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Abstract: The aim of this article is to study the Bayes estimation and minimax estimation of the parameter of Maxwell 

distribution. Bayes estimators are obtained with non-informative quasi-prior distribution under different loss functions, namely, 

weighted squared error loss, squared log error loss and entropy loss functions. Then the minimax estimators of the parameter 

are obtained by using Lehmann’s theorem. Finally, performances of these estimators are compared in terms of risks. 
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1. Introduction 

The Maxwell distribution was first introduced by Maxwell 

in 1860, and since then, the study and application of Maxwell 

distribution have been received great attention. In 1989, 

Tyagi and Bhattacharya [1] firstly used Maxwell distribution 

to model products’ life, and they obtained the minimum 

variance unbiased estimator and Bayes estimator of the 

parameter and reliability. Chaturvedi and Rani [2] studied 

Bayesian reliability estimation of the generalized Maxwell 

failure distribution. Podder and Roy [3] studied the 

estimation of the parameter of this distribution under 

modified linear exponential loss (MLINEX) function. Bekker 

and Roux [4] discussed the maximum likelihood estimator 

(MLE), Bayes estimators of the truncated first moment and 

hazard function of the Maxwell distribution. Dey and Maiti 

[5] derived Bayes estimators of Maxwell distribution by 

considering non-informative and conjugate prior distributions 

under three loss functions, namely, quadratic loss function, 

squared-log error loss function and MLINEX function. The 

references [6-8] studied the reliability estimation of Maxwell 

distribution based on Type-II censored sample, progressively 

Type-II censored sample and random censored sample, 

respectively. Reference [9] obtained some Bayes estimators 

under quadratic loss function using non-informative prior, 

represented by Jefferys prior and Informative priors as 

Gumbel Type II and Conjugate (Inverted Gamma and 

Inverted Levy) priors. More details about Maxwell 

distribution can be found in references [10-12]. 

This paper is devoted to the minimax estimation problem 

of the unknown scale parameterθ in the maxwell distribution 

with the following probability density function (pdf) (Dey 

and Maiti [5]): 
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The minimax estimation is an important part in the 

statistical estimation area, which was introduced by Abraham 

Wald [13]. The minimax estimation theory has drawn great 

attention by many researchers. Roy et al. [14] studied the 

minimax estimation of the scale parameter of the Weibull 

distribution for quadratic and MLINEX loss functions. Podder 

et al. [15] derived the minimax estimator of the parameter of 

the Pareto distribution under Quaratic and MLINEX loss 

functions. Dey [16] discussed the minimax estimator of the 

parameter of Rayleigh distribution. Shadrokh and Pazira [17] 

studied the minimax estimator of the parameter of the minimax 

distribution under several loss functions. 

The purpose of this paper is to study maximum likelihood 

estimation (MLE) and Bayes estimation of the parameter of 

Maxwell distribution. Further, by using Lehmann’s theorem 

we derive minimax estimators under three loss functions, 

namely, weighted squared error loss, squared log error loss 

and entropy loss functions. 
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2. Preliminary Knowledge 

2.1.... Maximum Likelihood Estimation 

Let
1 2( , , , )nX X X X= …  

be a sequence of independent and 

identically distributed (i. i. d.) random variables of Maxwell 

distribution with pdf (1), and ),,,( 21 nxxxx …=
 
is the 

observation of X . The likelihood function of θ  for the 

given sample observation is 
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where 
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By solving log likelihood equation, the maximum 

likelihood estimator of θ  is easily derived as follows: 

3θ̂ =M

n

T
                                       (4) 

And by Eq. (1), we can easily show that T  is distributed 

the Gamma distribution 
3
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n
θΓ , which has the following 

probability density function ([5], p. 283): 
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Here, 1

0
( ) x tx t e dt

+∞ − −Γ = ∫  is the Gamma function. 

2.2. Loss Function 

Loss function plays an important role in Bayesian 

analysis and the most common loss are symmetric loss 

function, especially squared error loss function are 

considered most. Under squared loss function, it is to be 

thought the overestimation and underestimation have the 

same estimated risks. However, in many practical practical 

problems, overestimation and underestimation will have 

different consequences. To overcome this difficulty, 

Zellner [18] proposed an asymmetric loss function known 

as the LINEX loss function, Brown proposed a new 

asymmetric loss function for scale parameter estimation in 

1968, which is called squared log error loss (Kiapoura and 

Nematollahib [19]): 

2( , ) (ln ln )θ δ δ θ= −L                           (6) 

Which is balanced and ( , )L θ δ → ∞  as 0δ →  or ∞ . 

The risk function has minimum at the following Bayes 

estimator: 

ˆ exp[ (ln | )]δ θ=SL E X .                        (7) 

In many practical situations, it appears to be more realistic 

to express the loss in terms of the ratio /δ θ . In this case, 

Dey et al. [20] pointed out that a useful asymmetric loss 

function is entropy loss function: 

ˆ( , ) ln 1
δ δθ θ
θ θ

= − −L                          (8) 

The Bayes estimator under the entropy loss is denoted by

BEθ̂ , given by 

1 1ˆ [ ( | )]δ θ − −=BE E X .                          (9) 

3. Bayesian Estimation 

In this section, we estimate θ  by considering weighted 

square error loss, squared log error loss and entropy loss 

functions. 

We further assume that some prior knowledge about the 

parameter θ  is available to the investigation from past 

experience with the Maxwell model. The prior knowledge 

can often be summarized in terms of the so-called prior 

densities on parameter space of θ . In the following 

discussion, we assume the following Jeffrey’s non-

informative quasi-prior density defined as, 

1
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θ
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d
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Hence, 0=d  leads to a diffuse prior and 1=d  to a non-

informative prior. 

Combing the likelihood function (3) and the prior density 

(10), we obtain the posterior density of θ  is 
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This is a Gamma distribution 
3
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Theorem 1. Let 
1 2( , , , )= … nX X X X  be a sample of 

Maxwell distribution with pdf (1), and 
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Then 

(i) Under the weighted square error loss function 
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the Bayes estimator is given by 
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(ii) The Bayes estimator under the squared log error loss 

function is come out to be 
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is a Digamma function. 

(iii) The Bayes estimator under the entropy loss function 

is obtained as 
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Thus, the Bayes estimator under the weighted square error 

loss function is given by 
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For the case  

(ii) By using (11), 
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Then the Bayes estimator under the squared log error loss 

function is come out to be 

3
( 1)
2

ˆ exp[ (ln | )]
/ 2

δ θ
Ψ − +

= =
n d

SL

e
E X

T
 

(iii) By Eqs. (10) and (17), the Bayes estimator under the 

entropy loss function is given by 
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4. Mimimax Estimation 

The most important elements in the minimax approach are 

the specification of the prior distribution and the loss 

functions by using a Bayesian method. The derivation of 

minimax estimators depends primarily on a theorem due to 

Lehmann which can be stated as follows: 

Lemma 1 (Lehmann’s Theorem) If { };θτ θ= ∈ΘF  be a 

family of distribution functions and D a class of estimators of

θ . Suppose that δ • ∈ D  is a Bayes estimator against a prior 

distribution ( )δ θ•

 
on Θ , and the risk function ( ),δ θ•R  

equals constant on Θ ; then δ • is a minimax estimator of θ . 

Theorem 2 Let 
1 2( , , , )= … nX X X X  be a sample of 

Maxwell distribution with probability density function (1), 

then 

(i) 
3 2 2δ̂ − −=BS
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parameter θ  for the weighted square error loss 

function. 

(ii) 
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parameter θ  for the squared log error loss function. 

(iii) 
3 2δ̂ −=BE

n d

T  
is the minimax estimator of the 

parameter θ  for the entropy loss function. 

Proof. To prove the theorem we shall use Lehmann’s 

theorem, which has been stated before. Then we have to find 

the Bayes estimator δ  of θ . Thus if we can show that the 

risk of d  is constant, then the theorem 2 will be proved. 

(i) The risk function of the estimator ˆ
BSδ  is 
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Then ( )θR  is a constant. So, according to the Lehmann’s 

theorem it follows that, δ̂BS  is the minimax estimator for the 

parameter θ  of the Maxwell distribution under the weighted 

square error loss function. 

Now we are going to prove the case  

(ii) The risk function of the estimator δ̂SL  is 

( ) ( ) ( )2
ˆ ˆ, ln lnθ θ δ δ θ  = = −

    SL SLR E L E  

2 2ˆ ˆ[ln ] 2 ln ln[ ] (ln )δ θ δ θ= − ⋅ +SL SLE E  

From the conclusion 
3

~ ( , )
2 2

θΓT n , we have 

3
(ln ) ( ) ln ln 2

2
θ= Ψ − +E T n  

Thus 

3ˆ[ln ] ( ( 1) ln ln 2)
2

3 3
( 1) [ ( ) ln ln 2] ln 2
2 2

3 3
( 1) ( ) ln
2 2

δ

θ

θ

= Ψ − + − +

= Ψ − + − Ψ − + +

= Ψ − + − Ψ +

SLE E n d T

n d n

n d n

 

2 2

2 2

3ˆ[ln ] [ ( 1) ln( / 2)]
2

3 3
( 1) 2 ( 1) [ln( / 2)] [(ln / 2) ]
2 2

SLE E n d T

n d n d E T E T

δ = Ψ − + −

= Ψ − + − Ψ − + +
 

Using the fact 

2 1 2 1

0 0

2 2

(ln ) (ln )
( ) ( )

( ) ( )

[(ln ) ] ( )

− − − −∞ ∞
′Ψ = − Ψ

Γ Γ
= −Ψ

∫ ∫
n y n yy y e y y e

n dy n dy
n n

E Y n
 

where ~ ( ,1)ΓY n . and we can show that 

3
~ ( ,1)

2 2

θ= ΓT
U n

 

Thus 

2 2 2

2 2

2 2

3 3
( ) ( ) [(ln ) ] [(ln( / 2) ln ) ]
2 2

[(ln( / 2)) ] 2ln (ln( / 2)) (ln )

3
[(ln( / 2)) ] 2ln ( ( ) ln ) (ln )

2

θ

θ θ

θ θ θ

′Ψ + Ψ = = +

= + ⋅ +

= + ⋅ Ψ − +

n n E U E T

E T E T

E T n
 

Then we get the fact 
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Then ( )θR  is a constant. So, according to the Lehmann’s 

theorem it follows that, δ̂SL  is the minimax estimator for the 

parameter θ  of the Maxwell distribution under the squared 

log error loss function. 

Finally we are going to prove the case 

(iii) The risk function of the estimator δ̂BE  is 
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Then ( )R θ  is a constant. So, according to the Lehmann’s 

theorem it follows that, δ̂BE  is the minimax estimator for the 

parameter θ  of the Maxwell distribution under the entropy 

loss function. 
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5. Risk Function 

The risk functions of the estimators ˆ ˆ,δ δBS BL
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relative to squared error loss 2ˆ( , ) ( )θ θ δ θ= −L  are denoted 

by ˆ ˆ( ), ( )δ δBS BLR R  and ˆ( )δBER , respectively, are can be 

easily shown as 

ˆ ˆ( ) [ ( , )]δ δ θ=BS BSR E L  

2 23 2 2ˆ[( ) ] [( ) ]BS

n d
E E

T
δ θ θ− −= − = −  

2
2

20

2
2

(3 2 2) 2(3 2 2)
( )

(3 2 2) 2(3 2 2)
1

(3 2)(3 4) 3 2

θ θ

θ

∞ − − − −= − + 
 

 − − − −= − + − − − 

∫ T

n d n d
f t dt

tt

n d n d

n n n

, 

3
( 1)
2

2 2

3 3
2 ( 1) ( 1)

2 2
2

ˆ ˆ( ) [( ) ] [( ) ]
/ 2

4 4
1

(3 2)(3 4) 3 2

n d

SL SL

n d n d

e
R E E

T

e e

n n n

δ δ θ θ

θ

Ψ − +

Ψ − + Ψ − +

= − = −

 
 = − +
 − − −
  

 

ˆ ˆ( ) [ ( , )]δ δ θ=BE BER E L  

2 23 2ˆ[( ) ] [( ) ]δ θ θ−= − = −BE

n d
E E

T
 

2
2 (3 2 ) 2(3 2 )

1
(3 2)(3 4) 3 1

θ
 − −= − + − − − 

n d n d

n n n
 

The Figs. 1-4 have plotted the ratio of the risk functions to 
2θ , i.e. 
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Fig. 1. Ratio of the risk functions with n=10. 

 

Fig. 2. Ratio of the risk functions with n=20. 

 

Fig. 3. Ratio of the risk functions with n=30. 

 

Fig. 4. Ratio of the risk functions with n=50. 

From Figs. 1-4, it is clear that no of the estimators 

uniformly dominates any other. We therefore recommend 

choose the estimators according to the value of d when the 

quasi-prior density is used as the prior distribution. 
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6. Conclusion 

In this paper, we have derived Bayes estimators of the 

parameter of Maxwell distribution under weighted squared 

error loss, squared log error loss and entropy loss functions. 

Simulation results show that the risk functions of the 

estimators ˆ ˆ,δ δBS BL  and δ̂BE  relative to squared error loss 

decrease as sample size increases. When the sample size n is 

large, such as n>50, the risks are almost the same. 
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