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Abstract: Survival analysis refers to the general set of statistical methods developed specifically to model the timing of 

events. A popular regression model for the analysis of survival data is the Cox proportional hazards regression model. The Cox 

regression model is a semi parametric model, making fewer assumptions than typical parametric methods but more 

assumptions than those nonparametric methods. The main objective of this paper is to construct Cox proportional hazards 

regression model for examining the covariate effects on the hazard function and to determine the risk factors affecting the 

outcome of liver transplantation operation for end-stage liver disease. This article will focus on a review of (a) the Cox model 

and interpretation of its results, (b) assessment of the validity of the PH assumption, and (c) accommodating non-proportional 

hazards using covariate stratification. Cox PH model showed that the variables: Recipient age, ����� Score, Ln_Creatinine, 

and GRWR are statistically significant and selected as significant factors for risk of death after liver transplantation operation. 

Also the scaled Schoenfeld residual displayed non-proportionality for variable Recipient Age and this variable needed to be 

stratified. And the Cox-Snell residual showed the Cox PH model does not fit these data adequately. So the stratified Cox model 

could be more appropriate to the current study. The stratified Cox model with interaction and with no interaction were applied 

and showed that the no-interaction model is acceptable at 0.05 level of significance and the variables ����� Score , 

Ln_Creatinine are statistically significant and selected as significant factors for risk of death after liver transplantation 

operation at 0.05 level of significance. 

Keywords: Survival Analysis, Censoring, Cox Proportional Hazard Regression Model, Cox- Snell Residual,  

Stratified Cox Regression Model 

 

1. Introduction 

The most common approach to model covariate effects on 

survival is the Cox proportional hazard model, which can 

handle censored and/or truncated observations [1]. 

Regression analysis is generally used for identifying the risk 

factors. But due to the presence of censoring in survival data, 

ordinary regression models cannot be used. Also simple 

logistic regression analysis has the limitation of only 

allowing a view of survival probability over the entire study 

period as a single time interval and it assume that every 

patient is at risk over the entire study period. This is not valid 

for studies with long follow up or other situations where 

patients have variable time at risk. For this purpose, in 

survival analysis, Cox’s regression model is widely 

applicable. 

The distinguishing feature of Cox PH model is its ability to 

estimate the relationship between the hazard rate and 

explanatory variables without having to make any 

assumptions about the shape of the baseline hazard function. 

Hence the Cox model is sometimes referred to as a semi-

parametric model. 

The Cox regression model is a statistical theory of 

counting processes that unifies and extends nonparametric 

censored survival analysis. The approach integrates the 

benefits of nonparametric and parametric approaches to 

statistical inferences [2]. 

The Cox proportional hazards regression model relates 

covariates to the hazard function as follows: 

ℎ
�|�� = ℎ�
���
����                     (1) 

Where ℎ�
�� is called the baseline hazard function, which 

is the hazard function for an individual for whom all the 

variables included in the model are zero,  �� = ���, �� … … ��� is a parameter vector of regression 

coefficients, � = � ��, �� … . �� � � is the value of the vector of 

explanatory variables for a particular individual, and c
·� is a 

fixed, known scalar function [3].  
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This is a semi-parametric model where the baseline hazard ℎ�
t�  is estimated non-parametrically, while the covariate 

effect is constrained by the parametric representation �
����. 

Where, c
·� take an exponential form: 
�
���� = "�#$%�="&∑ #()(*+ %(,-

             (2) 

Which assures that the hazard is non-negative and assumes 

that covariate effects on the hazard are multiplicative. So 

ℎ
�|�� = ℎ�
���
���� = ℎ�
��"�#$%� = ℎ�
��"&∑ #()(*+ %(,-
 

(3) 

Proportional hazards  

The Cox model is called a proportional hazards model 

since the ratio of hazard rates of two individuals with 

covariate values �� and ��, at time t is: 

.
/|%+�.
/|%0� =  .1
/�2�3$4+�
.1
/�2�3$40� =  2�3$4+�

2�3$40� ="5#$
%+6%0�7            (4) 

The hazard ratio is time-independent as, the ratio does not 

depend on t. 
Since the hazard function at t given covariate x is ℎ
�|�� 

=ℎ�
��"�#$%�. The survival function, the cumulative hazard 

function and probability density function can be derived as 

follows: 

8
�|�� = 9 ℎ
: | ��;:/� = 9 ℎ�
:�"
#$%�;:/� = 8�
��"
#$%�   (5) 

<
�|�� = "6=>
/ | %�? = "6@>1
/�2�3$4�A
             (6) 

B
�|�� = ℎ�
��"�#$%� "6@>1
/�2�3$4�A
              (7) 

2. Parametric PH Models 

Parametric models need some special assumptions about ℎ�
t�, such as the exponential and Weibull distributions. But 

the advantage of Cox model is the fact that such assumptions 

can be avoided.  

The Parametric PH model is the parametric versions of the 

Cox proportional hazards model. It is given in similar form to 

the Cox PH models. The main difference between the two 

kinds of models is that the baseline hazard function is 

assumed to follow a specific distribution when a fully 

parametric PH model is fitted to the data, while the Cox 

model has not such assumption. A number of different 

parametric PH models can be derived by choosing different 

hazard functions [4]. The commonly used models are 

exponential, Weibull, or Gompertz models. 

Weibull PH model: 

The Weibull model allows for hazard rates to be non-

constant but monotonic that either increase or decrease 

exponentially with time. 

Under the Weibull PH model, the hazard function of a 

particular patient with covariates ���, ��. . ��� is given by: 

ℎ
� | �� =  CD �
E6��"�#+%+F#0%0……F#)%)� =  CD �
E6��"
#$%�  (8) 

Where C  is the scale parameter  and D  is the shape 

parameter  
Exponential PH model: 

The hazard function under this model is to assume that it is 

constant over time. Under the exponential PH model, the 

hazard function of a particular patient is given by: 

ℎ
� | G� = C"�#+%+F#0%0……F#)%)� = C"�#$%�              (9) 

3. Likelihood Estimation for the Cox PH 

Model 

Derivation of an estimator of �  cannot be based on an 

ordinary likelihood function since ℎH
t�  is not specified 

parametrically in the Cox model. Instead, partial likelihood 

function has been proposed by Cox [5] for the estimation of 

regression parameters which is a function depending on � 

only. 

Cox partial likelihood 

Let  t�  t� ……. tI  be the observed survival time for n 

individuals, and the ordered death time of r individuals be t
�� t
��…. t
J� .The set of individuals who are at risk at tK is 
denoted by R�tK�. So that R�tK� is the group of individuals 

who are alive and uncensored at a time just prior to tK. The 

conditional probability that the iNO individual dies at  tK given 

that one individual from the risk set on R�tK� dies at tK is: 

= .,�/(�∑ .P�/(�P∈R&S(- = .1�/(�2&3$ 4(-
∑ .1�/(�2�3$ 4P�P∈R&S(- = 2&3$ 4(-

∑ 2�3$ 4P�P∈R&S(-  (10) 

By taking the product of these conditional probabilities 

over r death times gives: 

�
�� = ∏ 2&3$ 4(-
∑ 2�3$ 4P�P∈R&S(-

UVW�                 (11) 

Then the partial likelihood function for the Cox PH model 

is given by: 

�
�� = ∏ X 2�3$ 4,�
∑ 2�3$ 4P�P∈R�S,� YZ,[\W�              (12) 

Where ]
�\� is the risk set at time �\  and δK is the event 

indicator which is zero if the _/.  survival time is right 

censored and unity otherwise. This is the partial likelihood 

defined by Cox. The Cox methodology uses the partial 

likelihood to yield estimates of �  that are consistent and 

efficient regardless of the form of ℎH
�� . The partial 

likelihood is valid when there are no ties in the dataset. 

4. The Score Function and Information 

Matrix 

The regression coefficients �  are estimated with �̀  that 

maximize the partial likelihood. Assuming no ties, the log 
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partial likelihood is: 

a
�� = log L
�� = aef ∏ X 2�3$ 4,�
∑ 2�3$ 4P�P∈R�S,� YZ,[\W� =

∑ g\5�� �\ −  aef�∑ "�#$ %P�i∈j
/,� �7IkW�           (13) 

Then the score function which is the first partial 

derivative: 

l.
�� = mn
#�m#o = ∑ g\IkW� X �\. − p∑  %Po 2�3$ 4P�P∈R�S,�∑ 2�3$ 4P�P∈R�S,� qY  (14) 

For h = 1, 2 . . . r . The maximum partial likelihood 

estimate � s can be obtained uniquely by solving the partial 

likelihood equation: l.
�� = 0 
Whereas the second derivative of the partial likelihood is 

given by: 

m0n
#�m#um#o =
− ∑ g\IkW� vX ∑  %Po %Pu P∈R�S,� 2�3$ 4P�

∑ 2�3$ 4P�P∈R�S,� Y −
X∑  %Po 2�3$ 4P�P∈R�S,�∑ 2�3$ 4P�P∈R�S,� Y X∑  %Pu 2�3$ 4P�P∈R�S,�∑ 2�3$ 4P�P∈R�S,� Yw          (15) 

m0n
#�m#um#o =
− ∑ g\IkW� vX ∑  %Po %Pu P∈R�S,� 2�3$ 4P�

∑ 2�3$ 4P�P∈R�S,� Y −
x&∑  %Po 2�3$ 4P�P∈R�S,� -&∑  %Pu 2�3$ 4P�P∈R�S,� -

@∑ 2�3$ 4P�P∈R�S,� A0 yw            (16) 

This matrix for f = 1, 2 . . . r. and h = 1, 2 . . . r., is a sum 

over i = 1, 2 . . . n. of weighted covariance matrices for the x 

vector in the populations at risk at the time �\. 
The negative of the second partial derivatives provide the 

observed information matrix which estimates the covariance 

matrix of the estimated regression coefficients [6]. 

Consequently, 

z
� � = − m0n
#�m#um#o                             (17) 

z
� � is defined as the observed information matrix . 

The score vector l
��� evaluated at the true value of � 

will be asymptotically distributed as a multivariate normal 

with mean vector zero and covariance matrix which can be 

unbiased estimated by z
���. 

l
���~ |
0, z
����                        (18) 

The estimate �̀ will also be asymptoticly normal 

�̀ ~ |
��, z6�
����                           (19) 

 

5. Model Checking in Cox Regression 

Model 

After the model has been fitted, the adequacy of the fitted 

model needs to be assessed which is usually performed using 

model residuals. 

5.1. Cox-Snell Residuals 

The Cox-Snell residual is given by Cox and Snell, which is 

used for assessing the fitness of PH model [7]. The Cox-Snell 

residual for the i
th

 individual is defined as: 

}~\ = "�r���s  �\� 8s�
�\�                   (20) 

Where 8s�
tk�  is an estimate of the baseline cumulative 

hazard function at time �\ . In practice the Nelson – Aalen 

estimate is generally used. . If the final PH model is correct 

and the �̀ are close to the true values of the �, then }~\  should 

resemble a censored sample from a unit exponential 

distribution. Therefore, a plot of the Nelson-Aalen 

cumulative hazard estimate of residuals 8s
}~\� versus 

residuals }~\  should be a straight line through the origin with 

a slope of 1, if the fitted model is correct. 

5.2. Proportional Hazard Assumption Checking 

The main assumption of the Cox proportional hazards 

model is proportional hazards, which mean that the hazard 

ratio is constant over time. There are several methods for 

verifying that a model satisfies the assumption of 

proportionality (Graphical method, Scaled Schoenfeld 

residuals, Adding time dependent covariate) [8]. 

� Graphical method 

According to Cox regression model the survival function 

for i
th

 individual is given by: 

<\
��    =  = <�
��?2%��#$%,� 
Where x = 
��, �� … . . ���′ is the values of the vector of 

explanatory variables for a particular individual. By taking 

the logarithm twice, we get: 

a�=−a�<\
��? = ���k + a�=−a� <�
��?           (21) 

Then the difference in log-log curves corresponding to two 

different individuals with variables ��  = 
���, ���, … . . ���� and �� = ����, ���, … . . ����  which does 

not depend on t is given by: 

a�=−a�<\
�, x��? − a�=−a�<\
�, x��? = ∑ �
��\ − ��\��\W�   (22) 

This provides the basis for assessing the validity of PH 

assumption. By plotting estimated −aef
−aef
�:}�_��a�� 

versus survival time for two groups we would see parallel 

curves if the hazards are proportional [9]. This method does 

not work well for categorical predictors with many levels 

because the graph becomes cluttered. 
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� Scaled Schoenfeld residuals  

Scaled Schoenfeld residuals are defined as the product of 

the inverse of the estimated variance-covariance matrix of the 

k
th

 Schoenfeld residual and the k
th

 Schoenfeld residual [10]. 

The scaled Schoenfeld residual can be used to assess time 

trends and lack of proportionality. 

}∗�V\ = 
�6��}�V\                    (23) 

Where }∗�V\  is the Scaled Schoenfeld residual and }�V\  is 

the Schoenfeld residual. 

Under the null hypothesis, we expect to see a constant 

function over time. When the proportional hazards assumption 

holds, straight horizontal line with zero slope is expected. 

6. The Stratified Cox Regression Model 

The stratified Cox regression model is a modification of 

the Cox regression model that allows for control by 

stratification of a covariate that does not satisfy the 

proportional hazards assumption. Covariates that are 

assumed to satisfy the proportional hazards assumption are 

included in the model, however the predictors being stratified 

is not included. There are interaction and no-interaction 

models defined in the stratified Cox regression model [11]. 

6.1. No-Interaction Model 

In the stratified model with no interaction, the strata divide 

the individuals into � disjoint groups, each having a distinct 

baseline hazard ℎ�i
��  but a common value for the 

regression parameter which means that the coefficients ��, �� … . . �� are the same for each stratum. The hazard 

function for the failure time of an individual in stratum k 

takes the form: 

ℎi
�|�� = ℎ�i
��"�r
����              (24) 

Where � denotes the particular stratum 
� = 1, … , ��, , � 

is a vector of unknown regression parameters, and ℎ�i
��are 

K unknown baseline hazard functions. The subscript � in the 

equation indicates that each stratum has its own baseline 

hazard function while the �′ are the same across strata. 

Under the stratified model, it can be seen that individuals 

within the � th
 stratum share the same baseline hazard 

function ℎ�i
�� which implies that the proportional hazards 

for two individuals in the same stratum still holds: 

.P
/|%+�.P
/|%0� = "�r
�� − �����               (25) 

On the other hand, individuals from different groups can 

have non-proportional hazards as their baseline hazards 

functions may differ. 

ℎ�i
��ℎ�i� 
�� , comparing strata � to ��  . 
Since these functions are unrestricted, any relationship of 

this hazard ratio over time is possible. 

The partial likelihood for the stratified Cox model is the 

product of partial likelihoods in each stratum: 

�
�� = ∏ �i
���iW�                      (26) 

6.2. Interaction Model 

The data set can be stratified into � strata according to the 

variable that does not satisfy the proportional hazards 

assumption; in this case, the interaction model is defined as 

follows: 

ℎi
�|�� = ℎ�i
�� "�r5��i��+ ��i�� , … + ��i��7     (27) 

In this interaction model, each regression coefficient has 

the subscript�, which denotes the ��ℎ stratum and indicates 

that the regression coefficients are different for different 

strata. So if there is no interaction the stratified Cox 

regression model will contains regression coefficients that do 

not vary over the strata. If interaction is allowed for, different 

coefficients for each of the stratum are obtained. Likelihood 

ratio test statistics is used to examine the no-interaction 

assumption. 

�] = −2aef �
[H \[/.� − 5−2aef �
 \[/.�7           (28) 

The likelihood ratio (LR) test compares log likelihood 

statistics for the interaction model and the no-interaction 

model. 

7. Data Set 

This part of the study includes shedding light on the case 

study and the collected data description. The study involved 

308 patients performed liver transplantation operation 

consecutively admitted to Egypt Air hospital and Ain Shams 

University hospital from January 2007 to May 2013. Among 

308 patients 4 were excluded due to their age were less than 

18 years and 2 for re-transplantation. So the study included 

302 patients. In the following analysis, the time after the 

operation till death is the endpoint of interest, this variable is 

measured in months. There was a 2-year follow-up period for 

the patients. Patients who were still alive at the end of the 

follow-up period were treated as censored observations. The 

complete data set consists of 302 observations, of which 

81.45% are censored. The results of Cox PH regression 

model is obtained by using (STATA) statistical packages. 

8. Description of the Variables 

� Survival time: time to death or censoring time, 

measured in months. 

� Death status: the event indicator, equal to 1 for those 

died during the period of the study and 0 for those who 

were not died or censored. 

� Recipient Age: a dummy variable, equal to 0 if the 

patient age less than 50 and 1 if his age greater than or 

equal 50. 

� Recipient Sex: a dummy variable, equal to 1 for male 

and 0 for female. 
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� Donor Age: a dummy variable, equal to 0 if the patient 

age less than 30 and 1 if his age greater than or equal 

30. 

� Donor Sex: a dummy variable, equal to 1 for male and 

0 for female. 

� BMI: Body Mass Index �� ��⁄   

� CTP score: stands for Child-Turcotte-Pugh score. A 

categorical variable, with codes 1 for class A, 2 for 

class B and 3 class C. Since the variable CTP has three 

levels, it is included in the model using the subgroup CTP � as the reference group. 

� MELD Score: stands for Model for End stage Liver 

Disease. A categorical variable, with codes 1 for MELD 

score from �6 to 12 �  , 2 for MELD score from �13 to 18 �and 3 for MELD score from �19 or higher�. 

Since the variable MELD has three levels, it is included 

in the model using the subgroup ���� �  as the 

reference group. 

� HCC: stands for Hepatocellular Carcinoma .A dummy 

variable, equal to 1 for patients suffer from HCC and 0 

if they did not. 

� Ascites: a dummy variable, equal to 1 if the patients 

suffer from Ascites and 0 if they did not. 

� Encephalopathy: a dummy variable, equal to 1 if the 

patients suffer from Encephalopathy and 0 if they did 

not. 

� Ln-Total Bilirubin: mg/dl, this variable is transformed 

by taking the logarithm to decrease the influence of 

extreme values and to fit normal distribution. 

� Ln-Creatinine: mg/dl, this variable is transformed by 

taking the logarithm to decrease the influence of 

extreme values. 

� Albumin: a dummy variable, equal to 1 if the Albumin 

level is less than or equal 2.6 
≤ 2.6 mg/dl � and 0 if 

the Albumin level is higher than 2.6 ( > 2.6mg/dl�.  
� Inverse-INR: this variable is transformed by taking the 

inverse to decrease the influence of extreme values. 

� Sodium: a categorical variable, with codes 1 for Sodium 

level �≤ 130 mg/dl� , 2 for Sodium level from �131 to 135 mg/dl� and 3 for Sodium level 

from �136mg/dl or higher�. Since the variable Sodium 

has three levels, it is included in the model using the 

subgroup <e;_:� � as the reference group. 

� Ln-Calcium: mg/dl, this variable is transformed by 

taking the logarithm to decrease the influence of 

extreme values. 

� Ln-Potassium: mg/dl, this variable is transformed by 

taking the logarithm to decrease the influence of 

extreme values. 

� GRWR: Graft to recipient weight ratio showed in 

percentage. 

9. Analysis and Results 

Table (1). Univariate Cox PH regression analysis. 

Covariates β Hazard Ratio 95% CI LL 95% CI UL p-value 

Recipient Age <50 
 

1 
   

Recipient Age >=50 0.505 1.657 0.964 2.846 0.067* 

Recipient Sex Female 
 

1 
   

Recipient Sex Male -0.289 0.748 0.354 1.581 0.448 

Donor Age < 30 
 

1 
   

Donor Age >= 30 0.049 1.0507 0.616 1.789 0.855 

Donor Sex Female 
 

1 
   

Donor Sex Male 0.242 1.274 0.643 2.526 0.475 

BMI 0.0312 1.031 0.966 1.101 0.352 

HCC No 
 

1 
   

HCC YES 0.131 1.14 0.667 1.95 0.63 

CTP Score A 
 

1 
   

CTP Score B -0.094 0.909 0.117 7.04 0.928 

CTP Score C 0.34 1.405 0.193 10.202 0.736 

MELD1 (6 to 12) 
 

1 
   

MELD2 (13 to 18 1.256 3.513 0.823 14.986 0.089* 

MELD3 (19 or higher) 2.218 9.1916 2.204 38.316 0.002* 

Ascites No 
 

1 
   

Ascites Yes 0.086 1.09 0.563 2.111 0.797 

Encphalopathy No 
 

1 
   

Encphalopathy Yes 0.218 1.244 0.725 2.134 0.426 

Ln_TBilirubin 0.0057 1.0057 0.668 1.512 0.978 

Ln_Creatinine 0.807 2.242 1.35 3.723 0.002* 

Albumin < 2.6 
 

1 
   

Albumin >= 2.6 0.2505 1.284 0.751 2.195 0.300 

INV_INR 0.805 2.238 0.383 13.07 0.371 

Sodium1 (<= 130) 
 

1 
   

Sodium2 (131- 135) -0.271 0.762 0.367 1.579 0.465 

Sodium3 (>136) -0.425 0.653 0.33 1.293 0.200* 

Ln- Calcium -0.801 0.448 0.011 18.137 0.671 

Ln-Potassium 0.642 1.901 0.395 9.153 0.423 

GRWR -1.77 0.1702 0.031 0.906 0.038* 
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To determine the variables to be included in the final 

model, the univariate Cox PH regression analysis is applied 

first to identify the impact of individual variable on time to 

event before proceeding more complicated model selection. 

Variables are identified as significant using a 0.2 significance 

level in the univariate analysis. 

Table (1) presents the univariate Cox PH analysis .The first 

column is showing the coefficients � the parameter estimate, 

in the second column the hazard ratio for a one unit change in 

the predictor, then the 95% confidence interval and finally 

the r-value. 

According to the univariate Cox PH analysis, that the 

covariates Recipient Age ( r  = 0.067�  , �����  ( r =0.089� ,  �����  ( r = 0.002� , Ln creatinine ( r = 0.002� , Sodium � 
r = 0.2�, and the GRWR ( r = 0.038�  are 

statistically significant and selected as significant factors for 

risk of death after liver transplantation operation. 

� Multivariate Cox PH regression analysis 

We then conducted full multivariate Cox PH analysis (by 

using stepwise selection process) including all the potential 

risk factors that had a r-value of less than or equal 0.2 in 

univariate Cox PH analysis. 

To select the best subgroup of variables in our model, the 

approach of stepwise was applied. The stepwise selection 

process consists of a series of alternating forward selection 

and backward elimination steps. The former step adds 

variables into the model, and the latter step removes variables 

from the model. The threshold for variable selection into the 

model is setting with r ��a:"  at 0.2 (SLENTRY = 0.2), 

while the threshold for variable removing from the model is 

setting with r ��a:" at 0.1 (SLSTAY = 0.1). It means only 

variables with r ��a:"  less than 0.2 will be tested in the 

model, and to keep it in the model, its r ��a:" should be less 

than 0.1. The results from the stepwise proportional hazard 

regression are displayed as below. 

Table (2). Multivariate Cox PH regression analysis. 

Covariates β Hazard Ratio 95% CL LL 95% CL UL p-value 

Recipient Age <50 
 

1 
   

Recipient Age >=50 0.748 2.113 1.163 3.841 0.014* 

MELD1 (6 to 12) 
 

1 
   

MELD2 (13 to 18 1.159 3.189 0.739 13.75 0.101 

MELD3 (19 or higher) 2. 057 7.827 1.851 33.08 0.005* 

Ln_Creatinine 0.5107 1.666 1.005 2.762 0.048* 

Sodium3 -0.185 0.8305 0.463 1.487 0.532 

GRWR -1.827 0.16 0.022 1.173 0.071* 

 

To further optimize the Cox model, the variable with the 

highest r − ��a:"  and over threshold of significance are 

removed from the predictive model one by one until all the 

rest variables are shown significant impact on the prediction 

of hazard rate. From Table (2) the variable Sodium3 is the 

one with highest p-value= 0.532, so it is removed. The result 

is shown as below Table (3). 

Table (3). Elimination of variable with high p- value by Stepwise. 

Covariates β Hazard Ratio 95% CL LL 95% CL UL p- value 

Recipient Age <50 
 

1 
   

Recipient Age >=50 0.596 1.816 1.04 3.154 0.034* 

MELD1 (6 to 12) 
 

1 
   

MELD2 (13 to 18 1.214 3.368 0.787 14.417 0.102 

MELD3 (19 or higher) 2.18 8.853 2.11 37.129 0.003* 

Ln_Creatinine 0.5151 1.673 0.99 2.805 0.051* 

GRWR -1.381 0.251 0.046 1.366 0.089* 

And then, the same strategy is applied for the following analysis. The variable ����� has highest r − ��a:" = 0.102, so 

removed in the following step as shown in Table (4). 

Table (4). The final Cox PH model. 

Covariates β Hazard Ratio 95% CL LL 95% CL UL p- value 

Recipient Age <50  1    

Recipient Age >=50 0.604 1.831 1.0547 3.178 0.032* 

MELD1 (6 to 12)  1    

MELD3 (19 or higher) 1.160 3.190 1.834 5.548 0.0001* 

Ln_Creatinine 0.518 1.678 1.003 2.807 0.048* 

GRWR -1.423 0.2408 0.043 1.334 0.090* 

 

The final model is obtained as in Table (4), the data 

showed that most of the predictors are significant in the 

model with their p-value less than 0.05 except for the 

GRWR. After we built a multivariate model of main effects, 

we then check all the interactions between predictors. To test 

the interaction among variables, the list of all raw variables 

and all possible combinations of interactions are included for 

proportional hazard regression analysis however none of the 
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interactions are significant. Eventually, the final model is 

generated including the variables Recipient age, MELD3, 

Ln_Creatinine, and GRWR. 

The final multivariate Cox PH model is then given by: 

ℎ\
�� = ℎ�
�� ��r 

0.604 ]"�_r_"�� «f" + 1.160 �����+ 0.518 Ln . creatinine  − 1.423 �]¬]� 

The final multivariate Cox PH model concluded that: 

� The higher: the Recipient age, the MELD score and the 

Creatinine level the more the risk of death after LDLT. 

� The Larger the transplanted liver graft the lower the risk 

of death after LDLT. 

After fitting Cox PH model, we can plot the survivor, 

cumulative hazard, and the estimated hazard functions, as 

shown in figure (1). 

 

 

 

Figure (1). Cox PH model: (a) survivorship function; (b) cumulative hazard 

function; (c) estimated hazard function. 

It is obvious from figure (1-c) that the hazard function is 

not monotonic, as it first very high during the early weeks 

after the LT operation, then decreases and tends to stabilize 

during the first year from LT, and after the 1
st
 year it begins 

to increase slightly. 

10. Model checking 

Adequacy of a fitted model needs to be assessed after a 

model has been constructed. 

10.1. The PH Assumption Checking 

The final model is based on a major assumption that the 

hazards between groups are proportional. To test the 

assumption of proportionality, the scaled Schoenfeld 

residuals and log-log survival plot have been used. 

� Log- Log Survival Plot 

Figure (2) shows −aef
−aef
�:}�_��a��  plot of the 

variable Recipient Age and ����� . For Recipient Age the 

plotted lines are not parallel however for ����� the plotted 

lines are parallel. Although using graphs to assess the validity 

of the assumption is subjective, it can be a helpful tool. 

 

 

Figur (2). Log-Log Survival plot For Rec.Age and �����. 
� Scaled Schoenfeld residuals 

Scaled Schoenfeld residuals is based on the principle that, 
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for a given regressor, the assumption restricts �
�i� =  � for 

all t­. This implies that a plot of �
�i� versus time will have 

a slope of zero. The null hypothesis is having zero slope, 

which is equivalent to testing that the log hazard-ratio 

function is constant over time. 

Table (5). Test PH assumption by using Scaled Schoenfeld residuals. 

 rho ®¯°± ²³ ´µ¶· > ®¯°± 

Recipient Age -0.321 5.7 1 0.017 ����� -0.0558 0.17 1 0.68 

Creatinine 0.0348 0.08 1 0.774 

GRWR 0.0191 0.03 1 0.859 

Global test  5. 72 4 0.221 

Table (5) shows both covariate-specific and global tests. It 

is obvious that Recipient age variable violates the 

proportional-hazards assumption r ��a:"  =0.017 which is 

less than 0.05. 

 

 

 

 

Figur (3). Scaled Schoenfeld residuals to test PH assumption. 

Also figure (3) supports the results obtained before, 

variables Creatinine, ����� , and GRWR , having zero slope 

and does not violate the proportional-hazards assumption . 

However, Recipient age variable violates the proportional-

hazards assumption as it does not have a zero slope. 

10.2. Cox-Snell Residuals 

We assess goodness of fit by using Cox–Snell residual 

plot.  

 

Figur (4). The Cox-Snell residual Plot for Cox PH model. 

In Figure (4), the blue line is the estimation of Cox-Snell 

residuals while the red line is the origin with a slope equals to 

1. The plot suggests that the Cox PH model does not fit the 

straight line adequately. There is some evidence of a 

systematic deviation from the straight line which gives us 

some concern about the adequacy of the fitted model. As the 

scaled Schoenfeld residuals and −aef
−aef
�:}�_��a�� 

showed that the Cox PH model displayed non-proportionality 

for variable Recipient Age, and the Cox-Snell residuals 

suggests that the Cox PH model does not fit the data 

adequately, so the Stratified Cox regression model is more 

adequate to be used. 

11. The Stratified Cox Regression Model 

As Schoenfeld residuals showed that the Cox PH model 

displayed non-proportionality for variable Recipient Age, 

which means that there is an interaction between this variable 
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and time, so the Stratified Cox regression model is more 

adequate to be used. Here we applied the stratified Cox 

regression with no interaction and with interaction model. 

Table (6). Results for the No-interaction and Interaction Models. 

Variables 
No interaction model 

Interaction model 

Strata 1 

Recipient Age < ¹º 

Strata 2 

Recipient Age ≥ ¹º 

Coef. H.R. ´ value Coef. H.R. ´ value Coef. H.R. ´ value �����  1.15 3.178 0.0001 0.970 2.63 0.034 1.271 3.567 0.0001 

Ln.creat. 0.521 1.684 0.050 0.2846 1.329 0.0669 0.5606 1.751 0.045 

GRWR -1.40 0.246 0.107 -1.497 0.223 0.274 -1.347 0.259 0.232 

Log likelihood for no interaction model =  -256.31462 

Log likelihood for interaction model =  -256.072857 

It is clear that in the no interaction model there is different 

baseline hazard function for each stratum however the 

coefficients are the same. However in the interaction model 

different baseline hazard function and different coefficients 

are obtained for each stratum. 

Table (6) shows the application of the stratified Cox 

regression with no interaction and with interaction model, to 

determine which model is more appropriate statistically the 

likelihood ratio test is used, which compares log-likelihood 

statistics for the interaction model and the no-interaction model. 

Under the null hypothesis 8�: the no interaction model is 

correct and statistically appropriate. 

The Likelihood ratio statistics is calculated as follows: 

5−2 aef  a_�"a_ℎee;
 [H \[/2U¼~/\H[ ½H¾2n� 7− 5−2 aef  a_�"a_ℎee;
 \[/2U¼~/\H[ ½H¾2n� 7 
The Likelihood ratio statistics = 512.6292 − 512.1457= 0.48348 

This value (0.48348) is not significant at the 0.05 level of 

significance for 2 degrees of freedom. 

Thus, it appears that despite the numerical difference 

between corresponding coefficients in ]"�"r_"�� «f" <50 and ]"�"r_"�� �f" ≥ 50 models, there is no statistically 

significant difference. We can therefore conclude for these 

data that the stratified Cox model with no-interaction model 

is acceptable (at 0.05 level of significance). 

12. Conclusions 

The Cox PH model was used to examine the covariate 

effects on the hazard function and to determine the risk 

factors affecting the outcome of liver transplantation 

operation for end-stage liver disease. 

The final multivariate Cox PH model is then given by: 

ℎ\
�� = ℎ�
�� ��r 

0.604 ]"�_r_"�� «f" + 1.160 �����+ 0.518 Ln . creatinine  − 1.423 �]¬]� 

Cox PH model showed that the variables: Recipient 

age,  ����� , Ln_Creatinine, and GRWR are statistically 

significant and selected as significant factors for risk of death 

after liver transplantation operation. 

 The scaled Schoenfeld residuals showed that the Cox PH 

model displayed non-proportionality for variable Recipient 

Age and the Stratified Cox regression model is more 

adequate to be used. 

Also the Cox-Snell residual showed that there is some 

evidence of a systematic deviation from the straight line 

which gives us some concern about the adequacy of the fitted 

model. So we concluded that the Cox PH model does not fit 

these data adequately. The stratified Cox model with 

interaction and with no interaction were applied and showed 

that the no-interaction model is acceptable at 0.05 level of 

significance and the variables ����� Score, Ln_Creatinine 

are statistically significant and selected as significant factors 

for risk of death after liver transplantation operation at 0.05 

level of significance. 
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