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Abstract: Consumer price index is a measure of the average change over time in the price of consumer items, goods and 

services that households buy for day to day living. It is one of the main indicators of economic performance and also the key 

indicator of the results of the monetary policy of the country, because of its wide use as a measure of inflation. The main 

objective of this research was to model the dynamic of CPI and to forecast its future values in the short term. Therefore, to 

come up with a model and forecasts of CPI, Box and Jenkins methodology were used which consists of three main steps; 

Model Identification, Parameter Estimation and Diagnostic Checking. Therefore, ARIMA (4,1,6) was selected as a potential 

model which can fits well data, as well as  to make also accurate forecast. Hence, the forecast was made for 12 months ahead 

of the year 2016, and the findings have shown that the CPI was likely to continue rising up with time. 
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1. Introduction 

The consumer price index (CPI) is a measure of the 

average change over time in the price of consumer items, 

goods and services that households buy for day to day living. 

Compiled and Published by National Institute of Statistics of 

Rwanda every month in direct collaboration with National 

Bank of Rwanda. The CPI is an economic indicator and most 

widely used as a measure of inflation. A price index is 

typically assigned a value of unity, in some reference period 

and the values of the index for other periods of time are 

intended to indicate the average proportionate, or percentage, 

change in prices from this price reference period. Generally, 

it provides timely information about the rate of inflation, it is 

also used to adjust pensions and social security benefits in 

order to offset the cost of life fluctuation for the welfare of 

the population. 

To ensure and maintain price stability are among of the 

main objective of National Bank of Rwanda, with a focus on 

price stability while taking into account of the implications of 

monetary policy for the economic activity and, therefore, 

price stability is a crucial precondition sustained economic 

growth. Also, it agrees on the importance of low inflation 

which assist businesses in making sound investment 

decisions, creation of jobs, protect the savings of populations 

and preserve the value of the national currency. In pursuing 

the goal of medium-term to long-term price stability, the 

National Bank of Rwanda also agrees with the government 

on the objective of keeping consumer price inflation low and 

stable [1]. Therefore, CPI is one of the main indicator of 

economic performance and the key indicator of the results of 

the monetary policy of the country. Different researchers 

have tried to model the CPI using different techniques. 

[2] modeled and forecasted Croatia’s CPI by using 

univariate seasonal ARIMA models, but precisely they 

wanted to examine if separate modeling and aggregating of 

sub-indices improves the final forecast of the all items index. 

Their conclusion suggested that the most precise forecasts of 

all items CPI are obtained by first forecasting the index’s 

components and then aggregating them to obtain the all items 

index. Also, [3] developed a short-term inflation forecasting 

by using structure time series models for each CPI 

component constructed at a certain level of disaggregation. 

Short-term forecasts of the all items CPI was made as a 

weighted sum of the twelve CPI components forecasts. 
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1.1. Statement of the Problem 

Inflation is directly calculated from CPI and it is 

considered to be a major problem in transition economies and 

thus fighting inflation and maintaining stable prices is the 

main objective of monetary authorities like Central Bank. 

The negative consequences of inflation are well known, it 

can result in decrease in the purchasing power of the national 

currency leading to the aggravation of social conditions and 

living standards. High prices can also lead to uncertainty 

making domestic and foreign investors reluctant to invest in 

an economy [4]. However, the update of the indicator is not 

always insured to be published on time, and on the other 

hand, to identify the factors which determines its evolution in 

coming months, future years, make a major problem facing 

decision makers and investors. And also, such information 

would enable the central Bank to predict the future 

macroeconomic development and to react in proper manner 

to shocks the economy is subjected to. In that context, the 

monetary authorities to set the monetary policy today, must 

necessarily justify theirs decisions based on inflation 

evolution in future. Therefore, the interest to resort to 

statistical modeling of CPI, which goes together with 

inflation. In this regard, the National institute of statistics of 

Rwanda which is responsible in producing and publishing 

this statistical information, should be in good position to 

respond to this question; “how can you describe the dynamic 

of CPI in Rwanda?” That is why the interest of this research, 

to model and forecast future value of CPI. 

1.2. Justification 

CPI is probably one of the most important indicator 

available in an economy, and many other indicators derive 

most of their value from the predictive ability of the CPI like 

inflation. And also, inflation is well known as a fragile 

indicator to be taken care of in any economy around the 

world, for the catastrophic damage that it may cause to the 

country when ignored. Therefore, the aim of this project is to 

model and forecast the future value of CPI which will be of 

great significant to policy makers, investors and also to the 

Central Bank in setting consequently monetary policies. 

2. Methodology 

2.1. Moving Average (MA) Models 

It is one of the approach used in modeling univariate time 

series data, where the observed time series �� depends on a 

weighted linear sum of past random chocks. Hence, the 

process {�� , � ∈ ℤ} is said to be a moving average of order q if 

�� = �� + 
����� + 
����� + ⋯ + 
����� 

= ∑ 
�����
�
���  ,     {��}~���0, ���                 (1) 

Where 
�, ⋯ 
�  are constants, and �� are random white 

noise. 

In fact, a MA model corresponds simply to a linear 

regression of the current value of the series against the 

random shocks of one or more prior values of the series. The 

disadvantages of fitting a moving average model is that it 

depends only on the error terms that are not observable, and 

the past output are not considered. 

2.2. Autoregressive (AR) Models 

Another approach used in modeling univariate time series 

is Autoregressive model, where the current observed value is 

assumed to be a function of past values plus a random chock. 

The process {��} is said to be an autoregressive of order p, 

denoted by AR (p) if, 

�� = ������ + ������ + ⋯ + ������ + �� , {��}~���0, ��� (2) 

So an autoregressive model corresponds simply to a linear 

regression of the current value of the series against one or 

more prior values of the series. Therefore, one can determine 

easily the current output, but the weakness of Autoregressive 

model is that the past disturbances are not considered. 

2.3. ARMA Models 

Another useful model of time series is formed by 

combining MA and AR processes. An ARMA model consists 

according to his name of two components: the weighted sum 

of past values (autoregressive component) and the weighted 

sum of past errors (moving average component). Then, the 

process {��} is an ARMA (p,q) process if, 

�� − ������ − ⋯ − ������ = �� + 
����� + ⋯ + 
�����   (3) 

Using Backward Shift Operator, the above equation can be 

written as, 

!1 − ��# − ��#� − ⋯ ��#�$��
= �1 + 
�# + 
�#� + ⋯ + 
�#���� 

Hence the more concise form, ��#��� = 
�#���           (4) 

With ��#� = 1 − ��# − ��#� − ⋯ ��#� 


�#� =  1 + 
�# + 
�#� + ⋯ + 
�#�  

The stationarity of ARMA process depends on AR part 

only, and the invertibility depends on MA part only. 

Therefore, the process will be stationary if the root of the 

equation ��#� = 0 lies outside unit circle. And the process is 

said to be invertible if the root of the equation 
�#� = 0 lies 

outside unit circle. 

2.4. ARIMA Models 

The class of ARMA models has been already discussed for 

representing stationary series. So if the series is not stationary 

Box and Jenkins recommend differencing the time-series to 

achieve stationarity. Doing so produces a so-called ARIMA 

model, where the acronym “I” stands for integrated. 

The model has the form; 

��#��1 − #�%�� = 
�#���  ,    {��}~���0, ���         (5) 
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Where ��#� and 
�#� are polynomials of degrees p and q 

respectively and �1 − #�% = ∇% is the differencing operator 

and d represent the order of differencing the series. 

2.5. Box and Jenkins Methodology 

After describing various time series models, Statisticians 

George Box and Jenkins developed a practical approach to 

build ARIMA model, precisely concerning about how to 

select an appropriate model that can produce accurate 

forecast based on a description of historical pattern in the 

data and how to determine the optimal model orders which 

best fit to a given time series and also satisfying the 

parsimony principle. The Box-Jenkins methodology does not 

assume any particular pattern in the historical data of the 

series to be forecasted. Rather, it uses a three step iterative 

approach of model identification, parameter estimation and 

diagnostic checking to determine the best parsimonious 

model from a general class of ARIMA model. This three-step 

process is repeated several times until a satisfactory model is 

finally selected. Then this model can be used for forecasting 

future values of the time series. 

2.5.1. Model Identification 

Once the series is confirmed to be stationary, one may 

proceed by tentatively choosing the appropriate order of 

models through visual inspection of plots, both the 

Autocorrelation Function (ACF) and Partial Autocorrelation 

Functions (PACF). 

The relevant properties are set out as follows; 

The series exhibit an AR (p) process, if the ACF decays 

exponentially (either direct or oscillatory) and PACF cut off 

after lag p. 

The series exhibit a MA (q) process, if the PACF decays 

exponentially (either direct or oscillatory) and ACF cut off 

after lag q. 

The series exhibit an ARMA (p, q) process, if the PACF 

decays exponentially (either direct or oscillatory) and ACF 

decays exponentially (either direct or oscillatory) 

2.5.2. Parameter Estimation 

The parameters � , 
 and ��  are estimated by the 

conditional maximum likelihood, and it is supposed that the 

errors are independent and normally distributed. 

The joint probability density of � = ���, ��, ⋯ �'�′  is 

given by; 

)!��, ��, ⋯ �'$ = �
��*+,�- ,. exp 2− �

�+, ∑ ��
�'

��� 3        (6) 

Let � = ���, ��, ⋯ , �'�4  be the transformed series and 

assume the initial conditions, 

�∗ = �����, ⋯ ���, ���′ 

�∗ = ����� , ⋯ , ���, �� �′ 

The likelihood function of ���, ⋯ , �'� given �∗ and �∗ is 

given by; 

6∗ ��, 
, ��� = ∏ )���, ��, ⋯ , �'
'
��� /�∗, �∗ �         (7) 

The conditional likelihood function is expressed as 

follows; 

6∗��, 
, ��� = �
��*+,�- ,. 9:; 2− �

�+, ∑ ��
���, 
,/'

���

�∗ , �∗, ��3                       (8) 

The maximum likelihood suggest that we maximize 6∗ 

with respect to � , 
 and ��. 

Where the logarithm is introduced to get the conditional 

log-likelihood; 

ln 6∗��, 
, ��� = − '
� ln�2?��� − @∗�A,B�

�+C,
         (9) 

Where D∗��, 
� = ∑ ��
���, 
,/�∗

'
��� , �∗, �� 

In the conditional sum of squares function, the quantities �E  

and 
F  which maximize the log-likelihood are called the 

conditional maximum likelihood estimators. 

The estimators that maximize the conditional likelihood 

function are the same which minimize the conditional sum of 

squares function D∗��, 
� which we note doesn't contain the 

parameter ��. 

Once the values of �E  and 
F have been estimated (these do 

not depend on �� � the value ��is obtained by maximizing 

ln 6∗��, 
, ��� with respect to ��. 

For fixed values of � and 
 we get 

 
G HI J∗!A,B,+,$

G+, = − '
�+K, + @∗!AK,BL$

�+KM            (10) 

Hence �E� = �
' D∗��,K 
F� 

2.5.3. Diagnostic Checking 

Once a model has been fitted, the final step is the 

diagnostic checking whether the model assumptions are 

satisfied. The basic assumption is that the residuals behave 

like white noise, where the errors are uncorrelated with zero 

mean and constant variance. 

To test the autocorrelation of residuals Box-Ljung Test is 

used, and its statistic is defined as follows; 

N∗�O� = P�P + 2� ∑ QKR
,

S��
T
���              (11) 

The N  statistic is asymptoptically distributed as a Chi-

square distribution �U�� 

2.6. Forecasting 

Once a model has been fitted to the data, one can make 

forecast future values of time series. Knowing the past until 

P� the forecast of �SVWX is given by; 

�LSVWX = YZ��SVWX\�SV , �SV��, ⋯ , �SV , �SV��, ⋯ �\ =
∑ ��

�
��� �LSVWX�� + ∑ 
�

�
��� �]SVWX��          (12) 

Actually, �LSV�ℎ� is obtained from the model equation by 

replacing the future value of �� by zero, the future value of 

� by their conditional expectation and past values of � and 

�� by their observed values. 
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The forecast error variance is given by 

_SV
� �ℎ� = �`

� ∑ a�
�X��

���                         (13) 

Therefore, as long as the forecasts errors are normally 

distributed, a �1  b�  probability interval for the forecasts 

values can be constructed as, 

�SVWX c�LSV�^� d �e �. 5 f�ESV
� �^�g        (14) 

2.7. Forecasting Accuracy 

From the difference of forecasted and observed value, the 

following measures were used to assess the accuracy of the 

model. MAE (Mean Absolute Error), RMSE (Root Mean 

Squared Error) and MAPE (Mean Absolute Percentage Error). 

hij 
 �
k ∑ lmnoSVWX  mnop SV�^�lkX��            (15) 

qhDj 
 f�
k ∑ �mnoSVWX  mnop SV�^���kX��      (16) 

hinj 
 �
k ∑ rstuvVwx�stup vV�X�

stuvVwx rkX�� 5 100       (17) 

3. Results and Discussions 

The monthly values of consumer price index (CPI) that 

were used for this research are expressed in Rwandan 

currency, and are covering the period from February 1995 to 

December 2015 which makes a total of 251 observations. 

Therefore, the unity of time is a month, and the data from 

February 1995 to December 2013 were used for model fitting 

and those from January 2014 to December 2015 were used 

for accessing the forecasting power. The data were obtained 

from the Central Bank of Rwanda database and are also 

published on monthly bulletin of economic indicators at the 

Bank website. 

 

Figure 1. CPI Evolution (1995-2013). 

From the Figure 1, the plot shows a general increment of 

the CPI which leads also to the inflation explained by the 

depreciation of the currency. The long-term increase of data 

represents a trend, which explains also that the mean is not 

constant and depends on time. For that reason, if the mean 

seems obviously to be not constant, hence the series is not 

stationary. Therefore, the series must be transformed for any 

further statistical inference. Again, by visual inspection of the 

plot, there is no periodic fluctuation hence no seasonal 

component from the series. 

Stationarity is tested by checking the presence or absence 

of unit root, where the null hypothesis is stated by default as 

the presence of unit root where the series is not stationary. 

The test from Augmented Dickey-Fuller (ADF) was used and 

gave the value of -0.87013 and the p-value of 0.9542 

respectively. As the p-value is greater than 5% significance 

level, we fail to reject the null hypothesis hence the series is 

not stationary. 

After first differencing of the original series, from the 

Figure 2. It can be seen that there is no systematic increase or 

decrease of the trend, where the mean looks to be constant 

over time. Again, the test from the Dickey Fuller with a p-

value of 0.01 at 5% significance level, we reject the null 

hypothesis and confirm the stationarity of the series after first 

integration. 

 

Figure 2. CPI after first difference. 

To identify an appropriate model, the ACF and PACF plots 

were used to come up with the order of the model. 

 

Figure 3. ACF of CPI from first difference. 
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Figure 4. PACF of CPI from first difference. 

After the series has been stationarized by first differencing, 

the next step in fitting an ARIMA model is to determine how 

many AR or MA terms are needed to correct any 

autocorrelation that remains in the differenced series. 

Therefore, the numbers of AR and/or MA terms that are 

needed to fit a model are tentatively identified by looking the 

ACF and PACF plots of the differenced series. 

If the PACF of the differenced series shows a cut off at lag 

k, it means that the series is still not yet fully differenced 

(under differenced) and then by adding enough 

autoregressive terms can remove any autocorrelation left 

from a stationarized series. The lag at which the PACF cut off 

tells us how many AR terms are needed. For the same case 

for PACF, if the ACF cut off at lag k, this indicates that 

exactly k MA terms that are needed to remove the remaining 

autocorrelation from the differenced series. Hence, by visual 

inspection of the Figure 3 and 4, the number of significant 

correlation lags from the ACF plot are almost 6 and the 

number of significant correlation lags from the PACF plot 

looks to be 4. Therefore, the first tentatively model was 

ARIMA (4,1,6) where p=4 & q=6 are the order of 

autoregressive and moving average model respectively, and 

d=1 is the order of integration. 

The chosen model is normally the one with the least value 

of BIC, AIC and AICc, and satisfying also the parsimony 

principle which favors the least parameter possible in the 

model. Thus, ARIMA (4,1,3) was the one to satisfy the 

previous conditions with least value of AICc. Actually, the 

purpose of this study was to model and forecast the future 

value of CPI. Therefore, the model could not be only 

validated from Akaike Information Criteria only, as long as it 

is known that the model that fits well data, doesn't mean will 

produce accurate forecast. That's why before selecting 

potential models, out-of-sample forecasting accuracy must be 

performed to assess the model which can fits well data and 

which can make also accurate forecast as well. 

To perform this test, the training set and test set shall be 

used. The training set also called “in-sample-data” is used to 

fit the model, and the test set also known as “out-of-sample 

data” is used to test the model to see how selected model may 

behave to new data that exist already but which were not 

used to fit the model. 

The potential model was selected accordingly to the one 

which minimize most the forecasting errors like MAE, 

RMSE and MAPE. For that reason, two years (2014 and 

2015) were used as an out-of-sample data, and data from 

1995 up to 2013 were used to fit different models. The fitted 

models were used to forecast two years ahead, with the 

purpose to see how the forecasts are close to the real data 

(out-of-sample). Therefore, the ARIMA (4,1,6) model was 

the one with the smallest forecasting error comparing to the 

rest of other models despite their smallest value of BIC, AIC 

and AICc. But, before confirming the selected model, 

diagnostic checking was also performed to see whether the 

errors are uncorrelated (behave like white noise), and 

normally distributed. 

Table 1. Estimated Parameters of ARIMA (4,1,6). 

Coefficients Estimates Standard Error t-value p-value 

ar1 1.2592 0.1871 6.7300 1.7151x1011 

ar2 -0.5237 0.3672 -1.4261 1.5375x1001 

ar3 -0.4578 0.3569 -1.2827 1.9962x1001 

ar4 0.1726 0.1724 1.0011 3.5728x1005 

ma1 -0.9928 0.1966 -5.0498 4.4037x1007 

ma2 0.3241 0.3193 1.0150 3.1002x1001 

ma3 0.4853 0.2619 1.8529 6.3882x1002 

ma4 -0.6375 0.1154 -5.5242 3.3397x1008 

ma5 0.062 0.095 0.6526 5.1372x1001 

ma6 -0.1532 0.0637 -2.4050 1.6111x1002 

As suggested by Box and Jenkins, after selecting a 

potential model and estimating its parameters, the next step is 

diagnostic checking to see if the selected model fits well the 

data. The main assumption is that from the fitted model, the 

residuals are expected to be randomly independent and 

identically distributed following the normal distribution. In 

short, they must behave like a white noise. Box-Ljung test 

and ACF were used to check whether the residuals are 

correlated. Shapiro test, histogram and normal Q-Q plot were 

used also for normality checking. 

From the Box-Ljung test, the p-value was reported to be 

0.9139 and at 5% level of significance, we failed to reject the 

null hypothesis of a white noise process. 

From the figure 5. It can be seen on ACF plot that there are 

no significant spikes, all of them are within the boundaries. 

So, there is no residual correlation left in CPI data 

Also, from Shapiro-Test for normality the test value was 

0.9767 and p-value of 0.085. The null hypothesis suggest the 

normality of residuals, and the alternative hypothesis calls 

the lack of normality in residuals. Then, with 5% confidence 

level we fail to reject the null hypothesis. 
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Figure 5. ACF of Residuals and p-values for Box-Ljung test at different lags. 

 

Figure 6. Normal Q-Q plot of residuals. 

 

Figure 7. Histogram of CPI residuals. 

Figure 6 and 7 show that the residuals are almost exactly 

normally distributed, and it can be also confirmed that there 

is no correlation in the residuals which means there is no left 

information in the residuals to be used in fitting a model. 

Therefore, the ARIMA (4,1,6) was successfully selected as a 

potential model to be used for forecasting. 

As the main objective of this study was forecasting, after 

successfully identifying a potential model that describes well 

the historical data of consumer price index, the same model 

were used also to forecast the future values in short term (12 

months ahead). 

Table 2. Future forecasts from ARIMA (4, 1, 6). 

Point Forecasts Lo 80 Hi 80 Lo 95 Hi 95 

Jan 2016 103.594 94.447 112.740 89.606 117.582 

Feb 2016 104.096 94.644 113.548 89.640 118.551 

Mar 2016 104.742 94.990 114.495 89.827 119.658 

Apr 2016 105.101 95.59 115.144 89.742 120.460 

May 2016 105.029 94.703 115.356 89.237 120.822 

Jun 2016 104.813 94.198 115.427 88.579 121.047 

Jul 2016 104.874 93.960 115.789 88.182 121.567 

Aug 2016 105.354 94.132 116.575 88.192 122.515 

Sep 2016 105.973 94.449 117.497 88.348 123.598 

Oct 2016 106.319 94.502 118.137 88.246 124.393 

Nov 2016 106.256 94.150 118.361 87.741 124.770 

Dec 2016 106.052 93.653 118.450 87.090 125.014 

Table 3. Forecasting Evaluation. 

Statistic ME RMSE MAE MPE 

In sample data 0.0312 0.776 0.5742 0.06138 

From table 3, the smallest value of ME indicate that the 

fitted model can produce accurate forecast. Also, if the value 

of ME is positive, the model seems to under-forecast. 

 

Figure 8. Forecasting Evolution of CPI (January-December 2016). 

From the Figure 8, it is obvious remarkable the general 

increment of CPI, where the future values are likely to 

continue rise up with time. Thereby, this means as well the 

increment of inflation, or in other words the continual 

depreciation of the currency. 
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4. Conclusion and Recommendation 

The primary purpose behind this study was to find out 

which ARIMA model is more accurate and appropriate for 

forecasting purposes in the real world situation. Therefore, 

the first step was to plot the data to check if they exhibit any 

kind of patterns like a trend, seasonal component or any 

outliers. From the results, it was found a positive trend where 

CPI was increasing with time which leads to the non-

stationarity of the series. After first differencing was applied 

to make a series stationary, the Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) plots 

were used to choose tentatively different potential models. 

Among the chosen models, BIC, AIC, and AICc were used to 

select the best model which fits well data, by selecting the 

one with least value of those statistics respectively. The 

ARIMA (3,1,4) was selected to be the best describing the 

historical data of CPI, but it was not enough to conclude if it 

was also good for forecasting. 

To assess forecasting performance, the models were used 

to forecast Out-of-Sample to judge the best by selecting the 

one which minimizes the most forecasting errors like MAE, 

RMSE and MAPE. Therefore, the ARIMA (4,1,6) was found 

to be the best among of all proposed models through different 

test performed to assess the goodness of fit. Box-Ljung test 

was used to check if the residuals behave like a white noise, 

and it was confirmed that the residuals were not correlated, 

and also via plots by visual inspection and Shapiro test the 

residuals were normally distributed. In fact, it has observed 

that the actual values of CPI (Out-of-sample data) and those 

predicted based on ARIMA (4,1,6) model were much closer 

than those of other models. 

The general recommendation goes directly to the Central 

Bank, precisely monetary policy to be vigilant in their policy 

making, because this study really shows that the CPI is likely 

to continue rising up over time, which leads obviously to the 

serious inflation if nothing is done accordingly. Also, we 

suggest the use of Box and Jenkins methodology given its 

ability of describing well historical data and making good 

forecasts. 
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