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Abstract: The point at which a process undergoes a significant shift from its usual course is known as change point. Change 

point analysis entails testing for the presence of change in a given process, and the location of a single or multiple change 

points. This study presents a maximum likelihood estimate of a single change point in a sequence of independent and 

identically distributed Poisson random variables which are dependent on some covariates. A Poisson regression model is used 

to estimate the mean parameter and the likelihood function. A likelihood ratio test is conducted to check whether change exists 

with critical values of the test being obtained as in Gombay and Horvath [9]. The procedure is validated for simulated data for 

cases when there is no change and when there is a predefined change point with special application to incidence of road 

accidents in Kenya. 
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1. Introduction 

Change is a usual aspect of everyday life. It can be noted 

perhaps in the socio-economic status of a low income earner 

who recently won a substantial sum of money in a lottery. It 

could be noted in the behavior of a young girl who is at the 

onset of adolescence. It could even be in the health status of 

an elderly man who has begun daily physical exercises at the 

local gymnasium. In other words, change is something one 

can easily relate to. However, change often goes unnoticed 

and most of the time, only the effects of change are noted at a 

much later time following its occurrence. 

From a statistical viewpoint, the realizations of any 

scientific process usually vary considerably over a defined 

threshold, within which the process is said to be in its “usual 

state”. Nevertheless, these realizations may exceed an 

acceptable threshold or their distributions may change at one 

point or at multiple points. 

If the exact instance when change occurred were known, 

then perhaps one could be a step closer to establishing the 

causes that could be attributed to it. This could help in taking 

appropriate measures to either reinforce these changes or 

more so to avoid them if they had adverse effects. For 

instance in medical science, the treatment and management 

of cancer has posed a great challenge in the current and past 

century even with the advancement of medical technology. 

This is mainly attributed to the fact that the success of cancer 

treatment is to a large extent dependent on the stage of 

development at which the cancerous growths were detected, 

Farber [8], Cooper [7]. However, most cancer patients do not 

realize that they have the disease until it is in advanced stages 

of development when the symptoms are obvious. This may 

be attributed to the relatively long latency period between 

exposure to carcinogens and the transformation of normal 

body cells to cancerous cells, Cooper [6]. The earlier the 

detection and onset of treatment of cancer the more 

manageable it is. 

Historically control charts, such as the CUSUM charts and 

Shewhart charts, were the most popular monitoring tools 

used to detect deviations in various processes. These charts 

were developed in the 1950’s for industrial quality control. 

They signaled that a process was out of control once 

measurements departed significantly from some predefined 



 American Journal of Theoretical and Applied Statistics 2016; 5(4): 219-224 220 

 

benchmark values. 

However, it was noted with concern that the point at which 

a control chart gave an out-of-control signal was not the 

actual point of change, but rather a belated point. 

Change point analysis was initially introduced in the 

quality control context as an improvement on the method of 

control charting. With CPA, it was possible not only to detect 

the presence of change in various processes, but also to 

locate the point of change. However, the two methods-

control charting and CPA, are often used to complement each 

other, Amiri [1]. 

Over the years CPA has developed into a fundamental 

problem with applications in various fields including but not 

limited to; dose-response surveys, credit scoring, identifying 

structural breaks, studying major drifts in weather patterns 

and earthquake patterns. 

The study of change points has evolved in time from the 

detection and estimation of a single change point, to that of 

multiple change points in a system. It has been applied over 

time to offline and online data sequences from various 

distributions. Different approaches to estimation of change 

points have been employed, the most common of which are 

Bayesian and likelihood-based approaches. The following 

sections 2 and 3 give a summary of the methodology applied 

and results obtained. 

2. Methodology 

2.1. Generalized Linear Models 

Generalized Linear Models, as in Nelder [11] are a class of 

linear models that provide an avenue to model a response 

variable against several predictor variables without requiring 

a linear relationship between individual predictors and the 

response variable. GLM’s have three main components: a 

random component which specifies the probability 

distribution of the response variable; a systematic component 

and a link function. 

GLM’s are based on the assumption that the distribution 

functions of the response variables belong to the exponential 

family of distributions with a given mean that specifies the 

form of the link function, Lee (2007). Particularly, a random 

variable Y is said to belong to the exponential family of 

distributions if its probability distribution can be expressed in 

the form: 
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For some constants , ,a b c and scale and location 

parameters ϕ  and θ  respectively 

Some models that belong to the class of generalized linear 

models are: the simple linear regression model, the logistic 

regression models, the log-linear models and the Poisson 

regression model. 

The Poisson regression model has the natural logarithm as 

the canonical link function. The link function allows the 

response variable to relate to the explanatory variables 

through a set of regression coefficients. This model rides on 

the basic assumption that the probability distribution of the 

response variable under consideration is the Poisson 

distribution. Particularly, a random variable Y is said to 

follow a Poisson distribution with mean parameter θ if it 

takes integer values 0,1, 2,...y =  with probability function: 

exp( )
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It can be shown that the Poisson variable Y belongs to the 

exponential family of distributions. 

In this model the natural logarithm of the expected value 

of the response variable, which is the Poisson mean 

parameter θ is expressed as a linear combination of the 

predictor variables. The Poisson regression model with log 

link takes the form: 

i exp( )θ = T X  β                              (3) 

This is equivalent to the linear form expressed as: 

i

ln  ( )

T

 X  βθ =                           (4) 

Where; X is a vector of explanatory variables, β is a vector 

of regression coefficients, θ  is the Poisson mean parameter. 

2.2. The Poisson Regression Change Point Model 

The general concept behind detection of a single change 

point is binary splitting. This entails the partitioning of a 

sequence of realizations of a random variable into two sub-

sequences; those cases whose values fall below some value, 

say k, and those whose values are above this value. The 

constant k is known as the change point. The change-point is 

chosen such that it maximizes the distinction between the 

two sub-sequences, Boudjellaba [2]. Similarly for a multiple 

change point problem, this binary splitting algorithm is 

applied recursively to each sub-sequence to obtain further 

change points, until the change points are exhausted. Several 

methods have been studied to estimate the locations of 

change points so far, including Bayesian and frequentist 

approaches, Chen and Gupta [5]. In this study the binary 

splitting algorithm is performed for the single change point 

case with respect to Poisson data sequences and maximum 

likelihood approach used to estimate the change point. 

Consider a sequence 1 2,...,, ny y y  from the distribution

( : )f y Θ . Let , 2 1k k n≤ ≤ − be an arbitrary point that 

partitions the sequence so that the first k observations follow 

the distribution ( ; ')f y θ while the rest of the observations 

after point k , have the distribution ( ; )f y θ ∗
for ',θ θ ∗ ∈ Θ . In 

other words, the two sub-sequences have a common 

distributional form but the parameters are different, so that 

the first k  observations follow a distribution with the 

parameter 'θ , while observations after the point k have a 

distribution with the parameterθ ∗ . This point k  where there 
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is a shift in the form of the distribution of the sequence, if it 

exists, is the change point. However, if there is no significant 

change the distribution of the entire sequence has a common 

parameterθ   

To check whether a change exists in this sequence, a 

likelihood ratio test with a null hypothesis of no change is 

performed. Mathematically the test hypotheses are written as: 
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Under the null hypothesis the likelihood function is: 
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Where the MLE of �  is obtained through Poisson 

regression as; 
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Under the alternative hypothesis, the likelihood function 

takes the form: 
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Where the MLE’s of ��and�∗ are obtained through Poisson 

regression as: 
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The likelihood ratio for 2 ≤ � ≤ � − 1 is obtained as: 
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The likelihood ratio test statistic that is used in this study 

is; 

( )max= Λk kB                            (12) 

The change point k is estimated such that 
kB  is 

maximized. The null hypothesis is rejected for large values of

kB , that is if 
kB C> where C is a constant that is 

determined by the size of the test, the sample size and the 

null distribution of this test statistic. The reader is referred to 

Gombay and Horvath [9] for a detailed illustration of the 

asymptotic distribution and the asymptotic critical values for 

the statistic
kB . 

Various sample sizes and dimensions were considered and 

critical values obtained for each sample size at three different 

levels of the test. See tables of critical values in the appendix. 

3. Results and Discussions 

3.1. Simulation Study 

Simulated observations for the response variable and two 

independent variables were random numbers generated using 

the R statistical software as follows:
1X , taken to represent 

the age of the driver, was obtained from a truncated Normal 

distribution with mean 35 and standard deviation of 10, 

confined within the integers 18 and 60.
2X , taken to represent 

the type of vehicle, was obtained from the Bernoulli 

distribution with parameter 0.6. Particularly it assumed the 

value 1 for a PSV and 0 otherwise.Y , taken to represent the 

total annual accident count, was obtained from the Poisson 

distribution with mean parameterθ , obtained by fixing the 

regression coefficients as
1 2exp(1.5+0.019X +0.005X )θ = for 

a case of no change; 
1 2' exp(1.5+0.019X +0.005X )θ = and 

1 2exp(1.1+0.001X +0.002X )θ ∗ = for a case when there is a 

change. This was executed iteratively for three chosen 

change points, ,
4 2

n n
and 

3

4

n
 for a sample size n  and for 

every value of θ a single value of Y was generated. 

The model for the Poisson change point described in 

section 2 was fitted to the simulated data for different sample 

sizes. The procedure was repeated several times and the test 

statistic values stored for each value of , 2 1≤ ≤ −k k n . 

Graphs of the test statistic were plotted and their maximum 

values compared to the tabulated critical values. For the case 

of no change with a sample size of 200, it was found that the 

maximum value of the LRT statistic 4.465 was below each of 

the critical values for test sizes (see table A1 in the 

appendix). Therefore the null hypothesis was not rejected; as 

such, the method correctly showed that there was no change. 

Figure 1 shows the result of the LRT for a case of no 

change with n=200 . The red line marks the maximum value 

of the test statistic while the green line marks the critical 

value at 5% level. 

For the case of a preset change point with a sample size of 

200, it was found that the maximum value of the LRT 

statistic 6.45632 was above each of the critical values for all 

values of alpha (see table A1 in the appendix). Therefore the 

null hypothesis was rejected; as such, the method correctly 

showed that there was a change. 

Figure 2 shows the results of the LRT for a change at 
2

n

when n=200 . The redline marks the maximum value of the 

test statistic whereas the green line marks the critical value at 

5% level. 

Histograms of change points for the case of a change were 

plotted to investigate the power of the Likelihood Ratio test. 

It was noted as expected that majority of change points for 

different sample sizes lay around the preset change points. 

The power of the LRT was obtained as a ratio of the number 

of times the test yielded the correct results for the change 
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points estimates to the total number of iterations. The reader 

is referred to Mundia and Waititu [10] for further reading on 

the power of the LRT for a single change point. The results 

are summarized in table 1 for some preset change points at 

4 , 2n n and 3 4n  for a sample size n  = 200. 

 

Figure 1. The LRT for a case of no change when n=200. 

 

Figure 2. The LRT for a change at 
2

n
 when n=200. 

Table 1. Power of test for three preset change points. 

Change Point n/4 n/2 n/3 

Number of correct results 100 175 140 

Number of iterations 200 200 200 

Power of Test 0.50 0.875 0.70 

The test was found to be most powerful when the change point was set at 2n . Moreover it was noted that the test was more 

powerful at 3 4n  compared to 4n  even when the two points are in the same relative position in respect of the end points. 

Thus the distribution of change points is asymmetrical. 

3.2. Model Application to Real Data 

 

Figure 3. A line graph of the real data for the years 2000-2011. 
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Secondary data on road accidents in Kenya were obtained 

from the Ministry of Transport, Traffic department for the 

period 2000-2011. The Poisson response variable Y, was the 

total annual accident count, presumed to be influenced by 

four major causes: X1-human errors, X2-non-human errors, 

X3-bad weather and X4-vehicle and road defects. A line 

graph, as in figure 3, of the real data for the years 2000 to 

2011 reveals that there was a marked decrease in the total 

number of accidents in the year 2004. Moreover, the annual 

number of accidents was lower for the block of years 2004-

2011 compared to the block of years 2000-2003. This 

indicates that there was a change at some point during the 

period under consideration. 

3.2.1. Model Selection 

Hierarchical Poisson regression models were fitted to the 

real data and the AIC alongside the deviance statistic used to 

choose the model that best fit the data. Hierarchical models 

such as those used in Syamsunder and Naikan [12] are useful 

in evaluating the effects of various covariates on the response 

variable. 

The full model included all four independent variables to 

take the form: 

0 1 1 2 2 3 3 4 4ln( )θ β β β β β= + + + +X X X X        (13) 

Where;θ =mean annual accident count. 

Three reduced models were obtained by leaving out some of 

the independent variables. The results obtained for the four 

models with regard to AIC, the deviance and the 

corresponding degrees of freedom are summarized in table 2. 

Table 2. Analysis of deviance table. 

Model Model variables AIC Deviance df 

1 X1, X2, X3, X4 160.47 15.735 7 

2 X1, X2, X3 163.11 20.366 8 

3 X1, X2 199.04 58.3 9 

4 X1, X3 169.23 28.488 9 

With regard to the AIC values, Model 1 was the best 

choice since it had the smallest AIC. 

A chi-square test for change in deviance was constructed 

at 5% level to compare each of the smaller models against 

the full model. The hypotheses tested were of the form: 

H0: Reduced model is better 

H1: Saturated model is better 

The p-values for models 2, 3 and were; 104.775*10− , 0.0314 

and 0.00174 respectively. The null hypothesis was rejected for 

all three models since their p-values were lower than 5%. 

Therefore the most appropriate regression model was Model 1. 

3.2.2. Model Fitting 

A graph of the LRT statistic for the real data as shown in 

figure 5 attained a maximum at the year 2003. This 

maximum value (3.4271) as marked by the red line exceeded 

the critical value at 5% level (see table A2 in the appendix) 

as marked by the green line. This revealed that a significant 

change was present; hence the null hypothesis of no change 

was rejected. It was concluded that there was a change in the 

distribution of the two sub-sequences before and after the 

year 2004 as marked by the vertical line at year 2003. This 

backed up the findings from the line graph in figure 3, that 

there was a change in the year 2003. 

 

Figure 4. The LRT for change for the real data. 

4. Conclusions, Limitations and 

Recommendations 

It was found that there was a significant change in the 

annual number accidents on Kenyan roads in the year 2003 

evidenced by the marked drop in accident counts at the end 

of year 2004. This could be attributed to the enforcement of 

stringent traffic rules in the year 2003. The famous “Michuki 

rules” were imposed on the transport sector toward the end of 

the year 2003 and early 2004 by the then Minister for 

Transport, the late Hon. John Michuki. However as time 

passed, these rules were flouted especially by motorists in the 

public service sector, and the accident rate increased 

consequently. Since these rules had a marked positive 

contribution toward the efforts to curb road carnage they 

should be reinforced by the Ministry of transport. 

This study focused on the estimation of a single change 

point in a sequence of i.i.d. random variables using the 

maximum likelihood approach. A Poisson regression model 

was fitted to the data with the necessary assumption that the 

sequence of variables was derived from a Poisson 
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distribution with equal mean and variance. However, as the 

case may be in some datasets, the variance may be lower than 

or exceed the mean, which would rule out the applicability of 

a Poisson regression model. In such cases, the negative 

binomial regression model for instance, may be considered. 

More suggestions on how to deal with non-homogeneous 

Poisson processes may be found in Chang [4]. 

A major drawback faced in this study was dealing with 

large data values that are problematic under the Poisson 

model. This problem could possibly be resolved by 

considering a non-parametric approach. Moreover, an 

alternative method of estimation to the MLE such as the 

CUSUM procedure or Bayesian analysis as in Carlin [3] may 

be considered. Further, there is a need for improved 

documentation of data on road accident in Kenya especially 

with regard to the variables affecting these events. 

Appendix: Tables of Critical Values 

Table A1. Table of critical values for the simulated data. 

Sample size Test size Critical Values 

12 

0.01 4.062015 

0.05 3.524803 

0.10 3.246775 

50 

0.01 4.28215 

0.05 3.783263 

0.10 3.531413 

100 

0.01 4.351433 

0.05 3.864997 

0.10 3.621652 

200 

0.01 4.407084 

0.05 3.930433 

0.10 3.693768 

Table A2. Table of critical values for the actual data. 

Sample size Test size Critical Values 

12 

0.01 2.527259 

0.05 2.497973 

0.10 2.463733 

50 

0.01 3.074956 

0.05 2.92367 

0.10 2.796207 

100 

0.01 4.270939 

0.05 3.712869 

0.10 3.41866 

200 

0.01 4.57571 

0.05 4.055173 

0.10 3.784107 
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