstrap DGP models with Uncorrelated Error 

Term from the forms X; M; Z; Q distributions. 

Bias and standard error of the SLR a hypothetical data set 

As the sample size increased, the bias obtained from all the 

residual bootstrap models (HR311), decreased at almost all 

estimated values, which is to be expected because of the 

property of estimation bias. It can also be noted that although 

the bias at the estimated range for parametric bootstrap 

models (HP311) was large (in absolute value), the estimates 

curves from different parametric bootstrap models were 

closer to one another when the sample size was 20,000 than 

when the sample size was 200, Table 1. Across all the 

conditions considered, models HR311 yielded much smaller 

bias and standard error than the other models at almost all 

score points and various conditions. The regression 

coefficients (b1 and b2) of HR311 and HP311 have positive 

relationship with HYPt and also highly significant at 5% 

level. 

A general observation is that across different group 

proficiency levels, as the sample size increased, the standard 

error reduced; meanwhile, the differences among the 

different parametric bootstrap models were becoming more 

similar. As with the conditional bias, as the bootstrap level 

increased, the bias generally decreased. In Test 1, across the 

three different sample sizes and the three different group 

proficiency levels, the largest the bias and standard error 

were always associated with model HP311 while the smallest 

bias and standard error values were associated with models 

HR311. However, the difference in the bias between model 

HR311 and model HR311 in Test 2 was less than 0.0003. For 

Test 3, the results for including or excluding the lower end 

scores were not different, for HR311 still yielded the smallest 

bias and standard error, see Table 1 and 2. The exception was 

found for the group proficiency level 3- N(1, 0.25), when the 

sample sizes were 200, 1000 and 10000 instead of model 

HR311 producing the smallest the bias and standard error, 

model HP311 did. 

Table 1. Bias of the SLR for Residual and Parametric Bootstrap Models in a 

Hypothetical data set. 

bootstrap Ability Sample 

level Level Size HR311 HP311 

B=99 

N (0, 1) 

200 0.0842 0.1189 

1000 0.0336 0.0498 

10000 0.0162 0.0337 

N (0, 0.9) 

200 0.0365 0.0812 

1000 0.0204 0.0397 

10000 0.0114 0.0165 

N (1, 0.25) 

200 0.0748 0.1240 

1000 0.0345 0.0356 

10000 0.0171 0.0331 

B=499 

N (0, 1) 

200 0.0773 0.1224 

1000 0.0328 0.0598 

10000 0.0160 0.0162 

N (0, 0.9) 

200 0.1195 0.0765 

1000 0.0344 0.0347 

10000 0.0159 0.0166 

N (1, 0.25) 

200 0.1227 0.0748 

1000 0.0601 0.0345 

10000 0.0171 0.0177 
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bootstrap Ability Sample 

level Level Size HR311 HP311 

B=1999 

N (0, 1) 

200 0.1063 0.0813 

1000 0.0518 0.0333 

10000 0.0172 0.0297 

N (0, 0.9) 

200 0.1052 0.0828 

1000 0.0332 0.0480 

10000 0.0290 0.0170 

N (1, 0.25) 

200 0.1042 0.0814 

1000 0.0344 0.0308 

10000 0.0710 0.0289 

Note. The bold is the smallest value in each row 

Table 2. Standard Error of the SLR for Residual and Parametric Bootstrap 

Models in a Hypothetical data set. 

bootstrap Ability Sample 

Level Level Size HR311 HP311 

B=99 

N (0, 1) 

200 0.0580 0.1189 

1000 0.0311 0.0323 

10000 0.0140 0.0329 

N (0, 0.9) 

200 0.0765 0.0312 

1000 0.0244 0.0647 

10000 0.0129 0.0334 

N (1, 0.25) 

200 0.0748 0.1240 

1000 0.0145 0.0356 

10000 0.0172 0.0331 

B=499 

N (0, 1) 

200 0.0573 0.1224 

1000 0.0328 0.0598 

10000 0.0160 0.0165 

N (0, 0.9) 

200 0.0765 0.1216 

1000 0.0344 0.0349 

10000 0.0162 0.0159 

N (1, 0.25) 

200 0.1227 0.0748 

1000 0.0345 0.0599 

10000 0.0171 0.0177 

B=1999 

N (0, 1) 

200 0.1063 0.0813 

1000 0.0518 0.0333 

10000 0.0273 0.0176 

N (0, 0.9) 

200 0.0828 0.0904 

1000 0.0506 0.0332 

10000 0.0170 0.0188 

N (1, 0.25) 

200 0.0814 0.1042 

1000 0.0344 0.0308 

10000 0.0710 0.0289 

Note. The bold is the smallest value in each row. 

6. Conclusion 

The main findings are that, under all bootstrap conditions, 

the HR311 functional models produced smaller bias and 

standard error than HP311 functional models. The regression 

coefficients (b1 and b2) of HR311 and HP311 have positive 

relationship with HYPt and are also highly significant at 5% 

level. The result shows a significant difference between the 

performances of the bootstrap methods used, namely; 

residual and parametric bootstrap techniques. From the 

analysis, the largest bias and standard error were always 

associated with model HP311 while the smallest bias and 

standard error values were associated with models HR311. 

The exception was found for the group proficiency level 3- 

N(1, 0.25), when the sample sizes were 200, 1000 and 10000 

instead of model HR311 producing the smallest bias and 

standard error, model HP311 did. The significantly better 

performance of the residual bootstrap indicates the possible 

use of this technique in assessment of comparative 

performance and the capability of yielding very accurate, 

efficient and sufficient statistical inference under the several 

assessment conditions considered. 
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