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Abstract: The main objective of this study is to investigate the relative performance of donor imputation method in 

situations that are likely to occur in practice and to carry out numerical comparative study of estimators of variance using 

Nadaraya-Watson kernel estimators and other estimators. Nadaraya-Watson kernel estimator can be viewed as a non-

parametric imputation method as it leads to an imputed estimator with negligible bias without requiring the specification of a 

parametric imputation model. Simulation studies were carried out to investigate the performance of Nadaraya-Watson kernel 

estimators in terms of variance. From the results, it was found out that Nadaraya-Watson kernel estimator has negligible bias 

and its variance is small. When compared with Naïve, Jackknife and Bootstrap estimators, Nadaraya-Watson kernel estimator 

was found to perform better than bootstrap estimator in linear and non-linear populations. 
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1. Introduction 

Donor imputation is a method in which the missing 

values for one or more variables of a non responding unit 

(recipient) are replaced by the corresponding values of a 

responding unit (donor) with no missing value for these 

variables. It is a variance estimation method which is valid 

even in the presence of high sampling fractions [1]. 

However, very few variance estimation methods that take 

into account donor imputation have been developed. 

Essentially, donor imputation is convenient and has some 

interesting statistical properties. Although donor imputation 

may not be the most efficient method in any specific 

scenario, it is popular in surveys due to its practical 

advantages. Therefore, it remains useful to develop variance 

estimation methods that take donor imputation into account. 

In this study, variance estimator after donor imputation 

have been investigated and compared with the Naïve 

estimator, Jackknife estimator and Bootstrap estimator. 

Variance estimation methods accounting for the effect of 

imputation have been studied by [11], [13] and [8], among 

others. Some methods of variance estimation that have been 

developed for use with imputed data include a model-

assisted method [11], an adjusted jackknife method [11], 

and multiple imputations [8]. [2] considered Random Hot-

Deck (RHD) imputation under more general sampling 

designs assuming a one-factor analysis of variance model 

holds. [9], [6] and [5] dealt with Nearest Neighbor 

Imputation (NNI). [3] considered NNI, an alternative to re-

sampling variance estimation method. [10] considered NNI 

under simple random sampling assuming that a ratio 

imputation model holds. [1] dealt with general donor 

imputation methods including NNI and with possibly post-

imputation edit rules and hierarchical imputation classes, 

under general sampling designs and more general 

imputation models. In this paper, non-parametric variance 

estimation using donor imputation method have been 

considered with estimation of parameters �̂���� and ��	���� 

being done using the kernel method proposed by Nadaraya 

(1964) and Watson (1964). 
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2. Estimation Procedure 

Consider a population of N elements identified by a set of 

indices U = {1, 2,…, N}. Associated with the 
�� unit in the 

population are two variables (�� , �� ) where �� > 0, �� > 0 . 

The variable �  has some unknown values and it is the 

variable under study. The variable � is the auxiliary variable 

assumed to be known for all units of the population. A simple 

random sample without replacement (SRSWOR) of size n 

denoted as �  is drawn from the population. Suppose that ��, �	, … , ��  are observed (respondents) and ����, ���	, … ,�� are missing (non-respondents). That is � units respond for �  and � = � − �  do not respond. Therefore  � = � ∪ � . 

Consider a unit 
 ∈ �. The NNI method imputes a missing �! 

by ��  where 
 = 1,2, … , � and ' = 1,2, . . , � . 
  is the nearest 

neighbor of j measured by the ( variable. That is 
 satisfies )(� − (!)=min�,�,�)(� − (!). If there are tied ( values, then 

there may be multiple nearest neighbors of '  and 
  is 

randomly selected from them. Suppose that �
�)(� −(!)occurs for - = -�
�. Then the value �.��� is imputed for the 

missing �!. 

The completed data set is /��0: 
 ∈ �2                                  (1) 

Where ��0 = 3 �� , if 
 ∈ ��.���, if 
 ∈ � . If the survey has 100% 

response, then the populations mean �56 = �7 ∑ ��6                                (2) 

is estimated by the sample mean �59 = �� ∑ ��9  and its variance 

is estimated by 

:; = <�� − �7= �>	                          (3) 

where �>	 = ��?� ∑ ��� − �59�9 	
. 

In the presence of non-response, the customary approach 

to point estimation is to take the formula for 100% response 

and calculate it on the completed data set. Thus from (2), the 

estimator of �56  is �590 = �� @∑ �� + ∑ �.���B� C = �� D∑ �� +�∑ �E����B F where E� is the number of times the 
�� responding 

unit is used as a donor. For variance estimation, the naïve 

approach is to calculate the ordinary variance estimator, :;GHI , to (3) on data after imputation. i.e. :;GHI =<�� − �7= �>JK	  where �LJ	 = ��?� ∑ ��90 − �590�	9  and ��0 is defined 

by (1). This variance estimator can be biased. 

Let M�∙� denote the sampling design, that is, M��� is the 

known probability of obtaining a sample �. In our case, M��� 

denote the SRSWOR design. Given �, denote the response 

mechanism by O�∙∕ �� . i.e. O�� �⁄ �  is the unknown 

conditional probability that the response set � is obtained. We 

assume that O�∙∕ ��  may depend on the auxiliary variable /(� : 
 ∈ �2 but not on the values /�� : 
 ∈ �2. The total error 

(sum of sampling error and imputation error) of �590  can be 

broken down into sampling error and imputation error as 

follows 

�590 − �56 = ��59 − �56� + ��590 − �59� 

We note that RS��59� = �56 :S��59� = <�� − �7= �LT	 , where �LT	 = ∑ �LU?L5T�V7?�6  

Thus the bias of �590  is W��590�  = RMDRO��590 − �59� ∕ �F 
Variance of �590 denoted by : is given by : = RMRO��590 − �56�	 = :9XB + :�BS + 2:B�Y       (4) :9XB  is a standard variance estimator using the imputed 

values as if they were reported values. This is called the 

naïve variance estimator. [2] show that under the cell mean 

model and hot deck imputation, the bias of the naïve variance 

estimator as an estimator for :9XB  is small when no 

respondent is used too often as a donor of an imputed value. 

The jackknife variance estimator of �5  is given by :;! =<�?�� = ∑ @�5�!� − �5C	�!Z� [8]. In the presence of non-response to 

item y, the use of the above estimator may lead to serious 

underestimation of the variance of the estimator, especially if 

the non-response rate is important. [11] proposed an adjusted 

jackknife method that is calculated in a similar fashion as the 

above estimator except that, whenever a responding unit is 

deleted, the imputed values are adjusted. The imputed values 

are unchanged if a non-responding unit is deleted. Let ���!�X∗, 

denote the adjusted imputed value for unit 
 when unit j was 

deleted. For mean imputation, we have ���!�X∗ =3�5��!�, if �! = 1�5� , if �! = 0  where �5��!�  denotes the mean of the 

respondents excluding unit ' . The Rao-Shao jackknife 

variance estimator is then given by 

:;!H9 = \� − 1� ] ^@�5;.�!�_ − �5;.C	�
!Z�  

The bootstrap method is estimated by :;̀ ab =�c ∑ @d;� − θ;�∙�C	c�Z�  where θ; �∙� = �f ∑ θgfgZ� . [3] proposed a 

rescaling Bootstrap method in order to estimate the Variance. 

Their method draws bootstrap samples of size �0  with 

replacement from the rescaled sample�. Note that �0 may be 

different from �. The rescaling factor, denoted byh, is chosen 

so that the variance under re-sampling matches the usual 

variance estimator of the population mean. 

The Rao-Wu bootstrap variance estimator is given by :;Hi = �`?� ∑ @jk�l�∗ − jk�∙�∗ C	l̀Z� where jk�∙�∗ = ∑ jk�l�∗ Wml̀Z� . 

Applying the Rao-Wu bootstrap in the presence of missing 

responses and treating the missing values as true values, may 

lead to serious underestimation of the variance of the 

estimator. In the presence of imputed data, [12] proposed a 

bootstrap procedure for imputed survey data. The Shao-Sitter 

bootstrap variance estimator is given by :;̀ 99 = ��`?�� ∑ <jk�l�∗K − jk�∙�∗K =	l̀Z� , where jk�∙�∗K = ∑ j�l�∗K Wnl̀Z�  
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2.1. Donor Imputation 

A sample s of size n is drawn from population total U 

according to a probability sampling design M��� . In the 

absence of non-response, we assume SRSWOR with mean �59. 

Variable y is only observed for a subset ��  of � according 

to a response mechanism O���|��. This subset of size ��  is 

called the set of respondents (or donors) while its 

complement �B = � − ��  of size �B = � − ��  is called the 

set of non-respondents (or recipients). To compensate for the 

missing � values, donor imputation is performed. This leads 

to the imputed estimator of the mean given by 

�5p = 1� q^ �� + ^ ���∈9?9r�∈9r
s = 1� t^ �� + ^ E����∈��∈� u 

where E� = 3 0 
v
 ∈ �(.���
v
 ∈ �k -�
� ∈ ��  is the donor used to impute the recipient 
 . A 

variety of strategies can be considered in practice in order to 

find donors for imputing recipients. Usually, a vector ��  of 

auxiliary variables, available for all the sample units  
 ∈ �, is 

used to determine a set wB∗ , of selected donors that are “close” 

to the corresponding recipients in �B. 

2.2. Approach to Inference 

To evaluate properties of the imputed mean estimator �5p and 

to make inferences, the following imputation model is used: 

xy
z RB��� �⁄ � = �����:B��� �⁄ � = �	����h{||B@�� , �! ∕ �C = 3�	����
v
 = '0 
v
 ≠ '            (5) 

where the subscript �  indicates that the expectation, 

variance, and covariance are evaluated with respect to the 

imputation model, � is the N-row matrix containing (�0 in its 
��  row, and �����  and �	����  are parametric or non-

parametric smooth functions of �. Note that the subscript � 

in �B, �B , ~�� �B,�  indicates missing values and should not 

be confused with the imputation model. 

The vector � contains variables used at the imputation stage 

for the selection of donors. In principle, the imputer uses 

available variables that are associated with the y-variable. The 

vector �  may thus contain design variables (e.g., strata and 

cluster indicators, size measure), the domain of interest or 

other auxiliary variables. It is assumed in model (5) that the 

imputer has appropriately chosen the vector �  of auxiliary 

variables so that the design variables and the domain of 

interest do not explain further the y-variable after conditioning 

on � . This allows us to treat the design variables and the 

domain(s) of interest as being fixed under model (5). 

3. Proposed Variance Estimator 

Considering model (5), the total error of �5p can be broken 

down into sampling error and imputation error as shown in (4). 

The expectation appearing in the true variance component 

can be evaluated leading to expressions which depend on 

known (�  values and on the unknown model parameters �����  and �	���� . Therefore to estimate the three 

components of the variance, all we need to provide are the 

model unbiased estimators of �����  and �	����.  However, 

this will not completely lead to an explicit variance estimator 

since we still have to obtain expectations of some terms with 

respect to response mechanism. 

3.1. Estimation of VSAM 

:b�� = \1� − 1�] 1� − 1 ^��5� − �56�	
6 R�:b��� 

= \1� − 1�] 1� − 1 R �^���	 + �56	 − 2���56�� 
= \1� − 1�] 1� − 1 �\1 − 1�] �^ �	����6 + ^D�����F	

6 �� 

Hence, unbiased estimator of :b�� is 

:;b�� = \1� − 1�] 1� − 1 �\1 − 1�] �^ ��	����9 + ^D�̂����F	
9 �� 

Where ��	����  and �̂����  are model unbiased estimators of �	���� and ����� respectively. 

3.2. Estimation of VIMP :p�� = R��5p − �5�	 

�5p − �5 = 1� �^ �� + ^ E����� − ^ �� − ^ ���k� � 

��5p − �5�	 = 1�	 ��^ E���� �	 + �^ ���k �	 − 2 ^ E��� ^ ���k� � 

R��5p − �5�	 =  1�	 �:~� ^�E����� + tR ^�E����� u	 + :~� ^���� + qR t^�����k us	
�k − 2 tR ^ E��� . R ^ ���k� u�

= 1�	 �^ E�	�	����� + ^. �	���� + ^�(.��� − ������	
�k�k � 
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Hence an unbiased estimator of :p�� is 

:;p�� =  1�	 �^ E�	��	����� + ^. ��	���� + ^�(.��� − �̂�����	
�k�k � 

3.3. Estimation of VMIX 

:�p� = RD��5 − �56���5p − �5�F	�56 = 1� ^ ��6 = 1� t^ �� + ^ ��9k9 u = 1� t^ �� + ^ �� + ^ ��9k�k� u �5 − �56 = 1� �^ ��� + ^ ���k � − 1� �^ ��� + ^ ���k + ^ ��9k �
= \1� − 1�] �^ ��� + ^ ���k � − 1� ^ ��9k �5p − �5 = 1� �^ ��� + ^ E���� � − 1� �^ ��� + ^ ���k �
= 1� �^ E���� − ^ ���k � ��5 − �56���5p − �5��
= 1� \1� − 1�] ^ E���� �^ ��� + ^ ���k � − 1�� ^ E���� ^ ��9k − 1� \1� − 1�] ^ ���k �^ ��� + ^ ���k � + 1�� ^ ���k ^ ��9k
= 1� \1� − 1�] q^ E���	� + ^ ^ ���!��! − ^ ��� ^ ���k + ^ ���k ^ E���� − ^ ��	 − ^ ^ ���!��! − 1�� t^ ��9k ^ E���� − ^ ��9k ^ ���k u�k s 

RD��5 − �56���5p − �5�F
= 1� \1� − 1�] q^ E�R���	�� − ^ R����� ^ R�����k + ^ R�����k ^ E�R����� − ^ R���	��k
− 1�� t^ R���� ^ E�R�����9k − ^ R����9k ^ R�����k us
= 1�	 <1 − ��= �^ E
�	�(
�� − ^ �	�(
��k + ^ ������k �^ (.����k − ^ ������ ��
− 1�� �^ ����� ^ <(.��� − �����=�k9k � 

It follows that the unbiased estimator of :�p� is 

:;�p� = 1�	 <1 − ��= �^ E
��	�(
�� − ^ ��	�(
��k + ^ �̂�����k �^ (.����k − ^ �̂����� �� − 1�� �^ �̂���� ^ <(.��� − �̂����=�k9k � 

The estimator for the Variance is given by :;=:;b�� + :;p�� + :;�p� 

:; = \1� − 1�] 1� − 1 �\1 − 1�] �^ ��	����9 + ^D�̂����F	
9 �� + 1�	 �^ E�	��	����� + ^ ��	���� + ^�(.��� − �̂�����	

�k�k �
+ 1�	 <1 − ��= �^ E
��	�(
�� − ^ ��	�(
��k + ^ �̂�����k �^ (.����k − ^ �̂����� �� − 1�� �^ �̂���� ^ <(.��� − �̂����=�k9k � 

3.4. Estimation of ����� and ������ 

One of the most common methods in non-parametric 

regression is the kernel method introduced by Nadaraya-

Watson (1964), which is often obtained by using a bandwidth 

[7]. The kernel estimators with varying bandwidths are 

specially used to estimate density of the long-tailed and 

multi-mod distributions. A kernel estimate is introduced for 

obtaining a non-parametric estimate of a regression function. 

Smooth linear estimate of ����� 

A smooth linear estimate of a function ����� denoted by �̂����  can be written in general form as 

�̂����=∑ �c@�� , �!C�!!�9  

Where �c@�� , �!C  denotes a smoothing function with a 

bandwidth parameter k. This bandwidth parameter 

determines the amount of smoothing to be done. The 

estimates proposed by Nadaraya (1964) and Watson (1964) 

associated with kernel functions [7] will be considered. 

3.5. Nadaraya-Watson Smooth Estimate of ����� 

Nadaraya (1964) and Watson (1964) independently 

proposed the following estimate of �����. 
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�̂7i���� = ^ � �@�� − �!C� � �!/ ^ �99 �@�� − �!C� � 

where k denotes the bandwidth parameter. �  is called the 

kernel function with the following properties. 

1) ���� ≥ 0 ∀ � 

2) � ������ = 1�?�  

3) � �	����� < ∞�?�  [7] 

3.6. Smooth Linear Estimate of ���¢�� 

Consider �� = ����� + £�  where R�£�/��� = 0  and :�£�/��� = �	���� 

The estimate of the residual term is given by £�̂ = �� + �̂���� 

The square of the estimate of this residual term £�, 
 ∈ � is 

given by 

£̂	� = @�� + �̂����C	
                (6) 

To smooth �6�, we choose a smooth function ��@�� , �!C 

with a bandwidth parameter ℎ. Using (6), we get ��	���� =∑ ��@�� , �!C�∈9 @�� +  �̂����C	
 which is a smooth estimate of :���/��� 

A corresponding �¦  estimate of �	����  is given by 

��7§	 ���� = ∑ t<¨U©¨ª=« uJ <Lª� ¬­®¯@�ªC=V
∑ t<¨U©¨ª=« uJ where ℎ  denotes the 

bandwidth parameter. 

The estimator for the Variance is given by 

:; = \1� − 1�] 1� − 1 �\1 − 1�] �^.9 ��	���� + ^D�̂����F	
9 �� + 1�	 �^ E�	��	����� + ^. ��	���� + ^�(.��� − �̂�����	

�k�k �
+ 1�	 <1 − ��= �^ E
��	�(
�� − ^ ��	�(
��k + ^ �̂�����k �^ (.����k − ^ �̂����� ��
− 1�� �^ �̂���� ^ <(.��� − �̂����=�k9k � 

Where �̂���� and ��	���� are as given above. 

4. Simulation Studies 

In our simulation study, the performance of the proposed 

donor estimator was compared with the naïve estimator, 

Jackknife estimator and bootstrap estimator empirically. In 

our comparison, two artificial population structures (linear 

and non-linear), one real population (linear) and two non-

response mechanisms were considered. We conducted a 

simulation study to evaluate the performance of our variance 

estimator in terms of Relative Bias (RB) and Variance. 

The first population (linear population) was generated as 

follows: 100 data points were generated according to the 

linear homoscedastic model; �� = 0.25(� + -� with -�~ ��0, �	� and ��~ µ�0,1� 

This was done by first generating the auxiliary variables ��c�  values and then the values for  �c . In the second 

population structure (non-linear population), 100 data points 

were generated according to the quadratic homoscedastic 

model; �� = 0.5 + 0.25(� + 1.5(�	 + -�with -�~ ��0, �	� and ��~ µ�0,1� 

A simple random sample of size 0.225 of the population 

size was taken without replacement from each population 

structure. We considered two non response mechanisms 

which are random and non random non-response. 

For a random non-response mechanism, non responses 

were generated using independent Bernoulli trials with a 

constant parameter 0.3 representing the probability of non-

response. 

For a non random non-response mechanism, the sample 

values were arranged in order of magnitude using �c values 

and then the largest 30% of the values were regarded as 

missing. 

Non responses were generated for each non-response 

mechanism. To compensate for the missing values, nearest 

neighbor imputation was performed. After imputation, the 

four variance estimates :;¶·7 , :;̀ ab, :;GHI , ~�� :;IG7  were 

calculated. The experiment was repeated 1000 times 

independently and the average value of each value was got. 

In the case of bootstrap estimator, 1000 bootstrap iterations 

were used. In the instance of donor estimator, we used the 

bandwidth parameter that minimized the mean squared error 

and satisfied Silver-man’s (1986) condition. 

�4� �¹ ≤ ℎ ≤ 3�2� �¹  where � = ¾ 1� − 1 ^��� − �5�	7
�Z�  

The Epanechnikov’s kernel function 
¿À �1 − (	� was used 

since it gives optimal solutions. 

The performances of estimators were assessed using two 
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criteria: the relative bias and the Variance. The relative bias 

of the estimators is calculated as follows: ÁÂ =
ÃÃÄÄÄ ∑ �ÅÆ�?Å@ÇÈKCÅ�ÇÈK� �ÃÄÄÄ�ZÃ  where Å�ÇÈ0� = ÃÃÄÄÄ ∑ DÇÈ�0 −ÃÄÄÄ�ZÃÇÈF� , �5�0  is the value of �50  for the 
��  experiment and :;� 

represents the value of the estimator for the 
�� experiment. 

5. Results 

The results were then tabulated showing the performance 

of the estimators in terms of relative bias and Variance. Three 

populations were analyzed with each population having two 

tables. One table shows the case when the non-response 

mechanism is random while the other shows the case when 

the non-response mechanism is non-random. 

a) Case when population is linear. 

 

Fig. 1. Graph of Survey variables against design variables. 

From Table 1, the naïve estimator has the smallest 

Variance followed by Jackknife while our proposed estimator 

performs better than Bootstrap. The proposed estimator has 

the highest relative bias followed by the naïve estimator 

while Jackknife and Bootstrap seems to do well in terms of 

relative bias. 

b) Case when population is real 

 

Fig. 2. Graph of withdrawals against deposits. 

The results of Table 2 are similar to those of Table 1. This 

implies that whether the population is real or artificial, as 

long as it is linear, the estimators behave in the same way. 

c) Case when population scatter is non- linear. 

 

Fig. 3. Graph of Survey variables against design variables.

Table 1. Variance, Relative bias and M.S.E for the four variance estimators. 

 Variance estimator ÅÆÉÁÊ ÅÆËÌÍ ÅÆÂÎÏ ÅÆÊÉÍ 

Random Non-Response 

Variance 0.4439699 0.5691921 3.202729 2.293254 

Relative bias -0.2963652 -0.0979040 0.009863698 2.608374 

M.S.E 0.5318022 0.5787773 3.2028263 9.0967735 

Non Random Non-Response 

Variance 0.6639061 0.8511616 4.67159 3.122172 

Relative bias -0.2690474 -0.0628812 0.01366792 2.405759 

M.S.E 0.7362926 0.8551156 4.6717768 8.909848 
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Table 2. Variance, Relative bias and M.S.E for the four variance estimators. 

 Variance estimator ÅÆÉÁÊ ÅÆËÌÍ ÅÆÂÎÏ ÅÆÊÉÍ 

Random Non-Response 

Variance 0.1625649 0.2084165 6.557316 1.512266 

Relative bias -0.7205724 -0.6417595 0.03275899 1.566941 

M.S.E 0.68178948 0.6202718 6.5583892 3.9675701 

Non Random Non-Response 

Variance 0.1149530 0.1473756 5.396808 1.245422 

Relative bias -0.7506162 -0.6802772 0.01731654 1.671923 

M.S.E 0.678377679 0.610152668 5.397107863 4.040748518 

Table 3. Variance, Relative bias and M.S.E for the four variance estimators. 

 Variance estimator ÅÆÉÁÊ ÅÆËÌÍ ÅÆÂÎÏ ÅÆÊÉÍ 

RandomNon-Response 

Variance 0.0001596323 0.0002046568 0.03384162 0.001060072 

Relative bias -0.7516874 -0.6816506 0.0002926527 0.6284259 

M.S.E 0.565193579 0.464852197 0.033841705 0.395979183 

Non Random Non-Response 

Variance 9.254327e-05 0.0001186452 0.010714 0.0009753563 

Relative bias -0.7371964 -0.6630724 -0.0008681272 1.728175 

M.S.E 0.543551075 0.439783652 0.010714753 2.987564187 

 

According to Table 3, our proposed estimator performs 

better than the bootstrap estimator while the naïve and 

Jackknife estimators have the smallest Variance. Bootstrap 

seems to be the best in terms of relative bias while our 

proposed estimator has the highest relative bias. 

Discussion of the results 

Considering the above three tables where we were 

comparing the estimators when the popuation is linear or non 

linear, naïve estimator seems to have the smallest Variance 

followed by Jackknife estimator while our proposed 

estimator alternates with bootstrap. In non-linear population, 

our proposed estimator performs better in terms of Variance 

than bootstrap. It is also noted that the Variance and relative 

bias of the four estimators have close numerical values 

implying that they are all valid. 

It is worth noting that donor imputation may not be the 

most efficient imputation method in any specific scenario. 

Nevertheless, it is quite a popular imputation method in 

surveys due to its practical advantages. Therefore it is useful 

to develop variance estimation methods that take donor 

imputation into account. 

6. Conclusion 

The simulation study examined the performance of four 

variance estimators. Two population structures (linear and 

non-linear), and two non-response mechanisms were 

considered. Simulation study was conducted to evaluate the 

performance of the variance estimators in terms of Relative 

Bias (RB) and Variance. It was noted that the variance and 

the relative bias of the 4 estimators have very close numerical 

values. Hence all are valid and work well in simulation study. 

We have proposed a variance estimation method for any type 

of donor imputation. It is valid and was shown to work well 

in a simulation study. The variance of the proposed estimator 

is small and its relative bias is also small. 

Thus, it is useful to develop a variance estimation method 

that takes donor imputation into account. Its main drawback 

is that it depends on the validity of an imputation model. This 

is also a characteristic of the methods for NN imputation. 

Two key issues with any variance estimation method that 

relies on an imputation model are the appropriate choice of 

auxiliary variables for donor selection and the estimation of 

the model mean �c and variance �c	  given the chosen 

auxiliary variables. Auxiliary variables should be associated 

with the variable of interest so as to ensure that the 

conditional model bias remains small [1]. 
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