
 

American Journal of Theoretical and Applied Statistics 
2016; 5(3): 115-122 

http://www.sciencepublishinggroup.com/j/ajtas 

doi: 10.11648/j.ajtas.20160503.16 

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)  

 

Performance of Two Generating Mechanisms in Detection 
of Outliers in Multivariate Time Series 

Olufolabo Olusesan Oluyomi.
1
, Shittu Olarenwaju Ismail.

2
, Adepoju Kazeem Adesola.

2
 

1Department of Statistics, Yaba College of Technology, Yaba, Nigeria 
2Department of Statistics, University of Ibadan, Ibadan, Nigeria 

Email address: 
olufolabosesan@yahoo.com (Olufolabo O. O.) 

To cite this article: 
Olufolabo Olusesan Oluyomi., Shittu Olarenwaju Ismail., Adepoju Kazeem Adesola. Performance of Two Generating Mechanisms in 

Detection of Outliers in Multivariate Time Series. American Journal of Theoretical and Applied Statistics. Vol. 5, No. 3, 2016, pp. 115-122. 

doi: 10.11648/j.ajtas.20160503.16 

Received: April 5 2016; Accepted: April 25, 2016; Published: May 10, 2016 

 

Abstract: This work is focused on developing two outlier generating mechanisms for the detection of outliers in the 

multivariate time series setting that is capable of ameliorating the swamping effect on regular observations in time series data. 

Specifying two-variable Vector Autoregressive (VAR) models and assuming innovative and multiplicative effect of outliers on 

time series data, the magnitude and variance of outlier were derived for the generating models by method of least squares. A 

modified test statistics were also developed to detect single outliers both in the response and explanatory variables. Real and 

simulated data were used to establish the validity of the models. The results show that the multiplicative is better than the 

additive model in terms of the number of outliers detected and the residual variance. This result is in line with previous studies 

in outlier detection in univariate time series. 
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1. Introduction 

In time series or any classical data, it has been established 

that outliers do cause biases in parameter estimation as well as 

model misspecification, and poor forecast performance to 

misleading conclusion. For this reason, several outlier 

detection techniques and robust estimation procedures have 

been proposed in the literature for univariate time series 

analysis but however very limited for multivariate time series. 

“An early and detailed examination of detection of outliers 

in stationary univariate time series was done by Fox [18]”. 

Ever since, a quiet number of literature have been dedicated 

to the study of impact of outliers in univariate time series. 

Some of the authors include; Denby and Martin [15], Pena 

[33], Tsay [45], Chang, Tiao and Chan [11] in which they all 

use iterative procedure for the detection of outliers. R. 

Baragona, F. Battaglia and D. Cucina [5] “proposed 

Identification and estimation of outliers in time series by 

using empirical likelihood methods.” Theory and 

applications are developed for stationary autoregressive 

models with outliers distinguished in the usual additive and 

innovation types. Pena and Maravall [34] considered the case 

of when the model is known and when it is unknown 

alongside the effect of missing data linked with outlier. Chan 

and Liu [13], McCulloch and Tsay [29]. Le Martin and 

Raftery [25] and Luceno [28] used the method based on 

robust Bayes factors in the consideration of additive outliers. 

However, Justel, Pena and Tsay [47], in their paper, 

“proposes a procedure to detect patches of outliers in an 

autoregressive process”. The procedure is an improvement 

over the existing detection methods via Gibbs sampling. It 

was shown that the standard outlier detection via Gibbs 

sampling may become extremely inefficient in the presence 

of sever outlier. 

Shittu [41], in his work, considered two additional outlier 

generating models, which are Multiplicative and Convolution 

and concluded that Convolution model preforms more 

efficiently than all other single outlier generating models. Ji. 

Yanjie, D. Tang, A. Gou, P. T. Blythe and G. Reu [48] in their 

work “introduced outlier mining and nonparametric detection 

methods for detecting and analyzing outlier in available 

parking space data sets. The technique was able to detect 

Additive and Innovative outlier simultaneously”. 
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Shittu and Sangodoyin [40], considered the identification 

of outliers in frequency domain using the spectral method. 

The above and other literature shows that not much work 

has been done on outlier detection in multivariate time series. 

Among available works on multivariate outlier detection in 

time series is the projection pursuit techniques used by 

Galeano, Pefia and Tsay [19] to find the linear combination 

of a multivariate time series that maximizes kurtosis with the 

purpose of best reproducing the outlying signal. Detection of 

time points of outliers and estimating its magnitudes were 

accomplished by employing univariate searching methods. 

Baragona and Battaglia [4] proposed the Independent 

Component Analysis (ICA) as a tool for identifying the 

locations of multiple outliers in multivariate time series. The 

ICA was therefore used at identifying a set of independent 

unobservable variables that are supposed to generate the data 

set of interest. An unknown mixing matrix was postulated to 

linearly transform the unobservable variables to produce a set 

of observable mixed ones. Both unobservable variables and 

the mixing matrix have to be estimated from the data. ICA 

has been applied successfully to a variety of fields such as 

biomedicine, speech, and radar, signal processing and time 

series. 

In their own work, Cucina, Salvatore and Protopapas [14], 

used meta-heuristic methods to detect additive outliers in 

multivariate time series. The implemented algorithms were; 

simulated annealing, threshold accepting and two different 

versions of genetic algorithm. They used the same objective 

function, the generalized AIC-like criterion, and in contrast 

with many of the existing methods, they do not require 

specifying a vector auto regressive moving averages model 

for the data and are able to detect any number of potential 

outliers simultaneously. They concluded that “almost all 

available methods for outlier detection are iterative, but the 

difference with respect to the meta-heuristic algorithms is 

that it seems to be able to provide more flexibility and 

adaptation to the outlier detection problem”. 

Furthermore, Robert and Cleroux, [44] in their own work, 

introduced the coefficient of vector autocorrelation, obtained 

its influence function together with its distribution, and used 

it for testing the hypothesis of presence of outliers. 

Barnett and Lewis, [7] and Shittu, [41] emphasis on the 

challenges in outlier analysis; namely smearing and masking. 

These concepts are related to the detection of outliers in 

statistical data and can even be intertwined to complicate the 

situation even further. Smearing (popularly known as 

swamping in the literature of outlier identification in 

statistical data is talked of when one outlier affects the series 

in a manner that makes the other observations appear to be 

outliers as well even when they are actually not. Conversely, 

masking occurs when one outlier tends to hide the others 

from being identified. It is generally believed that these 

notions are closely connected to specific outlier detection 

methods and not properties of data itself and smearing and 

masking are only deficiencies of certain methods, not types 

of outliers as such. 

As a result of the effect of both Additive and Innovative 

outliers on the estimates of parameters, Shittu [41] 

introduced the Convolution Outlier (CO) and Multiplicative 

Outlier (MO) models in univariate time series. To this effect 

Multiplicative and Innovative generating mechanisms outlier 

will be extended to multivariate time series in this paper with 

a view to comparing their performance in terms of parameter 

estimates and outlier detection capabilities. 

2. Derivation of the Models 

In this section, by assuming that outliers have either 

Innovative or Multiplicative effect on a series for bivariate 

time series. The estimate of the parameter shall be derived 

and the corresponding test statistics developed. 

2.1. Innovative Outlier Model 

An Innovative Outlier (IO) represents an unexpected 

change in the innovations that drive the vector time series. 

Suppose that the noise in a bivariate series consisting of oven 

temperature and a chemical concentration reading is mainly 

due to the random variation of the feed rate. Then a sudden 

change in the feed rate that happens at just a particular time 

point, due to some exogenous effect, will produce an IO in 

the series. 

The innovative outlier-generating model for univariate 

series is defined as: 

) ( )
(

T

t t tX Z Bφ ωξ= +                            (1) 

with the unobservable free series given by 

( )
( )t t

B
Z a

B

θ
ϕ

=                                 (2) 

where ��~ µ  (0, ���
� ), 

2
( )

tt aVar e σ=  and 

( ) ( )T

t t ta Bφ ωξ= +ℓ                        (3) 

where t i
X = (x1t, …, xkt) is a k-dimensional time series, Zt 

is an outlier free time series that is assumed to be ARIMA (p, 

q), 
( )T

tξ  is a time indictor for outliers such that 
( ) 1T

tξ =  for 

all 
( ) 0T

tt T and ξ= =  otherwise, )(Bφ  = 1- Ө1B- Ө2 B2... – 

Өp Bp are polynomials of order p and ω = 	 ω 
, … , ω 
�
�
 

represent the size of the magnitude of outliers. 

Now, given a vector model 
1t

X  and 
2t

X  such that 
1t

X  

contains outlier and 
2t

X  is outlier free, the magnitude of 

such outlier and its corresponding variance can be obtained 

by specifying the bivariate VAR (2, 2) as: 

1 11 1 1 12 2 1   1t t t t
X X X aϕ ϕ− −= + +                 (4) 

2 21 2 1 22 1 1 2t t t t
X X X aϕ ϕ− −= + +                 (5) 

Where; 
1t

X  is the current value of the response variable 
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1 1t
X −  is the lag value of the current variable 

2t
X  is the current value of the explanatory variable 

 

2 1t
X −  is the lag value of the explanatory variable 

Now, when 
1t

X  contains an outlier, 

Then 

( ) ( )
1 1

T

t t t
X Z Bφ ωξ= +                                                                       (6) 

Substituting (6) into (4), to have: 

( ) ( ) ( ) ( )( )1 11 1 1 12 2 1 1

T T

t t t t t tZ B Z B X aφ ωξ ϕ φ ωξ ϕ− −+ = + + +                                            (7) 

recall that ( ) ( )
[ ]t t t

B
e B X and Z dt

B

θ
π

ϕ
= =  

( ) ( )t

t t

e
X B e

B
φ

π
= =                                                                              (8) 

We then have 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )11 12 1 1

T T
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B B
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B B
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therefore 
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Using the least squares method to obtain 
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2
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1
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1

0
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T T

t t t
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Since 
( )T

tξ  is a time indictor where 
( ) 1T

tξ =  for all 

( ) 0T

tt T and ξ= =  otherwise, we have 

( ) ( )( ) ( )12 1

1 1

0
n n

t

t t

B B B eω φ φ ϕ φ −
= =

− + =∑ ∑               (11) 
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( ) ( )( ) ( )11 12 1

1 1

n n

t

t t

B B B eω φ ϕ φ ϕ φ −
= =

− =∑ ∑  

( ) ( ) ( )11 12 11 tB B eωφ ϕ ϕ φ −− =  

Therefore, the estimator of the magnitude outlier for IO is 

12

1

11

ˆ
1

I te
ϕω

ϕ −=
−

                                  (12) 

Its variance is 

( ) ( )
2

12
1

11

ˆ
1

I tV V e
ϕω

ϕ −

 
=  − 

                        (13) 

Therefore 

( )ˆ
IV ω

2

212

111
a

ϕ σ
ϕ

 
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                           (14) 

Having obtained the estimate and its corresponding 

variance, we then construct the test statistic for innovative 

model as 

( )
ˆ

ˆ.

I

i

I
S e

ωλ
ω

=                                      (15) 

12 1 11 1

12

11

/1
  

1

t t

i

a
a

e eϕ ϕλ ϕ σσ
ϕ

− −−
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−

                    (16) 

2.2. Multiplicative Outlier Model 

Since outlier may have multiplicative interaction effect on 

a series (Shittu, 2003), there is need to develop the outlier 

generating model. 

The multiplicative outlier model is defined as: 

( )T

t t tX Z ω ξ=                               (17) 

again using 
( )

( )
( )

t t t t

B
e B X and Z a

B

θπ
ϕ

= =  

1 11 1 1 12 2 1 1  t t t tSpecifying X X X aϕ ϕ− −= + +  as defined in 

equation (4)  

with the outlier free series 
( )
( ) ( )t t t

B
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B

θ
φ

ϕ
= =  

linearize (17) by taking the logarithm to have 

( )( ) ( )( )1 1 ( )log log log T

t taπ β π β ω− −= + ∈              (18) 

1( 1) log ( ) logta B wπ −− = ∈�
(�)

 

Let ( ) 1
logt ta Bπ − =

 
ℓ , ( )logT T

t tωΩ = ∈  and T

t t ta = − Ωℓ  

Therefore, 
( ) ( )

11 1 12 2 1

T T
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( ) ( )

11 1 12 2 1log log log logT T
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since, 
( )
( ) ( )t t

B
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B

θ
φ

ϕ
= =  

then ( )log logt tZ B aφ=  

( ) ( ) ( )( ) ( )

11 1 12log log log logT T
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By sum of squares of ta  we have: 

( ) 2
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T T

t t t t t t
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a ϕ ϕ ϕ φ β−
= =
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Differentiating equation (32) with respect to tΩ  and equating to zero, to get 
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2
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recall that 
( ) ( ) ( )log   for 1T T T

t t tωξ ξΩ = =  in the presence of 

outlier, we have 
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The variance of ˆ
mω  is 
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Hence the test statistic is defined as:  
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Table 1. Summary of Estimates and Test Statistic for the two models when 1tX  contains outlier. 

MODELS MAGNITUDE VARIANCE TEST STATISTIC 
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3. Analysis of Data 

From the derived outlier generating mechanisms in section 

two and with the estimation of the magnitudes of outliers and 

their variances, the test statistics constructed will be used to 

detect the existence of outliers in both the generated series 

and real data. 

Simulation data of varying sample sizes of 10, 50, and 100 

will be used to evaluate the performance of the derived 

models, while data of commercial bank deposits and loans 

from Nigerian commercial banks extracted from the Annual 

Statistical Bulletin of the Central bank of 

Nigeria, 2011 will also be used to establish the validity of 

the developed models. 

Statistical software R3.0.1 is used to analysing the data. 

The results and outcome for the two models i.e. Innovative 

and Multiplicative models are summarised below. 

3.1. Analysis of Simulated Data When X1t Contains Outliers 

The results of the two models in terms of their outlier 

detection performance from simulated data are tabulated 

below. 

Table 2. Summary of Result on Detection Rate of the Models on Simulated Data when X1t contains outlier. 

 
n=10 n=50 n=100 

Model Type 
No of outliers 

injected 

No of outliers % of outliers No of outliers 

injected 

No of outliers % of outliers No of outliers 

injected 

No of outliers % of outliers 

Detected detected detected detected detected detected 

Innovative 2 0 0% 5 2 40% 8 2 25% 

Multiplicative 2 2 100% 5 4 80% 8 5 80% 

 

As shown in Table 2 above, the multiplicative model is 

more sensitive to outlying observations than the innovative 

model for different sample sizes. 

3.2. Detection of Outlier in Real Data 

In order to investigate the performance of the derived 

models, a pair of real data on Deposit and Loan of banks in 

Nigeria obtained from the Annual statistical bulletin of the 

Central bank of Nigeria, 2011 were used. 

Here two cases are considered. The first case is when loan 
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is contaminated. The vector autoregressive model is given as 

�
� =  ∅

�
��
 +  ∅
�����
 + ℓ� 

where �
�  is the current value of deposit, �
��
  is the 

immediate past value of deposit, and ����
 is the immediate 

past value of loan granted. 

The estimated VAR model via the use of statistical 

package R is given as: 

�
�= 0.4826 �
��
 –– 0.1579 ����
  

s.e (0.1836) (0.1561) 

t (2.628) (–1.012) 

P-value (0.0142) (0.3210) 

The second case is when Deposit is contaminated. 

Then, the vector autoregressive model is given as 

��� =  ∅�
����
 +  ∅���
��
 + ℓ� 

where ��� is the current value of loan, ����
 is the immediate 

past value of loan and �
��
 is the immediate past value of 

deposit. 

The estimated VAR model 

���  =  0.9605 ����
–  0.3339 �
��
 

s.e (0.1712) (0.2015) 

t (5.610) (–1.657) 

P (6.78e.06) (0.1095). 

Table 3. Detection Performance of Innovative Model on Deposit and Loan 

Data when Loan when Loan is contaminated. 

Deposit (x106 

Naira) 

Loan (x106 

Naira) 
 !    iλλλλ     Remark 

111.7 35.9 3094.71 -3.49442 ND 

131.2 44.2 -3037.48 -3.4298 ND 

276.6 58.2 -3051.3 -3.44541 ND 

311.4 114.9 -2820.29 -3.18456 ND 

873.5 373.6 -2768.07 -3.12559 ND 

1,229.20 492.8 -2769.58 -3.1273 ND 

1,378.40 659.9 -978.232 -1.10458 ND 

5,722.00 3,721.10 -550.874 -0.62202 ND 

8,360.10 4,730.80 -89.5051 -0.10107 ND 

10,580.70 5,962.10 -2942.71 -3.32279 ND 

4,612.20 1,895.30 4212.763 4.756879 D 

19,542.20 10,910.40 -4318.21 -4.87595 D 

4,855.20 1,602.20 -329.672 -0.37225 ND 

8,807.10 8,659.30 854.8892 0.965306 ND 

12,442.00 4,411.20 2597.382 2.932857 ND 

19,047.60 11,158.60 1490.356 1.682849 ND 

18,513.80 11,852.70 537.5308 0.606958 ND 

15,860.50 7,498.10 2777.035 3.135715 ND 

20,640.90 11,150.30 486.6914 0.549552 ND 

16,875.90 12,341.00 482.765 0.545119 ND 

14,861.60 8,942.20 3035.842 3.427949 ND 

20,551.80 11,251.90 20356.33 22.98554 D 

64,490.00 34,118.50 -6160.13 -6.95576 D 

18,461.90 16,105.50 -4482.84 -5.06184 D 

3,118.60 2,474.60 -874.381 -0.98731 ND 

3,082.30 2,763.50 3634.838 4.104311 ND 

13,411.80 4,652.50 -1391.46 -1.57117 ND 

3,296.20 1,590.50 -1118.65 -1.26314 ND 

3,953.10 2.376.9 311.6829 0.35194 ND 

D = Outlier detected 

ND = No outlier detected 

The critical value (c) = 4. 

Table 4. Detection Performance of Multiplicative Model on Deposit and 

Loan Data when Loan is contaminated. 

Deposit (Billion 

Naira) 

Loan (Billion 

Naira) 
 !    iλλλλ     Remark 

111.7 35.9 Inf NA ND 

131.2 44.2 Inf NA ND 

276.6 58.2 Inf NA ND 

311.4 114.9 Inf NA ND 

873.5 373.6 Inf NA ND 

1,229.20 492.8 Inf NA ND 

1,378.40 659.9 Inf NA ND 

5,722.00 3,721.10 Inf NA ND 

8,360.10 4,730.80 Inf NA ND 

10,580.70 5962.1 Inf NA ND 

4,612.20 1,895.30 0 NA ND 

19,542.20 10,910.40 Inf NA ND 

4,855.20 1,602.20 0 NA ND 

8,807.10 8,659.30 Inf NA ND 

12,442.00 4,411.20 0 NA ND 

19,047.60 11,158.60 0 NA ND 

18,513.80 11,852.70 Inf NA ND 

15,860.50 7,498.10 0 NA ND 

20,640.90 11,150.30 0 NA ND 

16,875.90 12,341.00 Inf NA ND 

14861.6 8942.2 0 NA ND 

20,551.80 11,251.90 0 NA ND 

64,490.00 34,118.50 Inf NA ND 

18,461.90 16,105.50 0 NA ND 

3,118.60 2,474.60 Inf NA ND 

3,082.30 2,763.50 0 NA ND 

13,411.80 4,652.50 Inf NA ND 

3,296.20 1,590.50 0 NA ND 

3,953.10 2,376.90 0 NA ND 

It could be deduced from the Table 4 above that no outlier 

was detected for multiplicative as a result of non-

multiplicative nature of the data. 

4. Discussion of Results 

Results obtained from the simulated data with varying 

sample sizes (from small, moderate to large sample) of 10, 

50, and100 gave an average detection rates for Innovative 

Outlier model (IO) and Multiplicative Outlier model (MO) as 

(0% and 100%), (40% and 80%) and (25% and 80%) 

respectively for sample sizes 10,50 and 100 for the injected 

outliers. However, as the sample size increases, MO was 

found to be most sensitive to outliers considering the 

simulated data sets. 

For the real data set of Deposit and Loan, 5 pairs of 

observations were identified as outliers by IO, however, MO 

could not identify any outlier as a result of non-multiplicative 

nature of the data. 

Considering the two-outlier detection models, MO has 

been found to be most efficient with minimum standard error 

of the estimate and is therefore recommended for outlier 

detection in multivariate time series data. 
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5. Conclusion 

This paper introduced outlier generating mechanism in 

multivariate time series using VAR. It also developed test 

statistic for detecting outliers assuming two different nature of 

outliers, the innovative and multivariate models. The test 

statistics were derived for each generating mechanism. 

Attempts were made also to unravel the model with greatest 

detective power in terms of relative efficiency and their 

sensitivity to outliers by applying the models to both simulated 

and real data. All these were achieved using theoretical and 

analytical means. The multiplicative model was found to be 

more sensitive to outlier detection but its ability to detect 

outliers in real data depends heavily on the nature of the series 

(whether the bound is multiplicative or not) 

This work can be further extended to the frequency 

domain since this work is limited to time domain. 
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