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Abstract: This paper presents the reliability and availability measures of a two non-identical unit cold standby redundant 

system (unit-1 is operating, and unit-2 is cold standby) using semi-Markov process under discrete parametric Markov-Chain i.e. 

failure and repair times of a unit and time to PM and PM time are taken as discrete random variables assuming three different 

modes (normal (N) mode, partial failure (P) mode and total failure (F) mode) of each unit. The unit-1 is sent for preventive 

maintenance (PM) after its working for a random period of time assuming that the failure and repair times of a unit and time to 

PM and PM time are taken as discrete random variables having geometric distributions with different parameters. A single 

repairman is available with the system for PM of unit-1 and repair of both units. The system is considered in up-state if only 

one or two units are operative or in partial failure (P) mode. After some basic definitions and notations, we obtain various 

measures of system effectiveness; reliability, availability, mean time to failure, busy period of repairman due to PM of unit-1, 

busy period of repairman due to repair of unit-1 and unit-2 from total failure, and the expected profit function using 

regenerative point technique. The mathematical problem thus developed has next been solved numerically and graphically 

represented by the aid of Maple program. 
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1. Introduction 

Many reliability systems can be modeled using semi-

Markov process. The idea of a semi-Markov process was 

proposed by [1].The essential developments of semi-Markov 

processes theory applications in reliability were proposed by 

many authors. [2] and [3] presented a comprehensive 

treatment of semi-Markov processes and their applications to 

reliability theory. Some concepts of a semi-Markov process 

theory was presented by [4]. [5] discussed the basic 

definitions and theorems from the semi-Markov processes 

theory and considered the semi-Markov model of the cold 

standby system with repair. [6] considered the semi-Markov 

model of multistate system. [7] presented the properties of 

the reliability function of an object with failure rate modeled 

by a semi-Markov process applying the renewal equations 

and obtained the Laplace-Stieltjes transform of the reliability 

function and its mean time to failure. [8], [9] and [10] studied 

the semi-Markov processes and their applications in 

reliability. 

In this paper, we are interested in the reliability and 

availability analysis of a two non-identical unit cold standby 

system with three modes (normal (N) mode, partial failure (P) 

mode and total failure (F) mode) with preventive 

maintenance based on discrete-time semi-Markov processes. 

In cold standby systems, only one component will be 

working at any given time, the others being standbys and not 

working. One of the standby components starts working only 

when the currently working component fails. Standby 

components do not fail when they are in standby. The total 

failure of the primary unit results in the cold standby unit 

being an operative unit and its failure rate becoming nonzero. 

The system works until all of its components fail. 

Two-unit cold standby redundant system models have been 
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analyzed widely in the literature of reliability by many 

authors. Many authors have analyzed the two-unit cold 

standby redundant systems with two modes (normal and total 

failure). [11] proposed a profit analysis of a two non-identical 

units (unit-1 and unit-2) cold standby system model assuming 

two modes of each unit. The unit-1 is sent for preventive 

maintenance (PM) after its working for a random period of 

time. A single repairman is available with the system for PM 

of unit-1 and repair of both units. [12] have analyzed the 

reliability of two-unit cold standby system with single repair. 

For achieving high reliability of the system, the operative and 

the standby units are interchanged at random epochs and 

additional preventive maintenance of operative and the 

standby unit also. [13] analyzed reliability characteristics of 

two different series system configurations with mixed 

standby (include cold and warm standby) components. [14] 

analyzed the cost analysis of a two dissimilar unit cold 

standby redundant system subject to inspection and random 

change in units. In this system each unit works in two 

different modes normal and total failure. Assuming that the 

failure, repair, post repair, interchange of units and inspection 

times are stochastically independent random variables each 

having an arbitrary distribution. [15] proposed a stochastic 

behavior of a two-identical unit cold standby system model 

assuming the two modes of a unit. Two repairmen are 

considered to repair a failed unit. One is regular repairman 

and the other is skilled repairman. [16] investigated the 

stochastic model of a two identical unit cold standby system. 

If repair of the failed unit is not completed within a specified 

time, then an order is placed to replace the failed unit by the 

new one. [17] proposed the stochastic analysis of a single 

server two identical unit cold standby system. The service 

facility is summoned whenever the operating unit fails. Many 

authors have analyzed the two-unit cold standby redundant 

systems with three modes (normal, partial failure and total 

failure). [18] studied the two-unit cold standby system with 

three modes, and the failure and repair times have bivariate 

exponential density as their joint distribution. [19] have 

examined a two-unit cold standby system with three modes. 

The operative unit can fail totally either directly from normal 

state or via partial failure. [20] studied the behavior of two 

models with two-unit cold standby system under the 

assumption that model 1 works in three different modes, but 

model 2 works in two different modes (Normal and Total 

failure). [21] studied the stochastic behavior of a two-

identical unit cold standby system model using regenerative 

point technique assuming three modes of the units where the 

totally failed unit needs some preparation before going into 

repair. [22] analyzed a two-identical unit deteriorating 

standby system using regenerative point technique. Each unit 

can be in one of the three modes. A unit can fail totally but 

not partially during its standby state. [23] studied the effect 

of imperfect switching on a two-unit cold standby system in 

which each unit works in three different modes. [24] 

discussed the two-dissimilar-unit cold standby system with 

preventive maintenance with three modes using linear first 

order differential equations. [25] studied the availability of 

the two-identical unit cold standby system with constant 

failure rates. Initially one unit is operative while the other 

remains standby. Each of the units of the system has three 

modes (Normal, Partial failure and Total failure). 

Preventive maintenance (PM) is defined as the practice of 

replacing components or subsystems before they fail in order 

to promote continuous system operation. PM is also defined 

as the planned maintenance of components in order to 

prevent or minimize the breakdowns and the depreciation 

rates. PM is a sort of repair that is done before the unit 

actually fails, i.e. after working for a random period of time, 

a unit goes for its PM. Many authors have analyzed system 

models with the concept of PM. A wide and recent study of 

preventive maintenance models was analyzed by [26]. [27] 

analyzed a series-parallel system with preventive 

maintenance using semi-Markov process. 

The following reliability measures of the system are 

obtained using regenerative point technique: 

i. Transition probabilities and mean sojourn times in 

various states. 

ii. Reliability and mean time to system failure. 

iii. Availability and steady state availability of the system. 

iv. Expected busy period of the repairman during time 

interval ( )0, t  

This paper is organized as follows: Section 2 is devoted to 

the description and basic assumptions of the two-unit cold 

standby system with preventive maintenance with three 

modes (normal (N) mode, partial failure (P) mode and total 

failure (F) mode). Section 3 is devoted to notations and states 

of the system. Section 4 is devoted to the explanation of 

transitions between the states. The transition probabilities of 

the system are given in section 5. Mean sojourn times are 

given in Section 6. Various measures of system effectiveness; 

reliability and availability are given in Section 7. In Section 8 

we obtained the reliability, availability, steady state 

availability, mean time to failure of the system and busy 

period of repairman. The expected profit function of the 

system is presented in Section 9. In Section 10, a numerical 

example is given. In Section 11, some concluding remarks 

are given. 

2. Model Description and Assumptions 

In this paper we consider a reparable discrete time semi-

Markov model of a two-unit cold standby system with 

preventive maintenance, the failure and repair times of a unit 

and time to PM and PM time are taken as discrete random 

variables having geometric distributions with different 

parameters, and we obtain closed form solutions for 

reliability measures: reliability, availability, steady state 

availability, mean sojourn time, mean time to failure and 

busy period of repairman. Regenerative point technique is 

used for the analysis. Regenerative stochastic process was 

defined by [1]. The regenerative process is a stochastic 

process with time points at which, from a probabilistic point 

of view, the process that restarts itself. These time points are 

called regenerative points and the state in which regenerative 

points occur is known as regenerative state. 

The following assumptions and notations are associated 

with the model: 

i. The system comprises of two non-identical units 
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(unit-1 is operative and unit-2 is cold standby). The 

system initially starts from state 
0

S  where unit-1 is 

operative and unit-2 is in cold standby which can’t 

fail in its standby state. 

ii. Each unit of the system has three modes: normal (N) 

mode which means the functioning of the unit with 

full capacity, partial failure (P) mode which means 

the functioning of the unit with reduced capacity at a 

specified level, and total failure (F) mode its capacity 

goes below specified level. 

iii. A unit in the normal (N) mode must pass through the 

partial failure (P) mode to go to total failure (F) mode. 

iv. When the operative unit (unit-1) fails totally from the 

partial failure (P) mode, the cold standby unit (unit-2) 

becomes operative. 

v. A unit which is repaired in total failure mode go 

directly to the normal mode without passing through 

the partial failure mode. 

vi. Unit-1 is sent for PM after its working for a random 

period of time. During the PM action, the unit-1 

remains inactive and the system operates with the 

cold standby unit (unit-2). After completion of PM, 

unit-1 again starts operation and unit-2 goes into 

standby. 

vii. Single repairman is available with the system to play 

the role of PM of the operative unit (unit-1) and 

repair of all units. The unit-1 gets priority in PM and 

repair over the repair of unit-2. 

viii. When unit-1 is in partially failure mode, the 

installation of the cold standby unit for operation is 

not permitted. 

ix. The unit works as new after preventive maintenance 

and repair. 

x. If unit-1 partially fails at the same epoch when PM of 

unit-1 is due, then unit-1 enters to partial failure 

mode and is operative. 

xi. All the random variables denoting PM time and time 

to PM of unit-1, failure times and repair times of both 

units are independent of discrete nature and follow 

geometric distributions with different parameters. 

xii. The system can perform its purpose even if one unit 

is in partial failure (P) mode and the other unit is in 

normal (N) mode or partial failure (P) mode or total 

failure (F) mode. 

xiii. The system remains down when unit-1 is under PM 

and unit-2 is totally failed. 

xiv. The system failure occurs when both units are in total 

failure (F) mode. 

3. Notations and States of the System 

3.1. Notations 

i
S  : state of the system ( )0,1, 2,....,11i =  

E  : set of regenerative states ( )0 8 10 11, ,S S S S−  

( ) ( ), ,i j i jq t Q t : p.m.f/c.d.f of direct transition time from 

state 
i

S to state jS  during time interval ( )0, t . 

,i jp  : steady state transition probability from state 
i

S to 

state jS  during time interval ( )0, t  

( ), ,limi j i j
t

p Q t
→∞

=
 

iµ  : mean sojourn time in state iS  

t

i iα θ  : p.m.f of partial failure time of unit- i  

( ) ( )1, 2 1i ii α θ= + =
 

t

i iλ γ  : p.m.f of total failure time of unit- i  

( ) ( )1, 2 1i ii λ γ= + =
 

t

i iψ σ  : p.m.f of repair time of unit- i  from total failure 

( ) ( )1, 2 1i ii ψ σ= + =
 

t

i iβ π  : p.m.f of repair time of unit- i  from partial failure 

( ) ( )1, 2 1i ii β π= + =
 

t
ab  : p.m.f of time to PM of unit-1 ( )1a b+ =  

t
cd  : p.m.f of PM time of unit-1 ( )1c d+ =  

  : symbol used for Laplace convolution 

e.g. Let ( )f t  and ( )g t  be two non negative discrete 

functions then the Laplace convolution of the two functions 

( )f t  and ( )g t  is 

( ) ( ) ( ) ( )
0

t

u

f u g t u f t g t u
=

− =  −∑  

*  : symbol used in geometric transformation 

h  : dummy variable used in geometric transformation 

3.2. Symbols for the States of the Systems 

io
N  : Unit- i ( )1, 2i =  in normal (N) mode and operative. 

is
N  : Unit- i ( )1, 2i =  in normal (N) mode and standby. 

ir
F  : Unit- i ( )1, 2i =  in total failure (F) mode and under 

repair. 

iw
F  : Unit- i ( )1, 2i =  in total failure (F) mode and waiting 

for repair. 

io
P  : Unit- i ( )1, 2i =  in partial failure (P) mode and 

operative. 

1pmN  : Unit-1 in normal (N) mode and under PM. 

3.3. State Specification of the System 

With the help of above symbols the possible states of the 
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system are given in Table1. 

Table 1. State Specification of the System. 

State State description 

( )0 1 2: ,o sS N N  Unit-1 in normal (N) mode and operative, and unit-2 in normal (N) mode and standby 

( )1 1 2: ,pm oS N N
 

Uint-1 in normal (N) mode and under PM, and unit-2 in normal (N) mode and operative 

( )2 1 2: ,pm oS N P
 

Unit-1 in normal (N) mode and under PM, and unit-2 in partial failure (P) mode and operative 

( )3 1 2: ,o rS N F  Unit-1 in normal (N) mode and operative, and unit-2 in total failure (F) mode and under repair 

( )4 1 2: ,o sS P N  Unit-1 in partial failure (P) mode and operative, and unit-2 in normal (N) mode and standby 

( )5 1 2: ,r oS F N  Unit-1 in total failure (F) mode and under repair, and unit-2 in normal (N) mode and operative 

( )6 1 2: ,o rS P F  Unit-1 in partial failure (P) mode and operative, and unit-2 in total failure (F) mode and under repair 

( )7 1 2: ,pm wS N F  Unit-1 in normal (N) mode and under PM, and unit-2 in total failure (F) mode and under waiting for repair 

( )8 1 2: ,r oS F P  Unit-1 in total failure (F) mode and under repair, and unit-2 in partial failure (P) mode and operative 

( )9 1 2: ,r wS F F  
Unit-1 in total failure (F) mode and under repair, and unit-2 in total failure (F) mode and under waiting for 

repair 

( )10 1 2: ,Pm oS N P  Unit-1 in normal (N) mode and under PM, and unit-2 in partial failure (P) mode and operative 

( )11 1 2: ,o oS P P  Unit-1 in partial failure (P) mode and operative, and unit-2 in partial failure (P) mode and operative 

With the help of above notations and the possible states of the system; the state transition diagram of the two non-identical 

unit cold standby system is shown in Fig. 1. The epochs of entry into states 
0 1 2 3 4 5 6 7
, , , , , , , ,S S S S S S S S

8 10
,S S and 

11
S  are 

regenerative points and thus these states are regenerative states. 

 

Figure 1. State transition diagram. 

Possible states of the system are: 

Regenerative states: 0 1 2 3 4 5 6 7 8 10 11, , , , , , , , , ,S S S S S S S S S S S  

Non-regenerative states: 9S
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4. Explanation of Transitions between 

the States 

(i) System initially starts from state 
0

S  where unit-1 is 

operative and unit-2 is kept into cold standby which 

can’t fail in its standby state. From this state the 

system passes to state 
4

S in two mutually exclusive 

ways: 

� Either the operative unit-1 partially fails with rate 
1

α  

and the standby unit-2 is kept into cold standby. 

� The unit-1 partially fails at the same epoch when PM 

of unit-1 is due. In this case again the situation of 

state 
4

S arises where the unit-1 partially fails and 

unit-2 is kept into cold standby. 

(ii) The system may transit from state 
0

S  to state 
1

S  if 

before the partial failure of unit-1, the PM of unit-1 is 

due, so that unit-1 enters into PM and unit-2 starts 

functioning. 

(iii) The system transit from state 
4

S  to state 
5

S  when the 

partially failed unit-1 fails totally with rate 
1

λ  and the 

standby unit-2 becomes operative. 

(iv) The system transit from state 
5

S  to state 
0

S  if before 

the failure of unit-2, the repair of unit-1 is completed 

with repair rate 
1

ψ . 

(v) The system transit from state 
5

S  to state 
8

S  if before 

completion of repair of unit-1, unit-2 is partially fails 

with failure rate 
2

α . 

(vi) The system transit from state 
5

S  to state 
2

S  if at the 

same epoch the repair of unit-1 is completed with 

repair rate 
1

ψ , unit-2 partially fails with failure rate 

2
α . 

On the same way the transitions between the other states 

can be observed. 

5. Transition Probabilities of the System 

Let ( ),i jQ t be the probability that the system transits from 

state 
i

S to state jS  during time interval ( )0, t

, , 0,1,2,...,11i j = i.e., if ijT is the transition time from state 

i
S to jS  then ( ), Pri j ijQ t T t = ≤   

we have 

( ) ( ){ }11

0,1 1

1

1
1

ta
Q t b

b

θ θ
θ

+= −
−

 

( ) ( ){ }11 1

0,4 1

1

1
1

ta b
Q t b

b

α α θ
θ

++
= −

−
 

( ) ( ){ }12

1,0 2

2

1
1

tc
Q t d

d

θ θ
θ

+= −
−

 

( ) ( ){ }12

1,2 2

2

1
1

tc
Q t d

d

α θ
θ

+= −
−

 

( ) ( ){ }12

1,10 2

2

1
1

td
Q t d

d

α θ
θ

+= −
−

( ) ( ){ }11 2

2,0 1 2

1 2

1
1

tb
Q t b

b

θ β θ π
θ π

+= −
−

 

( ) ( ){ }11 2

2,1 1 2

1 2

1
1

ta
Q t b

b

θ β θ π
θ π

+= −
−

 

( ) ( ){ }11 2 1 2

2,4 1 2

1 2

1
1

ta b
Q t b

b

α β α β θ π
θ π

++
= −

−
 

( ) ( ){ }11 2

2,10 1 2

1 2

1
1

ta
Q t b

b

θ π θ π
θ π

+= −
−

 

( ) ( ){ }11 2 1 2

2,11 1 2

1 2

1
1

ta b
Q t b

b

α π α π θ π
θ π

++
= −

−
 

( ) ( ){ }12 1

3,0 2 1

2 1

1
1

tb
Q t b

b

ψ θ σ θ
σ θ

+= −
−

 

( ) ( ){ }12 1

3,1 2 1

2 1

1
1

ta
Q t b

b

ψ θ σ θ
σ θ

+= −
−

 

( ) ( ){ }12 1 2 1

3,4 2 1

2 1

1
1

ta b
Q t b

b

ψ α ψ α σ θ
σ θ

++
= −

−
 

( ) ( ){ }12 1 2 1

3,6 2 1

2 1

1
1

ta b
Q t b

b

σ α σ α σ θ
σ θ

++
= −

−
 

( ) ( ){ }12 1

3,7 2 1

2 1

1
1

ta
Q t b

b

σ θ σ θ
σ θ

+= −
−

 

( ) 1

4,5 11 tQ t γ += −
 

( ) ( ){ }11 2

5,0 1 2

1 2

1
1

t
Q t

ψ θ σ θ
σ θ

+= −
−

 

( ) ( ){ }11 2

5,2 1 2

1 2

1
1

t
Q t

ψ α σ θ
σ θ

+= −
−

 

( ) ( ){ }11 2

5,8 1 2

1 2

1
1

t
Q t

σ α σ θ
σ θ

+= −
−

 

( ) ( ){ }11 2

6,4 1 2

1 2

1
1

t
Q t

γ ψ γ σ
γ σ

+= −
−
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( ) ( ){ }11 2

6,5 1 2

1 2

1
1

t
Q t

λψ γ σ
γ σ

+= −
−

 

( ) ( ){ }11 2

6,9 1 2

1 2

1
1

t
Q t

λ σ γ σ
γ σ

+= −
−  

( ) 1

7,3 1 tQ t d += −  

( ) ( ){ }12 1

8,2 2 1

2 1

1
1

t
Q t

γ ψ γ σ
γ σ

+= −
−

 

( ) ( ){ }12 1

8,3 2 1

2 1

1
1

t
Q t

λ ψ γ σ
γ σ

+= −
−

 

( ) ( ){ }12 1

8,9 2 1

2 1

1
1

t
Q t

λ σ γ σ
γ σ

+= −
−  

( ) 1

9,3 11 tQ t σ += −  

( ) ( ){ }12

10,2 2

2

1
1

tc
Q t d

d

γ γ
γ

+= −
−

 

( ) ( ){ }12

10,3 2

2

1
1

tc
Q t d

d

λ γ
γ

+= −
−

 

( ) ( ){ }12

10,7 2

2

1
1

td
Q t d

d

λ γ
γ

+= −
−

 

( ) 1

11,2 11 tQ t π += −                            (1-31) 

The steady state transition probabilities from state 
i

S  to 

state jS can be obtained from (1-31) by taking t → ∞  as 

follows: 

1

0,1

1
1

a
p

b

θ
θ

=
−

 

1 1

0,4

1
1

a b
p

b

α α
θ

+
=

−
 

2

1,0

2
1

c
p

d

θ
θ

=
−

 

2

1,2

2
1

c
p

d

α
θ

=
−

 

2

1,10

2
1

d
p

d

α
θ

=
−

 

1 2

2,0

1 2
1

b
p

b

θ β
θ π

=
−

 

1 2

2,1

1 2
1

a
p

b

θ β
θ π

=
−

 

1 2 1 2

2,4

1 2
1

a b
p

b

α β α β
θ π
+

=
−

 

1 2

2,10

1 2
1

a
p

b

θ π
θ π

=
−

 

1 2 1 2

2,11

1 2
1

a b
p

b

α π α π
θ π
+

=
−

 

2 1

3,0

2 1
1

b
p

b

ψ θ
σ θ

=
−

 

2 1

3,1

2 1
1

a
p

b

ψ θ
σ θ

=
−

 

2 1 2 1

3,4

2 1
1

a b
p

b

ψ α ψ α
σ θ
+

=
−

 

2 1 2 1

3,6

2 1
1

a b
p

b

σ α σ α
σ θ
+

=
−

 

2 1

3,7

2 1
1

a
p

b

σ θ
σ θ

=
−

 

4,5 1p =
 

1 2

5,0

1 2
1

p
ψ θ

σ θ
=

−
 

1 2

5,2

1 2
1

p
ψ α

σ θ
=

−
 

1 2

5,8

1 2
1

p
σ α

σ θ
=

−
 

1 2

6,4

1 2
1

p
γ ψ

γ σ
=

−
 

1 2

6,5

1 2
1

p
λψ

γ σ
=

−
 

1 2

6,9

1 2
1

p
λ σ

γ σ
=

−
 

7,3 1p =  

2 1

8,2

2 1
1

p
γ ψ

γ σ
=

−
 

2 1

8,3

2 1
1

p
λ ψ

γ σ
=

−
 

( ) 2 1

8,9

2 1
1

p t
λ σ

γ σ
=

−
, 
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( )9,3 1p t =  

2

10,2

2
1

c
p

d

γ
γ

=
−

 

2

10,3

2
1

c
p

d

λ
γ

=
−

 

2

10,7

2
1

d
p

d

λ
γ

=
−

 

11,2 1p =                                  (32-62) 

We observe that the following relations hold: 

0,1 0,4 1p p+ =  

1,0 1,2 1,10 1p p p+ + =  

2,0 2,1 2,4 2,10 2,11 1p p p p p+ + + + =  

3,0 3,1 3,4 3,6 3,7 1p p p p p+ + + + =  

4,5 7,3 9,3 11,2 1p p p p= = = =  

5,0 5,2 5,8 1p p p+ + =
 

6,4 6,5 6,9 1p p p+ + =  

8,2 8,3 8,9 1p p p+ + =
 

10,2 10,3 10,7 1p p p+ + =
 

6. Mean Sojourn Times 

The mean sojourn time 
i

µ  in state 
i

S is defined as the time 

spent in state 
i

S before transiting to any other state. 

Let 
i

T  be the time spent in state 
i

S . Then the mean 

sojourn time in states 
i

S  can be obtained as follows: 

( ) ( )
0

, 0,1,2,...,11
i i i

t

E T P T t iµ
∞

=

= = > =∑  

Hence 

1

0

1
1

b

b

θµ
θ

=
−

 

2

1

2
1

d

d

θµ
θ

=
−

 

1 2

2

1 2
1

b

b

θ πµ
θ π

=
−

 

2 1

3

2 1
1

b

b

σ θµ
σ θ

=
−

 

1

4

1
1

γµ
γ

=
−

 

1 2

5

1 2
1

σ θµ
σ θ

=
−

 

1 2

6

1 2
1

γ σµ
γ σ

=
−

 

7
1

d

d
µ =

−
 

2 1

8

2 1
1

γ σµ
γ σ

=
−

 

1

9

1
1

ψµ
ψ

=
−

 

2

10

2
1

d

d

γµ
γ

=
−

 

1

11

1
1

πµ
π

=
−

                                 (63-74) 

7. Measures of System Effectiveness 

In order to obtain various interesting measures of system 

effectiveness we develop the following relations for 

reliability, availability, steady state availability, mean time to 

failure and expected busy period of the repairman during 

time interval ( )0, t : 

7.1. Reliability of the System 

The reliability function ( )iR t  is the probability that a 

system will be successfully operating without failure in the 

interval from time 0  to time t  when it initially starts from 

operative up state ; 0,1,....,8,10,11
i

S i = . To determine it, we 

regard the failed state 
9

S  as absorbing state. Now we have 

the following set of convolution equations for 

( ) ; 0,1,....,8,10,11iR t i =  

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

1 1

t

i i ij j

j u

i ij j

j

R t Z t q u R t u

Z t q t R t

−

=

 = + − − 
 

= + −  −

∑ ∑

∑
 

where j  is any successive state to which state i  can transit. 

where, 

( )0 1

t tZ t b θ=  
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( )1 2

t tZ t d θ=  

( )2 1 2

t t tZ t b θ π=  

( )3 2 1

t t tZ t b σ θ=  

( )4 1

tZ t γ=  

( )5 1 2

t tZ t σ θ=  

( )6 1 2

t tZ t γ σ=  

( )7

tZ t d=  

( )8 2 1

t tZ t γ σ=  

( )10 2

t tZ t d γ=  

( )11 1

tZ t π=  

Then 

( ) ( ) ( ) ( ) ( ) ( )0 0 0,1 1 0,4 41 1 1 1R t Z t q t R t q t R t= + −  − + −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1,0 0

1,2 2 1,10 10

1 1

1 1 1 1

R t Z t q t R t

q t R t q t R t

= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2,0 0

2,1 1 2,4 4

2,10 10 2,11 11

1 1

1 1 1 1

1 1 1 1

R t Z t q t R t

q t R t q t R t

q t R t q t R t

= + −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3,0 0

3,1 1 3,4 4

3,6 6 3,7 7

1 1

1 1 1 1

1 1 1 1

R t Z t q t R t

q t R t q t R t

q t R t q t R t

= + −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( ) ( )4 4 4,5 51 1R t Z t q t R t= + −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 5 5,0 0

5,2 2 5,8 8

1 1

1 1 1 1

R t Z t q t R t

q t R t q t R t

= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( ) ( ) ( )6 6 6,4 4 6,5 51 1 1 1R t Z t q t R t q t R t= + −  − + −  −  

( ) ( ) ( ) ( )7 7 7,3 31 1R t Z t q t R t= + −  −  

( ) ( ) ( ) ( ) ( ) ( )8 8 8,2 2 8,3 31 1 1 1R t Z t q t R t q t R t= + −  − + −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

10 10 10,2 2

10,3 3 10,7 7

1 1

1 1 1 1

R t Z t q t R t

q t R t q t R t

= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )11 11 11,2 21 1R t Z t q t R t= + −  −              (75-85) 

7.2. Availability of the System 

At time 0t =  the system start operation with no failed 

units. The availability function of a system, denoted by ( )iA t , 

is defined as the probability that the system is available at 

time t when it initially starts from state ; 0,1,2,....,11
i

S i = . 

The following recurrence relations can be easily developed 

for ( ) ; 0,1, 2,....,11iA t i = . 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

1 1

t

i i ij j

j u

i ij j

j

A t Z t q u A t u

Z t q t A t

−

=

 = + − − 
 

= + −  −

∑ ∑

∑
 

where j  is any successive state to which state i  can transit, 

and ( ); 0,1, 2,....,8,10,11iZ t i =  are the same as given in the 

reliability of the system's section. 

Then 

( ) ( ) ( ) ( ) ( ) ( )0 0 0,1 1 0,4 41 1 1 1A t Z t q t A t q t A t= + −  − + −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1,0 0

1,2 2 1,10 10

1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2,0 0

2,1 1 2,4 4

2,10 10 2,11 11

1 1

1 1 1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3,0 0

3,1 1 3,4 4

3,6 6 3,7 7

1 1

1 1 1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( ) ( )4 4 4,5 51 1A t Z t q t A t= + −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 5 5,0 0

5,2 2 5,8 8

1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

6 6 6,4 4

6,5 5 6,9 9

1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −
 

( ) ( ) ( )7 7,3 31 1A t q t A t= −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

8 8 8,2 2

8,3 3 8,9 9

1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −
 

( ) ( ) ( )9 9,3 31 1A t q t A t= −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

10 10 10,2 2

10,3 3 10,7 7

1 1

1 1 1 1

A t Z t q t A t

q t A t q t A t

= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )11 11 11,2 21 1A t Z t q t A t= + −  −       (86-97) 
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7.3. Busy Period of Repairman 

7.3.1. Due to PM of Unit-1 

Let ( )pm

iB t  be the probability that the repairman is busy at 

epoch ( )1t −  in the PM of an operative unit-1 when system 

initially starts from state ; 0,1,2,....,11
i

S i = . Using simple 

probabilistic arguments as in case of reliability, the 

recurrence relations for ( ); 0,1, 2,....,11pm

iB t i = can be easily 

developed as below: 

( ) ( ) ( ) ( ) ( )0,1 1 0,4 41 1 1 1pm pm pm

oB t q t B t q t B t= −  − + −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1,0 0

1,2 2 1,10 10

1 1

1 1 1 1

pm pm

pm pm

B t Z t q t B t

q t B t q t B t

= + −  −

+ −  − + −  −
 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2,0 0

2,1 1 2,4 4

2,10 10 2,11 11

1 1

1 1 1 1

1 1 1 1

pm pm

pm pm

pm pm

B t q t B t

q t B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3,0 0

3,1 1 3,4 4

3,6 6 3,7 7

1 1

1 1 1 1

1 1 1 1

pm pm

pm pm

pm pm

B t q t B t

q t B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( )4 4,5 51 1pm pmB t q t B t= −  −  

( ) ( ) ( )
( ) ( ) ( ) ( )

5 5,0 0

5,2 2 5,8 8

1 1

1 1 1 1

pm pm

pm pm

B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −
 

( ) ( ) ( )
( ) ( ) ( ) ( )

6 6,4 4

6,5 5 6,9 9

1 1

1 1 1 1

pm pm

pm pm

B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )7 7 7,3 31 1pm pmB t Z t q t B t= + −  −  

( ) ( ) ( )
( ) ( ) ( ) ( )

8 8,2 2

8,3 3 8,9 9

1 1

1 1 1 1

pm pm

pm pm

B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −
 

( ) ( ) ( )9 9,3 31 1pm pmB t q t B t= −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

10 10 10,2 2

10,3 3 10,7 7

1 1

1 1 1 1

pm pm

pm pm

B t Z t q t B t

q t B t q t B t

= + −  −

+ −  − + −  −
 

( ) ( ) ( )11 11,2 21 1pm pmB t q t B t= −  −           (98-109) 

where the values of ( ) ( ) ( )1 7 10, ,Z t Z t Z t  are the same as 

given in the reliability of the system's section. 

7.3.2. Due to Repair of Unit-1 and Unit-2 from Total 

Failure 

Let ( )1r

iB t  and ( )2r

iB t  be the respective probabilities that 

the repairman is busy at epoch ( )1t − in the repair of unit-1 

and unit-2 from, when system initially starts from state 
i

S . 

Using simple probabilistic arguments as in case of reliability, 

the recurrence relations for ( ); 0,1, 2,....,11j

iB t i =  can be 

easily developed as below. The dichotomous variable δ  

takes values 1 and 0 respectively for 
1

j r= and
2

j r= . 

( ) ( ) ( ) ( ) ( )0,1 1 0,4 41 1 1 1j j j

oB t q t B t q t B t= −  − + −  −  

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1,0 0

1,2 2 1,10 10

1 1

1 1 1 1

j j

j j

B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2 2,0 0 2,1 1

2,4 4 2,10 10

2,11 11

1 1 1 1

1 1 1 1

1 1

j j j

j j

j

B t q t B t q t B t

q t B t q t B t

q t B t

= −  − + −  −

+ −  − + −  −

+ −  −

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3,0 0

3,1 1 3,4 4

3,6 6 3,7 7

1 1 1

1 1 1 1

1 1 1 1

j j

j j

j j

B t Z t q t B t

q t B t q t B t

q t B t q t B t

δ= − + −  −

+ −  − + −  −

+ −  − + −  −

 

( ) ( ) ( )4 4,5 51 1j jB t q t B t= −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 5 5,0 0

5,2 2 5,8 8

1 1

1 1 1 1

j j

j j

B t Z t q t B t

q t B t q t B t

δ= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

6 6 6,4 4

6,5 5 6,9 9

1 1 1

1 1 1 1

j j

j j

B t Z t q t B t

q t B t q t B t

δ= − + −  −

+ −  − + −  −
 

( ) ( ) ( )7 7,3 31 1j jB t q t B t= −  −  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

8 8 8,2 2

8,3 3 8,9 9

1 1

1 1 1 1

j j

j j

B t Z t q t B t

q t B t q t B t

δ= + −  −

+ −  − + −  −
 

( ) ( ) ( ) ( )9 9 9,3 31 1j jB t Z t q t B tδ= + −  −  

( ) ( ) ( )
( ) ( ) ( ) ( )

10 10,2 2

10,3 3 10,7 7

1 1

1 1 1 1

j j

j j

B t q t B t

q t B t q t B t

= −  −

+ −  − + −  −
 

( ) ( ) ( )11 11,2 21 1j jB t q t B t= −  −               (110-121) 

where the values of ( ); 3,5,6,8iZ t i =  are the same as given 

in the reliability of the system's section, and 

( ) 1

9 1

tZ t ψ +=  

8. Analysis of Characteristics 

8.1. Reliability and Mean Time to Failure Analysis 

Taking geometric transforms of (75-85), we obtain the 

following set of algebraic equations: 
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( ) ( ) ( )* * * * * *

0 0 0,1 1 0,4 4R h Z h q R h h q R h= + +  

( ) ( ) ( ) ( )* * * * * * * *

1 1 1,0 0 1,2 2 1,10 10R h Z h q R h h q R h h q R h= + + +  

( ) ( ) ( )
( ) ( ) ( )

* * * * * *

2 2 2,0 0 2,1 1

* * * * * *

2,4 4 2,10 10 2,11 11

R h Z h q R h h q R h

h q R h h q R h h q R h

= + +

+ + +
 

( ) ( ) ( ) ( )
( ) ( )

* * * * * * * *

3 3 3,0 0 3,1 1 3,4 4

* * * *

3,6 6 3,7 7

R h Z h q R h h q R h h q R h

h q R h h q R h

= + + +

+ +
 

( ) ( )* * * *

4 4 4,5 5R h Z h q R h= +  

( ) ( ) ( ) ( )* * * * * * *

5 5 5,0 0 5,2 2 5,8 8R h Z h q R h h q R h h q R h= + + +  

( ) ( ) ( )* * * * * *

6 6 6,4 4 6,5 5R h Z h q R h h q R h= + +  

( ) ( )* * * *

7 7 7,3 3R h Z q R h= +  

( ) ( ) ( )* * * * * *

8 8 8,2 2 8,3 3R h Z h q R h h q R h= + +  

( ) ( ) ( ) ( )* * * * * * * *

10 10 10,2 2 10,3 3 10,7 7R h Z h q R h h q R h h q R h= + + +  

( ) ( )* * * *

11 11 11,2 2R h Z q R h= +       (122-132) 

Simplifying (122-132) for ( )*

0R h , but it is difficult to 

solve (122-132) since expressions for geometric transforms 

of reliability functions ( )*

iR h are in very complicated form 

and the complexity increases with the increase in number of 

equations. We put it in the following form: 

( ) ( )
( )

1*

0

1

N h
R h

D h
=                             (133) 

Collecting the coefficients of 
t

h  from (133), we can get 

the reliability of the system ( )0R t . 

The mean time to system failure is 

( ) ( )
( )

1*

0
1

1

1
lim 1

1h

N
MTTF R h

D→
= = −               (134) 

8.2. Availability Analysis 

Taking geometric transforms of (86-97), we obtain the 

following set of algebraic equations: 

( ) ( ) ( )* * * * * *

0 0 0,1 1 0,4 4A h Z h q A h h q A h= + +  

( ) ( ) ( ) ( )* * * * * * * *

1 1 1,0 0 1,2 2 1,10 10A h Z h q A h h q A h h q A h= + + +  

( ) ( ) ( ) ( )
( ) ( )

* * * * * * *

2 2 2,0 0 2,1 1 2,4 4

* * * *

2,10 10 2,11 11

A h Z h q A h h q A h h q A h

h q A h h q A h

= + + +

+ +
 

( ) ( ) ( ) ( )
( ) ( )

* * * * * * * *

3 3 3,0 0 3,1 1 3,4 4

* * *

3,6 6 3,7 7

A h Z h q A h h q A h h q A h

h q A h h q A h

= + + +

+ +
 

( ) ( )* * * *

4 4 4,5 5A h Z q A h= +  

( ) ( ) ( ) ( )* * * * * * *

5 5 5,0 0 5,2 2 5,8 8A h Z h q A h h q A h h q A h= + + +  

( ) ( ) ( ) ( )* * * * * * * *

6 6 6,4 4 6,5 5 6,9 9A h Z h q A h h q A h h q A h= + + +  

( ) ( )* * *

7 7,3 3A h h q A h=  

( ) ( ) ( ) ( )* * * * * * * *

8 8 8,2 2 8,3 3 8,9 9A h Z h q A h h q A h h q A h= + + +  

( ) ( )* * *

9 9,3 3A h h q A h=  

( ) ( ) ( ) ( )* * * * * * * *

10 10 10,2 2 10,3 3 10,7 7A h Z h q A h h q A h h q A h= + + +  

( ) ( )* * * *

11 11 11,2 2A h Z h q A h= +              (135-146) 

Simplifying (135-146)for ( )*

0A h , as in the case of 

reliability function, we put it in the following form: 

( ) ( )
( )

2*

0

2

N h
A h

D h
=                                (147) 

The steady state availability of the system is given by: 

( ) ( ) ( )
( )

2

0 0
1

2

lim lim 1
t h

N h
A A t h

D h→∞ →
= = −  

As ( )2D h  at 1h =  is zero, hence by applying L. Hospital 

Rule, we get 

( )
( )

2

0

2

1

1

N
A

D
= −

′
                                 (148) 

Now the expected up time of the system up to epoch 

( )1t −  is given by: 

( ) ( )
1

0

0

t

up

x

t A xµ
−

=

=∑  

So that 

( ) ( )
( )

*

0*

1
up

A h
h

h
µ =

−
                             (149) 

8.3. Busy Period Analysis 

8.3.1. Due to PM of Unit-1 

Taking geometric transforms of (98-109), we obtain the 

following set of algebraic equations: 

( ) ( ) ( )* * * * *

0,1 1 0,4 4

pm pm pm

oB h h q B h h q B h= +  
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( ) ( ) ( ) ( )* * * * * * * *

1 1 1,0 0 1,2 2 1,10 10

pm pm pm pmB h Z h q B h h q B h h q B h= + + +  

( ) ( ) ( ) ( )
( ) ( )

* * * * * * *

2 2,0 0 2,1 1 2,4 4

* * * *

2,10 10 2,11 11

pm pm pm pm

pm pm

B h q B h q B h q B h

q B h q B h

= + +

+ +
 

( ) ( ) ( ) ( )
( ) ( )

* * * * * * *

3 3,0 0 3,1 1 3,4 4

* * * *

3,6 6 3,7 7

pm pm pm pm

pm pm

B h q B h q B h q B h

q B h q B h

= + +

+ +
 

( ) ( )* * *

4 4,5 5

pm pmB t h q B h=  

( ) ( ) ( ) ( )* * * * * * *

5 5,0 0 5,2 2 5,8 8

pm pm pm pmB h h q B h h q B h h q B h= + +  

( ) ( ) ( ) ( )* * * * * * *

6 6,4 4 6,5 5 6,9 9

pm pm pm pmB h h q B h h q B h h q B h= + +  

( ) ( )* * * *

7 7 7,3 3

pm pmB t Z h q B h= +  

( ) ( ) ( ) ( )* * * * * * *

8 8,2 2 8,3 3 8,9 9

pm pm pm pmB h hq B h hq B h hq B h= + +  

( ) ( )* * *

9 9,3 3

pm pmB h h q B h=  

( ) ( ) ( )
( )

* * * * * *

10 10 10,2 2 10,3 3

* *

10,7 7

pm pm pm

pm

B h Z h q B h h q B h

h q B h

= + +

+
 

( ) ( )* * *

11 11,2 2

pm pmB h h q B h=                    (150-161) 

Simplifying (150-161) for ( )*

0

pmB h , we get 

( ) ( )
( )

3*

0

2

pm
N h

B h
D h

=  

where ( )2D h  is same as in availability analysis. 

In the long run, the probability that the repairman is busy 

in PM of unit-1 is given by: 

( ) ( ) ( )
( )

3

0 0
1

2

lim lim 1pm pm

t h

N h
B B t h

D h→∞ →
= = −  

But ( )2D h  at 1h =  is zero, hence by applying L. Hospital 

Rule, we get 

( )
( )

3

0

2

1

1

pm
N

B
D

= −
′                                (162) 

Now the expected busy period of the repairman in the 

repair of a failed unit up to epoch ( )1t −  is given by: 

( ) ( )
1

0

0

t
pm pm

b

x

t B xµ
−

=

=∑  

So that 

( ) ( )
( )

*

0*

1

pm

pm

b

B h
h

h
µ =

−
                           (163) 

8.3.2. Due to Repair of Unit-1 and Unit-2 from Total 

Failure 

Taking geometric transforms of (110-121), we obtain the 

following set of algebraic equations: 

( ) ( ) ( )* * * * *

0,1 1 0,4 4

j j j

oB h h q B h h q B h= +  

( ) ( ) ( ) ( )* * * *

1 1,0 0 1,2 2 1,10 10

j j j jB h q B h q B h h q B h= + +  

( ) ( ) ( ) ( )
( ) ( )

* * * * 8 * *

2 2,0 0 2,1 1 2,4 4

* * * *

2,10 10 2,11 11

j j j j

j j

B h h q B h h q B h h q B h

h q B h h q B h

= + +

+ +
 

( ) ( ) ( ) ( )
( ) ( ) ( )

* * * * * *

3 3 3,0 0 3,1 1

* * * * * *

3,4 4 3,6 6 3,7 7

1j j j

j j j

B h Z h q B h h q B h

h q B h h q B h h q B h

δ= − + +

+ + +
 

( ) ( )* * *

4 4,5 5

j jB h h q B h=  

( ) ( ) ( ) ( )* * * * * * * *

5 5 5,0 0 5,2 2 5,8 8

j j j jB h Z h q B h h q B h h q B hδ= + + +  

( ) ( ) ( ) ( )
( )

* * * * * *

6 6 6,4 4 6,5 5

* *

6,9 9

1j j j

j

B h Z h q B h h q B h

h q B h

δ= − + +

+
 

( ) ( )* * *

7 7,3 3

j jB h q B h=  

( ) ( ) ( ) ( )* * * * * * * *

8 8 8,2 2 8,3 3 8,9 9

j j j jB h Z h q B h h q B h h q B hδ= + + +  

( ) ( )* * * *

9 9 9,3 3

j jB h Z h q B hδ= +  

( ) ( ) ( ) ( )* * * * * * *

10 10,2 2 10,3 3 10,7 7

j j j jB t h q B h h q B h h q B h= + +  

( ) ( )* * *

11 11,2 2

j jB h q B h=                     (164-175) 

Simplifying (164-175) for 
1

j r= and 
2

j r= , we get 

( ) ( )
( )

1 4*

0

2

r
N h

B h
D h

=  

( ) ( )
( )

2 5*

0

2

r
N h

B h
D h

=                     (176-177) 

where ( )2D h  is same as in availability analysis. 

In the long run, the respective probabilities that the 

repairman is busy in the repair of unit-1 and unit-2 from total 

failure are given by: 

( ) ( ) ( )
( )

1 1 4

0 0
1

2

lim lim 1
r r

t h

N h
B B t h

D h→∞ →
= = −  

( ) ( ) ( )
( )

2 2 5

0 0
1

2

lim lim 1
r r

t h

N h
B B t h

D h→∞ →
= = −  

But ( )2D h  at 1h =  is zero, hence by applying L. Hospital 

Rule, we get 
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( )
( )

1 4

0

2

1

1

r
N

B
D

= −
′

 

( )
( )

2 5

0

2

1

1

r
N

B
D

= −
′                         (178-179) 

Now the expected busy period of the repairman in the 

repair of unit-1 and unit-2 respectively up to epoch ( )1t −  

are given by: 

( ) ( )1 1

1

0

0

t
r r

b

x

t B xµ
−

=

=∑  

( ) ( )2 2

1

0

0

t
r r

b

x

t B xµ
−

=

=∑  

So that 

( ) ( )
( )

1

1

*

0*

1

r

r

b

B h
h

h
µ =

−
 

( ) ( )
( )

1

1

*

0*

1

r

r

b

B h
h

h
µ =

−
                     (180-181) 

 

9. Profit Function Analysis 

We are now in the position to obtain the net expected profit 

incurred up to epoch ( )1t −  by considering the 

characteristics obtained in earlier sections. 

Let us consider, 

0
K = revenue per-unit time by the system when it is 

operative. 

1
K = cost per-unit time when repairman is busy in the PM 

of unit-1. 

2
K = cost per-unit time when repairman is busy in the 

repair of unit-1. 

3
K = cost per-unit time when repairman is busy in the 

repair of unit-2. 

Then, the net expected profit incurred up to epoch ( )1t −  

given by: 

( ) ( ) ( ) ( ) ( )1 2

0 1 2 3

r rpm

up b b bP t K t K t K t K tµ µ µ µ= − − −   (182) 

In steady state, the expected profit per unit time incurred to 

the system is given by: 

( )
lim
t

P t
P

t→∞
=

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )
1 2

* *
2 20 0

0 1
1 1

* *
2 20 0

2 3
1 1

lim 1 lim 1
1 1

lim 1 lim 1
1 1

pm

h h

r r

h h

A h B h
K h K h

h h

B h B h
K h K h

h h

→ →

→ →

= − − −
− −

− − − −
− −

 

1 2

0 0 1 0 2 0 3 0

r rpm
K A K B K B K B= − − −                (183) 

10. Graphical Presentation 

Consider the two non-identical unit cold standby system 

with the following values of parameters: 

1 1 2

1 2

2 1 2

2 2 2 2

0.1 , 0.15 , 0.2 , 0.4

0.6 , 0.9, 0.8 , 0.6

0.3 , 0.85 , 0.7 , 0.4

0.6 , 0.4 , 0.9 , 0.1

a

d b

c

α β β
π π

α θ θ
ψ σ λ γ

= = = =
= = = =
= = = =
= = = =

 

and 
1 1

1γ λ= − , 
1 1

1σ ψ= − , 
0

460K = , 
1

250K = , 
2

100K = , 

3
50K =  

On the basis of the numerical values taken as:
 1

0.01ψ = , 

1
0.95λ =  

The values of various measures of system effectiveness are 

obtained as: 

� Mean time to system failure (MTTF) = 7.47 

� Steady state availability= 0.994
 

� Probability that the repairman is busy in PM of unit-1= 

0.0854 

� Probability that the repairman is busy in the repair of unit-

1 from total failure= 0.317 

� Probability that the repairman is busy in the repair of unit-

2 from total failure= 0.0733 

� Expected profit function= 400.86 

Fig. 2 depicts the variations in MTTF with respect to the 

failure rate 
1

λ . We observe that the MTTF decreases 

uniformly as the value of 
1

λ  increases. 

 

Figure 2. MTTF versus failure rate 1λ  
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Fig. 3 depicts the variations in MTTF with respect to the 

repair rate 
1

ψ . We observe that the MTTF increases 

uniformly as the value of 
1

ψ  increases. 

 

Figure 3. MTTF versus repair rate 1ψ  

Fig. 4 depicts the variations in the expected profit function 

P  with respect to the failure rate 
1

λ . We observe that P  

decreases uniformly as the value of 
1

λ  increases. 

 

Figure 4. Profit function P  versus failure rate 1λ  

Fig. 5 depicts the variations in the expected profit function 

P  with respect to the repair rate 
1

ψ . We observe that P  

increases uniformly as the value of 
1

ψ  increases. 

 

Figure 5. Profit function P versus repair rate 1ψ  

11. Conclusion 

In this paper we analyzed a two non-identical unit cold 

standby redundant system using semi-Markov process under 

discrete parametric Markov-Chain assuming three different 

modes of each unit(normal (N) mode, partial failure (P) mode, 

total failure (F) mode) using regenerative point technique. 

Preventive maintenance was provided to the operative unit in 

order to increase the life time of the system. The kernel 

matrix and expressions for mean sojourn times, availability 

function, reliability function, steady-state availability, MTTF, 

busy period of repair man due to preventive maintenance of 

unit-1, busy period of repairman due to repair of unit-1 and 

unit-2 from total failure and expected profit function were 

presented assuming that the failure and repair times of a unit 

and time to PM and PM time are taken as discrete random 

variables having geometric distributions with different 

parameters. Numerical solutions were obtained for reliability 

measures of the system by the aid of Maple program at 

constant values of the parameters. The curves for MTSF and 

profit function have been drawn for different values of total 

failure rate and repair rate from total failure of unit-1. By 

comparing MTTF and expected profit P function versus total 

failure rate 
1

λ  and repair rate 
1

ψ , we can draw a conclusion 

that the MTTF and the expected profit function P decreases 

uniformly as the value of 
1

λ  increases, and the MTTF and 

the expected profit function P increases uniformly as the 

value of 
1

ψ  increases. 
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