
 

American Journal of Theoretical and Applied Statistics 
2015; 4(6): 610-618 

Published online December 14, 2015 (http://www.sciencepublishinggroup.com/j/ajtas) 

doi: 10.11648/j.ajtas.20150406.33 

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)  

 

Analysis of Progressive First-Failure-Censoring for 
Non-normal Model Using Competing Risks Data 

A. A. Modhesh
1
, G. A. Abd-Elmougod

2
 

1Department of Mathematics, Faculty of Science, Taiz University, Taiz, Yemen 
2Department of Mathematics, Faculty of Science, Taif University, KSA 

Email address: 
a_a_mod@yahoo.com (A. A. Modhesh) 

To cite this article: 
A. A. Modhesh, G. A. Abd-Elmougod. Analysis of Progressive First-Failure-Censoring for Non-normal Model Using Competing Risks Data. 

American Journal of Theoretical and Applied Statistics. Vol. 4, No. 6, 2015, pp. 610-618. doi: 10.11648/j.ajtas.20150406.33 

 

Abstract: Competing risks data usually arises in studies in which the death or failure of an individual or an item may be 

classified into one of T≥2 mutually exclusive causes. In this paper, we will study the competing risks model when the data is 

progressively first-failure-censored. Based on this type of censoring, we derive the maximum likelihood estimators (MLE's) for 

the unknown parameters. Approximate confidence intervals and two bootstrap confidence intervals are also proposed. The 

results in the cases of first-failure censoring, progressive Type II censoring, Type II censoring and complete sample are special 

cases. A real data set has been analyzed for illustrative purposes. Different methods have been compared using Monte Carlo 

simulations. 
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1. Introduction 

In medical studies and reliability analyses an investigator is 

often interested in the assessment of a specific risk in the 

presence of other risk factors. In statistical literature this is 

known as the analysis of competing risks model. A lifetime 

experiment with 2τ =  different risk factors competing for 

the failure of the experimental units is considered. The data for 

such a competing risks model consist of the lifetime of the 

failed item and an indicator variable which denotes the cause 

of failure. For example, the competing risk for a prostate 

cancer patient may include prostate cancer itself, heart disease 

and (all) other causes. The effects of the other competing risks 

may play an important role in survival studies on slowly 

progressing diseases such as prostate cancer. In engineering 

applications, the causes or risks may signify either multiple 

modes of failure for a complex unit or multiple components or 

subsystems which comprise an entire system. Occurrence of a 

system failure is caused by the earliest onset of any of these 

component failures. In this respect, the framework is that of a 

system with components connected in series. Several studies 

have been carried out under this assumption and the risks 

follow different lifetime distributions, namely the exponential, 

lognormal, gamma, Weibull, generalized exponential or 

exponentiated Weibull; see for example Moeschberger et al. 

[1], Pascual [2] Cramer and Schmiedt [3], Sarhan et al. [4], 

Sarhan [5], Alwasel [6], Kundu and Bas [7] and Kundu and 

Sarhan [8]. 

Censoring occurs when exact lifetimes are known only for a 

portion of the individuals or units under study, while for the 

remainder of the lifetimes information on them is partial. There 

are several types of censored tests. The most common censoring 

schemes are Type-I (time) censoring, where the life testing 

experiment will be terminated at a prescribed time T , and 

Type-II (failure) censoring, where the life testing experiment 

will be terminated upon the r  -th ( r  is pre-fixed) failure. 

However, the conventional Type-I and Type-II censoring 

schemes do not have the flexibility of allowing removal of units 

at points other than the terminal point of the experiment. A 

generalization of Type II censoring is the progressive Type II 

censoring. It is a method which enables an efficient exploitation 

of the available resources by continual removal of a 

prespecified number of surviving test units at each failure time. 

On other hand, the removal of units before failure may be 

intentional to save time and cost or when some items have to be 

removed for use in another experiment. Wu et al. [9] and Wu 

and Yu [10] for extensive reviews of the literature on 

progressive censoring. When the lifetimes of products are very 

high, the experimental time of a Type II censoring life test can 

be still too long. Because of these lack of flexibilities, Johnson 
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[11] described a life test in which the experimenter might decide 

to group the test units into several sets, each as an assembly of 

test units, and then run all the test units simultaneously until 

occurrence the first failure in each group. Such a censoring 

scheme is called first-failure censoring. If an experimenter 

desires to remove some sets of test units before observing the 

first-failures in these sets this life test plan is called progressive 

first-failure-censoring scheme. 

In this section, first-failure censoring is combined with 

progressive censoring scheme as in Wu and Kuş [12] Suppose 

that n  independent groups with k  items within each group 

are put on a life test, 
1
R groups and the group in which the 

first failure is observed are randomly removed from the test as 

soon as the first failure (say R

1 : : :m n k
X  and 

1
{1,2}δ ∈ ) 

has occurred, 
2
R groups and the group in which the second 

first failure is observed are randomly removed from the test 

when the second failure (say R

2 : : :m n k
X  and 

2
{1,2}δ ∈ ) 

has occurred, and finally ( )
m
R m n≤  groups and the group 

in which the m  -th first failure is observed are randomly 

removed from the test as soon as the m  -th failure (say 
R

: : :m m n k
X  and {1,2}

m
δ ∈ ) has occurred. The data 

R R

1 : : : 1 2 : : : 2( , ) ( , ) ...m n k m n kX Xδ δ< < <
 

R

: : :( , )m m n k mX δ are called progressively 

first-failure-censored order statistics with the progressive 

censoring scheme
 

R
1

( ,..., )
m

R R====  and for each i , 
i
δ  

takes a value either 1 and 2 the causes of failures. It is clear 

that 
1 2

...
m

n m R R R= + + + + . For a given censoring 

scheme R
1

{ ,R=  ...,  }
m
R , the likelihood function of the 

observed data ( )R

1 : : : 1
,

m n k
X δ < ( )R

2 : : : 2
, ...

m n k
X δ < <

( )R

: : :
,

m m n k m
X δ  

R R

R R

( 1) ( 2)

1 2 1 ; , , 2 ; , ,

1
( 1)

1 ; , , 2 ; , ,

( , , ; ) ( ) ( )

( ) ( ) ,

i i

i

m I I

i m n k i m n k

i
k R

i m n k i m n k

x C H x H x

S x S x

δ δ

α β β
= =

=
+

   =       

 × 
 

∏ℓ

 (1) 

( ) ( ) ( )R R R

1 : : : 1 2 : : : 2 : : :
0 , , ... , ,

m n k m n k m m n k m
X X Xδ δ δ< < < < <∞  

where ( )S t  and ( )H t  are reliability and failure rate functions, respectively, and 

1 1 2 1 2 1
( 1)( 2)...( ... 1) .m

m
C n n R n R R n R R R m k

−
= − − − − − − − − − − +                (2) 

Special cases 

It is clear from (1)  that the progressive 

first-failure-censored scheme containing the following 

censoring schemes as special cases: 

The first-failure censored scheme when R {0,0,..., 0}= .  

The progressive Type II censored order statistics if 1.k =  

Usually Type II censored order statistics when 1k =  and 

R {0, 0,..., }.n m= −  

The complete sample case when 1k =  and 

R {0,0,..., 0}= .  

For more applications about progressive-first-failure 

censoring data the readers may refer to Soliman et al [13] 

Soliman et al. ([14] , [15] ), Soliman et al. [16] and Ahmadi et 

al. [17]. 

The main aim of this paper is to develop a confidence interval 

and the MLE for the Burr XII parameters based on the 

progressively first-failure-censored sample in the presence of 

competing risks. Therefore, the organization of the paper is as 

follows. The model description and notation used throughout 

this paper are introduced in Section 2. The MLE's of the 

unknown parameters are presented in Section 3. Approximate 

confidence intervals and two parametric bootstrap confidence 

intervals are discussed in Section 4. A real data set, due to Hoel 

[18], is analyzed in Section 5. In Section 6, the different 

methods are compared by conducting Monte Carlo simulations. 

Some concluding remarks are finally made in Section 7. 

2. Model Assumptions and Notations 

Before proceeding any further, we describe some notations 

we are going to use in this paper. 

lifetime of the i -th unit. 

lifetime of the i -th individual under cause j , 1,2j = .  

cumulative distribution function (cdf) of 
i
X .  

probability density function (pdf) of (.)F .  

distribution function (cdf) of 
ij
X .  

probability density function (pdf) of (.)
j
F .  

survival function of 
ij
X .  

indicator variable denoting the cause of failure of the i -th 

individual. 

To simplify the notations we will use hereafter 
i
X  instead 

of R

: : :i m n k
X , 1,2,i = … ,m . The model studied in the 

paper satisfies the following assumptions 

I) The lifetime of unit is denoted as 
i
X , 1,2,i = … ,m . 

The time at which the unit i  fails due to cause j  is 
ij
X , 

1,2j = . That is, 
1 2

min{ , }
i i i
X X X= . 
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II) The distribution of the random variable 
ij
X  is Burr XII 

with shape parameters α  and 
j
β , 1,2j =  and 

1,2,..., .i m=  That is, the (pdf) and (cdf) of 
ij
X , 1,2j = , 

and 1,2,i = … ,m , are 

( 1)1( ) (1 ) ,  0,  ( 0,  0),j

j j j
f x x x x

βα ααβ α β
− +−= + > > >   (3) 

( ) 1 (1 ) ,  0.j

j
F x x x

βα −= − + >          (4) 

The corresponding reliability and failure rate functions of 

the Burr XII distribution at some t , are 

( ) (1 ) ,  0,j

j
S t t t

βα −= + >              (5) 

1 1( ) (1 ) ,  0,
j j
H t t t tα ααβ − −= + >         (6) 

respectively. 

The two-parameter Burr XII distribution has unimodal or 

decreasing failure rate function Eq. (6) . It is clear that the 

parameter 
j
β  does not affect the shape of failure rate function 

( )
j
H t  and α  is the shape parameter. Thus the shape 

parameter α  plays an important role. Its capacity to assume 

various shapes often permits a good fit for describing 

biological, clinical or other experimental data sets. 

3. Maximum Likelihood Estimation 

Based on the observed sample (
1 : : 1 1

, ,
m n

x Rδ ), 

(
2 : : 2 2

, ,
m n

x Rδ ), ⋯ ,(
: :

, ,
m m n m m
x Rδ ), the likelihood 

function (1),  is given by 

1 2

1 2 1 2 1 2

1

( , , ; ) ( ; )exp ( ) ( 1)log(1 ) ,
m

m mm

i i

i

x x k R x αα β β α β β η α β β
=

 
 ∝ − + + + 
  

∑ℓ                (7) 

where 

1

1

( ; ) .
(1 )

m

i

i i

x
x

x

α

α
η α

−

=

=
+

∏                                              (8) 

The log-likelihood function without the additive constant can be written as follows; 

1 2 1 1 2 2

1

1 2

1 1

( , , ; ) log log log ( 1) log( )

log(1 ) ( ) ( 1)log(1 ).

m

i

i
m m

i i i

i i

L x m m m x

x k R xα α

α β β α β β α

β β

=

= =

= + + + −

− + − + + +

∑

∑ ∑
                    (9) 

Calculating the first partial derivatives of (9)  with respect 

to 
1
β and 

2
β  and equating to zero, we obtain the likelihood 

equations 

1 2 1

11 1

( ; , , )
( 1) log(1 ) 0,

m

i i

i

L x m
k R x α

α β β

β β
=

∂
= − + + =

∂ ∑    (10) 

and 

1 2 2

12 2

( ; , , )
( 1)log(1 ) 0.

m

i i

i

L x m
k R x α

α β β

β β
=

∂
= − + + =

∂ ∑    (11) 

Hence, the MLE's of 
1
β  and 

2
β , respectively, given by 

1

1

1

ˆ ( ) ,

( 1)log(1 )
m

i i

i

m

k R x α
β α

=

=

+ +∑
         (12) 

and 

2

2

1

ˆ ( ) .

( 1)log(1 )
m

i i

i

m

k R x α
β α

=

=

+ +∑

       (13) 

Using (12)  and (13)  in (9) , we obtain the profile 

likelihood function for α , as 

1

1 1

( ) log log ( 1) log(1 )

log( ) log(1 ).

m

i i

i

m m

i i

i i

p m m k R x

x x

α

α

α α

α

=

= =

 
 = − + + 
  

+ − +

∑

∑ ∑

  (14) 

Therefore, the MLE of α , say ,̂α  can be obtained by 

maximizing (14)  with respect to α . The MLE α̂  which 

maximizes (14)  can be obtained from 

( ) ,h α α=                      (15) 

where 
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1

( 1) log( )

(1 )
1

1 1

1

log( )
( ) log( ) .

(1 )
( 1)log(1 )

i i i

i

m
R x x

m mx
i i i

im

i ii

i i

i

m
x x

h m x
x

R x

α

α α

α

α

α

−

+

+
=

= =

=

 
 
 
 = + − 

+ 
+ + 

  

∑
∑ ∑

∑

 (16) 

Thus, the MLE α̂  of the parameter α  can be obtained by 

solving the nonlinear Eq. (15)  using, for example, the 

Newton-Raphson or fixed point iteration. The corresponding 

MLE 
1
β̂  and 

2
β̂  of the parameters 

1
β  and 

2
β  are 

computed from Equations (12)  and (13).  

Notice that both 
1
m  and 

2
m  follow binomial 

distributions with sample size m . Hence, 
i
m ∼ Bin 

1 2
( , / ( )),

i
m β β β+  1,2i = . 

4. Confidence Intervals 

In this section, we propose different confidence intervals. 

One is based on the asymptotic distribution of ,̂α  
1
β̂ and 

2
β̂  

and two bootstrap confidence intervals. 

4.1. Approximate Confidence Intervals 

From the log-likelihood function in (9) , we have 

2 22

1 22 2 2 2

1 1

log ( ) ( 1) log ( )
( ) ,

(1 ) (1 )

m m

i i i i i

i ii i

x x R x xL m
k

x x

α α

α α
β β

α α = =

+∂
= − − − +

∂ + +∑ ∑

2 2

11 1

( 1) log( )
,

(1 )

m

i i i

i i

R x xL L
k

x

α

αα β β α
=

+∂ ∂
= = −

∂ ∂ ∂ ∂ +
∑  

2 2

12 2

( 1) log( )
,

(1 )

m

i i i

i i

R x xL L
k

x

α

αα β β α
=

+∂ ∂
= = −

∂ ∂ ∂ ∂ +
∑  

2 2

1 2 2 1

0,
L L

β β β β

∂ ∂
= =

∂ ∂ ∂ ∂
 

and 

2 2
1 1

2 2 2 2

1 1 2 2

,    .
m mL L

β β β β

∂ ∂
= − =−

∂ ∂
 

To find the confidence interval for the estimators we 

determine the asymptotic distribution of the maximum 

likelihood estimator of the element of the vector of unknown 

parameters 
1 2

( , , )θ α β β= , which produce an approximation 

confidence interval. It is known that the asymptotic 

distribution of the MLE is given by 

  (17) 

where 
1

1 2
( , , )I α β β−

 is the variance-covariance matrix of the 

vector of unknown parameters. In practice, we usually 

estimate 
1

1 2
( , , )I α β β−

 by  

2

0
. , 1,2, 3,

s l

L
I s l

θ θ

 ∂ = − = ∂ ∂  
          (18) 

where 
1 2

( , , ).θ α β β=  

Therefore, the approximate 100(1 )%γ−  two sided 

confidence intervals for α , 
1
β  and 

1
β  are, respectively, 

given by 

         (19) 

Here, 
/2

Z
γ

 is the upper ( / 2γ ) th percentile of standard 

normal distribution. 

4.2. Bootstrap Confidence Intervals 

In this subsection, we propose to use two confidence 

intervals based on the parametric bootstrap methods: (i) 

percentile bootstrap method (Boot-p) based on the idea of Efron 

[19]. (ii) bootstrap-t method (Boot-t) based on the idea of Hall 

[20]. The confidence intervals of 
1 2

( , , )θ α β β=
 
using both 

methods are illustrated briefly in the following steps: 

Step 1: From the original data (x ≡ (
1 : :

,
m n

x  
1
,δ  1
R ), 

(
2 : :

,
m n

x  2
,δ  2
R ), ⋯ , (

: :
,

m m n
x  ,

m
δ  m

R )) compute 

the MLE's of the parameters: say ,̂α
 1
β̂  and 

2
ˆ ,β  equations 

(12,13,16) .  

Step 2: Use 
1

ˆ,̂α β  and 
2
β̂  in Step 1 to generate a bootstrap 

sample x
∗

 with the same values of , ,
i
R k m  and n

, ( 1,2,.., )i m= . We used the algorithm proposed by 

Balakrishnan and Sandhu [21], with the fact that, the 

progressive first-failure censored sample with distribution 

function ( )F x , can be viewed as a progressive Type II 

censored sample from a population with distribution function 

1 (1 ( ))kF x− − , 
i
m ∼Bin ( ,m  

1 2

),i
β

β β+
 1,2i = . 

Step 3: Repeat Step 2, B  times representing 

 where  

and .  

Step 4: Arrange all  in an ascending 

order to obtain the bootstrap sample .  

I- Percentile bootstrap method (Boot-p) 

Let ( ) ( )ˆ
l

G x P xφ∗= ≤  be the cdf of ˆ
l
φ∗ . Define 
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1

,
( )

l boot p
G xφ −

−
=  for given .x  The approximate bootstrap 

100(1 )%γ−  confidence interval of 
l
φ  are given by 

, ,
( ), (1 ) .
2 2l Boot p l Boot p

γ γ
φ φ

− −

 
 −
 
 

 

II- Bootstrap-t method (Boot-t) 

Compute the following statistic: 

 

where ˆ( )
l

Var φ∗ are obtained using the Fisher Information 

matrix. Using 
l
T
∗

 values, determine the upper and lower 

bounds of the 100(1 )%γ−  confidence interval of 
l
φ  as 

follows: let ( ) ( ), 1,2,3
l

H x P T x l∗= ≤ =  be the cdf of 
l
T
∗

. 

For a given x , define 

 

Here also, ˆ( )
l

Var φ  can be computed as same as 

computing the ˆ( )
l

Var φ∗ . The approximate 100(1 )%γ−  

confidence interval of 
l
φ  is given by 

 

Hall (1988)  showed that the Boot-t confidence interval is 

better than the Boot-p confidence interval from an asymptotic 

point of view. 

5. Data Analysis 

We consider in this section a real-life data set which was 

originally reported by Hoel [17] and latter analyzed by several 

authors, see for example Pareek et al. [22], Sarhan et al. [4] 

and Cramer and Schmiedt [3]. It was obtained from a 

laboratory experiment in which male mice received a radiation 

dose of 300 roentgens. The cause of death for each mouse was 

determined by autopsy. Restricting the analysis to two causes 

of death, for the purpose of analysis, we consider thymic 

lymphoma as cause 1  and combine the other causes of death 

as cause 2 . There were 
1

29m =  deaths due to cause 1  and 

1
39m =  deaths due to cause 2 . 

The mean, standard deviation and the coefficient of 

skewness for the two causes of death are calculated 

( 344.034, 170.568, 1.106 ) and ( 412.923, 203.518, 0.227− ), 

respectively. The measure of skewness indicates that the data 

are positively and negatively skewed for cause 1  and cause 

2 , respectively. For computational ease, we have divided each 

data point by 1000 . 

To check the validity of the model, we compute the the 

Kolmogorov Smirnov (K-S) statistic whether the Burr XII 

model is suitable for this data. The maximum likelihood 

estimates of α  and β  based on the two causes of death are 

( 2.339, 9.819 ) and ( 2.226, 6.214 ), respectively. In deaths 

due to cause 1  the K-S distance and the associated p-value 

are 0.182  and 0.290 , respectively, and for the deaths due to 

cause 2  the corresponding values are 0.109  and 0.740.  

Based on the p-values, the Burr XII model is found to fit the 

data well. We have plotted the empirical survival functions, 

and the fitted survival functions in Fig. 1 and Fig. 2 for both 

data sets. Observe that they fit the data very well. 

Now, there were 68n =  observations in the data. The 

data are randomly grouped into 17  groups with ( 4k = ) 

items within each group. We suppose that the pre-determined 

progressively first-failure censored scheme is given by 

(
1 2

2R R= = , 
3 4 13

0R R R= = = =⋯ ), then a 

progressively first-failure censored competing risks data of 

size 13  out of 17  groups of death time is obtained as 

(0.040,2), (0.158,1), (0.195,1), (0.222,2), (0.244,1),  

(0.282,2), (0.431,2), (0.434,1), (0.482,2), (0.529,1),  

(0.564,2),
 
(0.620,2),  (0.651,2) .  

There were 
1

5m =  deaths due to cause 1 and 
1

8m =  

deaths due to cause 2. We would like to compute the MLE's of 

the unknown parameters. Before going to compute the MLE's, 

we plot the profile log-likelihood function (14)  in Fig. 3. From 

the Fig. 3 it is clear that the profile log-likelihood function is 

unimodal and the MLE of α  is close to 2.1 . We start the 

iteration to solve the Eq. (15)  with 2.1α = , and obtain the

ˆ 2.2347,α =  
1

ˆ 0.7122β =  and 
2

ˆ 1.1396,β =  and the 95%  

confidence intervals for α , 
1
β  and 

2
β  are (1.3263, 3.143),

( 0.0419,1.4664),−  (0.0995,2.1797),  the Boot-p confidence 

intervals are (1.6287, 3.1321), (0.2287,1.6598),

(0.5133,1.9044)  and the corresponding Boot-t confidence 

intervals are (1.3338,2.9222), ( 0.4838,1.1396),−  

( 0.2395,1.5838),−  respectively. Using the two confidence 

intervals (Boot-p) and (Boot-t), we present the mean of 1000  

bootstrap samples of ( 1 2
, ,α β β ) by . 

 

Fig. 1. The empirical and fitted survival functions for deaths due to cause 1 . 
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Fig. 2. The empirical and fitted survival functions for deaths due to cause 2 . 

 

Fig. 3. The profile log-likelihood function (14). 

 

 

6. Monte Carlo Simulations 

In this section we primarily perform some simulation 

experiments to observe the behavior of the different methods. 

Monte Carlo simulations were performed utilizing 1000 

progressively first-failure-censored samples for each 

simulations. The samples were generated by using the 

algorithm described in Balakrishnan and Sandh [20] using 

(
1 2

, ,α β β  ) = (1.5, 0.3,0.7), (1.5, 0.4,0.5) with different 

choices of n , m  and k . We take into consideration that the 

progressively first-failure-censored order statistics 

1 : : : 2 : : : : : :m n k m n k m m n k
x x x< < <⋯  is a 

progressively Type II censored sample from a population with 

distribution function 1 (1 ( ))kF x− − . For each data point, we 

assigned the cause of failure as 1 or 2 with probability 

( 
1 1 2
/ ( )β β β+  ) and ( 

2 1 2
/ ( )β β β+  ), respectively. We 

consider the following different sampling schemes: 

Scheme I :  
1

, 0
i

R n m R= − =  for 1.i ≠  

Scheme II :  
2

, 0
m i
R n m R= − =  for 

2
.mi ≠  

Scheme III :  , 0
m i
R n m R= − =  for .i m≠  

The MLE α̂  of parameter α  is then computed from the 

solution of Equation (15)  using the Newton-Raphson 

iteration. Once we estimate α , we derived 
1
β̂  and 

2
β̂  using 

(12 ) and (13) , respectively. We compute the average 

estimates, mean squared errors (MSEs) of the MLE's. The 

estimated coverage probability, and the average lengths are 

computed for different methods of estimation. For both Boot-p 

and Boot-t, we considered 1000  replications. Tables 1-4 

summarize the obtained results. 

Table 1. The average estimates of ,α  
1
β  and 

2
β  and their mean squared errors (within brackets) of MLE's, for different censoring schemes ( 1.5,α =  

1
0.3β =  and 

2
0.7).β =  

k n m Scheme α̂  1
β̂  

2
β̂  

1 30 20 I 1.564(0.0981) 0.3296(0.0155) 0.8024(0.0433) 

   II 1.6261(0.1150) 0.2864(0.0156) 0.6868(0.0533) 

   III 1.6322(0.1184) 0.2768(0.0196) 0.7548(0.0649) 

 40 30 I 1.5161(0.0485) 0.3156(0.0134) 0.7694(0.0234) 

   II 1.5686(0.0615) 0.2996(0.0158) 0.7007(0.0334) 

   III 1.6164(0.0854) 0.3293(0.0189) 0.7531(0.0418) 

5 30 20 I 1.6178(0.1081) 0.3357(0.0325) 0.7957(0.1045) 

   II 1.5612(0.1093) 0.3827(0.0478) 0.8106(0.1319) 

   III 1.6069(0.1098) 0.3733(0.0432) 0.9176(0.1702) 

 40 30 I 1.5483(0.0574) 0.3411(0.0176) 0.7272(0.0349) 

   II 1.5292(0.0678) 0.3142(0.0179) 0.7111(0.0418) 

   III 1.5495(0.0758) 0.3298(0.0188) 0.7943(0.0470) 
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Table 2. The average estimates of ,α  
1
β  and 

2
β  and their mean squared errors (within brackets) of MLE's for different censoring schemes ( 1.5,α =  

1
0.4β =  and 

2
0.5β = ) .  

k n m Scheme α̂  1
β̂  

2
β̂  

1 30 20 I 1.5333(0.0559) 0.4148(0.0164) 0.5717(0.0245) 

   II 1.5579(0.0655) 0.4357(0.0241) 0.5184(0.0292) 
   III 1.5958(0.0898) 0.4082(0.0321) 0.5148(0.0286) 

 40 30 I 1.5265(0.0403) 0.3729(0.0088) 0.5148(0.0224) 

   II 1.6347(0.0599) 0.4022(0.0161) 0.4833(0.0263) 
   III 1.5859(0.0665) 0.4301(0.0214) 0.5213(0.0282) 

5 30 20 I 1.5952(0.0753) 0.5146(0.0208) 0.5949(0.0535) 

   II 1.5653(0.0778) 0.4516(0.0297) 0.5883(0.0644) 
   III 1.4787(0.0836) 0.4052(0.0350) 0.5241(0.0673) 

 40 30 I 1.5643(0.0494) 0.4288(0.0160) 0.5490(0.0400) 

   II 1.5916(0.0488) 0.4691(0.0298) 0.6073(0.0520) 
   III 1.6113(0.0715) 0.4747(0.0325) 0.5713(0.0567) 

Table 3. The average 95% confidence lengths and the corresponding coverage percentages (within brackets) of Boot-p and Boot-t for different censoring 

schemes ( 1.5,α =  
1

0.3β =  and 
2

0.7).β =  

k n m Scheme Param. MLE Boot-p Boot-t 

1 30 20 I α  1.4588(0.964) 1.4588(0.928) 1.2507(0.945) 

    
1
β  0.4999(0.912) 0.5810(0.912) 0.5812(0.927) 

    
2
β  0.8354(0.934) 0.8843(0.921) 0.9085(0.923) 

   II α  1.4457(0.888) 1.4457(0.896) 1.2351(0.888) 

    
1
β  0.4758(0.864) 0.5510(0.921) 0.5510(0.911) 

    
2
β  0.7457(0.927) 0.8240(0.932) 0.7991(0.912) 

   III α  1.4263(0.912) 1.4263(0.925) 1.2102(0.905) 

    
1
β  0.5037(0.911) 0.5821(0.903) 0.5821(0.924) 

    
2
β  0.8011(0.922) 0.9029(0.922) 0.8634(0.918) 

 40 30 I α  1.1166(0.965) 1.1166(0.974) 0.9669(0.972) 

    
1
β  0.3926(0.962) 0.4344(0.977) 0.4344(0.969) 

    
2
β  0.6594(0.963) 0.7080(0.968) 0.7337(0.976) 

   II α  1.0653(0.952) 1.0653(0.935) 0.9448(0.955) 

    
1
β  0.4237(0.960) 0.4384(0.961) 0.4384(0.968) 

    
2
β  0.6399(0.975) 0.7087(0.968) 0.6703(0.794) 

   III α  1.0682(0.925) 1.0682(0.950) 0.9450(0.945) 

    
1
β  0.4168(0.954) 0.4377(0.944) 0.4377(0.948) 

    
2
β  0.6139(0.923) 0.7168(0.932) 0.6447(0.942) 

5 30 20 I α  0.9763(0.922) 0.9763(0.925) 0.8815(0.935) 

    
1
β  0.5732(0.875) 0.7319(0.936) 0.7319(0.919) 

    
2
β  1.0132(0.925) 1.1340(0.925) 0.9459(0.933) 

   II α  0.9414(0.925) 0.9414(0.900) 0.8878(0.912) 

    
1
β  0.6696(0.915) 0.8292(0.923) 0.8292(0.931) 

    
2
β  1.3147(0.925) 1.1868(0.922) 1.2261(0.914) 

   III α  1.0996(0.901) 1.0996(0.922) 1.0624(0.918) 

    
1
β  0.8561(0.925) 0.8888(0.925) 0.8888(0.922) 

    
2
β  1.3223(0.911) 1.2626(0.915) 1.4501(0.914) 

 40 30 I α  0.8228(0.968) 0.8228(0.968) 0.7689(0.972) 

    
1
β  0.4541(0.964) 0.5523(0.963) 0.5523(0.967) 

    
2
β  0.7493(0.962) 0.9130(0.965) 0.7152(0.971) 

   II α  0.8159(0.954) 0.8159(0.956) 0.7519(0.958) 

    
1
β  0.4663(0.942) 0.5855(0.947) 0.5855(0.955) 

    
2
β  0.8456(0.955) 0.9622(0.962) 0.8253(0.949) 

   III α  0.9415(0.939) 0.9415(0.942) 0.8873(0.940) 

    
1
β  0.5782(0.941) 0.6873(0.951) 0.6873(0.943) 

    
2
β  1.0807(0.933) 1.1088(0.947) 1.0262(0.951) 
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Table 4. The average 95% confidence lengths and the corresponding coverage percentages (within brackets) of MLE's, Boot-p and Boot-t for different censoring 

schemes ( 1.5,α =  
1

0.4β =  and 
2

0.5).β =  

k n m Scheme Param. MLE Boot-p Boot-t 

1 30 20 I α  1.5567(0.932) 1.5567(0.931) 1.3397(0.944) 

    
1
β  0.5637(0.920) 0.5946(0.908) 0.5946(0.926) 

    
2
β  0.5876(0.917) 0.6729(0.925) 0.6351(0.932) 

   II α  1.376(0.922) 1.376(0.933) 1.1531(0.940) 

    
1
β  0.5528(0.933) 0.6282(0.935) 0.6282(0.941) 

    
2
β  0.6335(0.930) 0.7282(0.941) 0.7348(0.938) 

   III α  1.5142(0.935) 1.5142(0.914) 1.2889(0.902) 

    
1
β  0.5492(0.921) 0.6483(0.943) 0.6483(0.928) 

    
2
β  0.6132(0.920) 0.7154(0.932) 0.6910(0.937) 

 40 30 I α  1.1650(0.965) 1.1650(0.966) 1.0368(0.977) 

    
1
β  0.4720(0.956) 0.4999(0.976) 0.4999(0.964) 

    
2
β  0.5205(0.954) 0.5722(0.969) 0.5616(0.975) 

   II α  1.1449(0.945) 1.1449(0.947) 1.0105(0.969) 

    
1
β  0.4529(0.962) 0.4889(0.976) 0.4889(0.974) 

    
2
β  0.5062(0.965) 0.5453(0.977) 0.5503(0.972) 

   III α  1.1082(0.925) 1.1082(0.933) 0.9798(0.934) 

    
1
β  0.4482(0.945) 0.4936(0.940) 0.4936(0.953) 

    
2
β  0.5062(0.937) 0.5592(0.939) 0.5625(0.947) 

5 30 20 I α  0.9790(0.925) 0.9790(0.941) 0.8808(0.932) 

    
1
β  0.6335(0.933) 0.7731(0.943) 0.7731(0.939) 

    
2
β  0.6947(0.925) 0.8827(0.937) 0.689(0.957) 

   II α  1.0145(0.924) 1.0145(0.933) 0.9164(0.947) 

    
1
β  0.9672(0.936) 0.9761(0.942) 0.9761(0.944) 

    
2
β  1.1838(0.925) 1.0647(0.936) 1.1856(0.953) 

   III α  1.1527(0.924) 1.1527(0.935) 1.0459(0.932) 

    
1
β  0.9119(0.930) 1.1457(0.933) 1.1457(0.941) 

    
2
β  1.1208(0.941) 1.2670(0.932) 1.1463(0.939) 

 40 30 I α  0.8551(0.965) 0.8551(0.968) 0.7849(0.977) 

    
1
β  0.5075(0.955) 0.6412(0.971) 0.6412(0.959) 

    
2
β  0.5831(0.965) 0.7109(0.969) 0.5871(0.967) 

   II α  0.8425(0.955) 0.8425(0.966) 0.7667(0.955) 

    
1
β  0.5389(0.952) 0.6470(0.953) 0.6470(0.976) 

    
2
β  0.5835(0.961) 0.7474(0.971) 0.5529(0.963) 

   III α  0.9334(0.944) 0.9334(0.957) 0.8541(0.966) 

    
1
β  0.6753(0.936) 0.8376(0.963) 0.8376(0.945) 

    
2
β  0.8328(0.946) 0.9586(0.949) 0.8335(0.962) 

 

7. Conclusions 

In this paper, we have analyzed progressive 

first-failure-censoring in the presence of competing risks. In 

particular, we have assumed that the latent failure times under 

the competing risks follow independent Burr XII distributions 

with common the shape parameters. We compared different 

statistical inference procedures and the performance of the 

unknown parameters based on MLE, Boot-p and Boot-t 

methods in this setting. We have then conducted a simulation 

study to assess the performance of all these procedures and a 

numerical example has been presented to illustrate all the 

methods of inference developed in this paper. This work can 

be extended in several directions. Bayesian inference is also 

possible through the inclusion of suitable prior distributions. 

Inferences can be extended to allow for more than two causes. 

Based on the results of the simulation study some of the points 

are clear from this experiment. Even for some small sample 

sizes, we observe the following: 

The results obtained in this paper can be specialized to: (a) 

First-failure-censored order statistics by taking (0, , 0)R = ⋯ . 

(b) Progressively Type II censored statistics for 1k = . (c) 

Usually Type II censored order statistics for 1k =  and 

(0,..., )R n m= − . (d) Complete sample for 1k = , n m=  

and (0, , 0)R = ⋯ . 
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From Tables 1 4− , as expected for all the methods, when 

n , m  increase then the average lengths and the MSEs 

decrease. 

From Tables 3 4,−  in most cases the estimated coverage 

probability is close to the nominal level of 0.95  based on 

different methods. 

We also observe very stable coverage probabilities (quite 

close to the nominal level). On the other hand, the 

performances of the MLE, Boot-p and Boot-t methods are 

satisfactory for small sample sizes as their actual coverage 

probabilities are close to the specified nominal levels in most 

cases. 
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