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Abstract: Missing data poses a major threat to observational and experimental studies. Analysis of data having ignored 

missingness results to estimates that are inefficient and unbiased. Various researches have been done to determine the best 

methods of dealing with missing data. The analysis used in these researches involved simulating missing data from complete data. 

Missing data are then imputed using the various methods, and the best method is arrived at by looking at the biasness of the 

imputed estimates, from the complete data estimates and the magnitude of standard errors. This study aimed at establishing the 

best method of dealing with missing data, based on the goodness of fit tests. The study made use of data from KDHS 2010. The 

overall rate of missingness was about 80%. The missing data mechanism was tested and proved to be MAR. The missing data 

was then imputed using Expectation Maximization Algorithm and Multiple Imputation. Later, logistic models were fitted to both 

datasets. Afterwards, goodness of fit tests were carried out to determine which of the two methods was the better method for 

imputing data. These tests were the AIC, Root Mean Square Error of Approximation (RMSEA) and Cox and Snell’s R-Squared. 

The predictive ability of the two models was also examined using confusion matrices and the area under receiver operation curve 

(AUROC). From these tests, multiple imputation was seen to be the better method of imputation since logistic regression model 

fitted the data better as compared to data imputed using expectation maximization. From the results of the study, the researchers 

recommend that the type of missingness present in data should be examined. If the amount of missing data is large, and the data 

is MAR, then data should be imputed using multiple imputation before any inference are made. The researchers suggested more 

research to be done to determine the maximum rate of missing data that should be imputed. 
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1. Introduction 

The goal of any analysis is to obtain unbiased estimates of 

population parameters, Graham (2012). But this is 

occasionally impossible due to non-response. Non-response 

refers to failure to obtain a measurement on one or more 

study variables for one or more subjects selected for a survey. 

As a result, the survey tends to have missing data. There are 

two forms of non-response. Item non-response and unit 

non-response. Unit non-response occurs when no information 

is collected for a sampled element. For example when a 

subject selected to participate in a study, fails to show up. 

Item non-response occurs when some but not all information 

is collected for a sampled element. For example a subject 

dropping out of the study for various reasons e.g. ill health. 

Non-response occurs frequently in observational and 

experimental studies. There are varied reasons for missing/ 

incomplete data in a survey. One of the reasons includes 

failure of a subject included in the study sample, to show up 

for the survey. Another reason would be equipment failure 

leading to incomplete data collection from all subjects. In 

addition, the questionnaire may contain ambiguous questions. 

The study may also contain different study designs. For 

example, the study may contain different questionnaires and 

thus some information on some variables in the 

questionnaires may not be collected for all subjects. Most 

frequently, subjects fail to provide some information, 

particularly due to matters of confidentiality. Finally, the 

researcher may also miss out on some information from 

particular variables during data entry, i.e. poor data entry. 

Most researchers, especially in observational surveys, mostly 

assume the issue of non-response in their studies and often 

proceed to analyze their data as it is. Others remove cases 
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that involve missing data, from their studies, and analyze 

their data with only the cases that contain all information 

needed for the study. Analysis of data, having ignored 

missingness, leads to inefficient analysis and results that are 

biased. 

2. Review of Previous Studies 

There exists no literature regarding an acceptable 

percentage of missing data for valid statistical inferences. 

According to (Schafer, 1999), a missing rate of 5% or less 

would be acceptable. Bernett (2001) claimed that a missing 

data of 10% or more would lead to biased results. However, 

Tabachnick and Fidel (2012) claimed that missing data 

mechanism and missing data patterns have a greater impact 

on research results as compared to the proportion of missing 

data. Prior to 1980, various ad-hoc methods of dealing with 

missing data existed. This included list wise deletion, 

pairwise deletion and mean substitution. These methods were 

easy to use, but often produced biased results Peng and Zhu 

(2007). After some few years, Little and Rubin (1987) 

introduced other two methods, Expectation Maximization 

algorithm (EM) and Full Information Maximum Likelihood 

(FIML). These methods were seen to be more superior to the 

previous adhoc methods in that they produced better 

estimates with smaller and acceptable standard errors. Finally, 

in the late 80’s, more superior methods such as Multiple 

Imputation, were developed. These methods were proved to 

be flexible and produced smaller standard errors as compared 

to earlier methods. Ibrahim (1990) proposed 

Expectation-Maximization (EM) method of weights to obtain 

maximum likelihood estimates of regression coefficients for 

the logistic regression model with missing categorical 

covariates. Later, Little (1992) looked at different methods 

for handling missing values in covariates in regression 

analysis and concluded that the preferred methods were 

model-based estimation methods. Graham (2002) considered 

both likelihood based methods and Parametric Methods (MI 

methods). They further suggested that more research should 

be done on comparison of MI and weighting techniques such 

as Ibrahim’s EM method. Didelez (2002) investigated 

Maximum Likelihood estimates of logistic regression 

coefficients with missing values in covariates when the 

distribution of these covariates was misspecified. From her 

work, it was concluded that the parametric approach could 

cause major biasness of the results if the assumed distribution 

was different from the true distribution. Raghunathan (2004) 

compared the magnitude of bias by using three methods of 

dealing with data missingness in logistic Regression. 

Complete Case (Listwise deletion), a weighting technique 

and MI. From the results, the bias was greatest in the 

Complete Case method. The method of MI produced 

estimates whose sampling distributions were close to the true 

population. She also noted that the method of weights was 

not as efficient as MI. She also noted that both methods were 

valid only under the MAR assumptions. Raghunathan also 

discussed the ML method and its non-suitability for practical 

purposes due to technical difficulties. Peng and Zhu (2007) 

later carried out an analysis to compare the MI technique and 

EM technique. These two approaches were compared for 

dealing with missing data in categorical explanatory 

variables in logistic regression. The results were then 

compared to those obtained when Complete Case Method 

was used. From this study, it was noted that MI was more 

efficient, as compared to EM. The biasness of the results was 

worst in the CC method. Generally, the study concluded that 

MI method was better than EM method. He (2010) carried 

out a study to determine the association between patients’ 

cardiovascular disease variables and hospice discussion. The 

outcome variable was patients’ hospice discussion and the 

predictor variables included myocardial infarction, heart 

failure, stroke, and diabetes. Multiple Imputation analysis 

was carried out using the MICE approach and logistic 

regression model was built. Complete Case Analysis was also 

carried out and the logistic regression model built. The 

results of the study indicated that regression estimates from 

the CC and MI are somewhat different and the latter 

produces smaller standard errors than the former for all 

regressors, illustrating the superior efficiency in the Multiple 

Imputation Method. This research study aimed at testing the 

missing data mechanism present in KDHS 2010 data and 

comparing the methods of dealing with missing data, based 

on the predictive ability and goodness of fit tests. 

3. Methodology 

3.1. Missing Data Mechanism 

According to Little and Rubin (1987), missing data 

mechanism may be classified as one of the following three 

types. The first one is missing Completely At Random 

(MCAR) which is a mechanism where the probability of a 

value missing is not dependent on observed or the 

unobserved values but on some unknown parameter. The 

second one is missing At Random (MAR) assumption which 

states that the probability of a value missing does not depend 

on the missing value itself but on the observed values and an 

unknown parameter. The third one is missing not at Random, 

(MNAR). In this case, missingness is no longer at random. 

MNAR assumption states that the probability of missing 

values depends on the unobserved values themselves. For 

example, people having high income are less likely to reveal 

them. The probability of missing data in the income variable 

is dependent on the variable itself. 

3.2. Patterns of Missing Data 

There are three patterns of missing data: Univariate, 

monotone and arbitrary. Let X1, X2,…, Xj,…, Xp be variables 

in a study. Also let Xij be the entry of the i
th 

case in the j
th 

variable. A dataset is said to have a univariate missing data 

pattern if there’s data missing for one or more of the j 

variables, for a particular case i. A monotone pattern exists 

when you can order the variables such that, if a variable has 

a missing value, all preceding variables also have missing 
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values. This mostly happens when subjects drop out of a 

study. A dataset is said to have an arbitrary missing data 

pattern if missing data occur in a random manner for any 

case and for any variable. 

3.3. Methods of Dealing with Missing Data 

3.3.1. Complete Case Analysis 

According to Graham (2012), the method involves 

dropping cases that contain missing information for some 

variables and analyzing the data with only cases that contain 

full information for every variable 

3.3.2. Multiple Imputation 

Multiple Imputation involves making repeated random 

draws from the predictive distribution of the missing data 

conditional on the observed data, Bouhlila and Sellaouti 

[2013]. This method involves creating more than one set of 

replacements for the missing values. As a result, multiple 

completed data sets are obtained. Each completed data set is 

analyzed separately. Point estimates and standard errors for 

each of the variables, from each analysis are then obtained. 

These sets of point estimates and standard errors are 

combined to obtain a single point estimate, standard error, 

associated confidence interval and p-value. This step 

involves calculating the average of the estimates across 

multiple imputations and variances of estimates both within 

and between imputations. According to John W. Graham and 

Gllreath (2007), the main idea of multiple imputation is that 

plausible values may be used in place of the missing values 

in a way that allows parameter estimates to be unbiased thus 

making them more important and secondly the uncertainty of 

parameter estimation in the missing data case to be estimated 

in a reasonable way. According to Rubin (1987), multiple 

imputation involves three steps. The first step is the 

Imputation Step. Here missing values are imputed using 

Multiple Imputation by Chained Equations (MICE) model. It 

is also known as Sequential Regression Multiple Imputation, 

He (2010). In MICE, multivariate data have different 

conditional models for each incomplete variable. The 

imputation model is specified separately for each variable, 

using other variables as predictors. For example linear 

regression is used for continuous variables and logistic 

regression is used for binary variables, He (2010). This step 

involves drawing random samples of missing data based on 

information obtained from the observed data. The second 

step is the statistical analysis step. In this step the m sets of 

data are analyzed separately using statistical procedures 

MICE. Point estimates and estimated standard errors are 

extracted from the analysis. The final step involves 

combining results from the previous steps. This involves 

combining the m point estimates and the estimated standard 

errors to arrive at a single point estimate, its estimated 

standard error, and the associated confidence interval or 

significance test. From Rubin (1997), the following rules for 

multiple imputations are defined. These are known as the 

Rubin rules. According to Dong and Peng (2013), let S
i 

denote the estimate of parameter S, from the i
th

 dataset.  

The pooled estimate of the parameter estimate S is 

calculated as the average of the m estimates of the same 

parameter. 

�� = 1
� � ���

	


��
 

The within imputation variance is the average sampling 

variance derived by treating the imputed values as though 

they were real. Let the estimated variance of 
�� be��� . It is 

given as: 

�� = 1
� � ���

	


��
 

The between imputation variance is the variability across 

the imputed values. It is given as: 

� = 1
� − 1 ����� − ����	


��
 

The variance of the pooled estimate, is the weighted sum 

of two variances, i.e. the within imputation and the between 

imputation variances. 

������� = �� + �1 + 1
� × � 

The overall standard error is given as the square root of the 

variance of the pooled estimate. The number of imputations 

needed to produce the most accurate results will be 

determined by the efficiency of the estimate based on the 

imputations. The relative efficiency of using the finite m 

imputation estimator rather than using an infinite number for 

the fully efficient imputation, in units of variance, is 

approximately a function of m and fraction of missing 

information. The relative efficiency is given as: 

�. # = $1 + %
�&'�

 

Where % is the fraction of missing information given by 

the equation: 

% = �(� + �2/�+,	 + 3��
�(� + 1  

�(� is the relative increase in variance due to missing data? 

It is the adjusted between-imputation variance standardized 

by the within-imputation variance. It is given as 

�(� = �1 + �
	� × �
��  

3.3.3. Expectation Maximization Algorithm 

According to Chang and Kim (2007) the EM algorithm 

estimates the parameters directly by maximizing the 

complete data log likelihood function. It does this by iterating 

between the E and M steps. The first step is the E-Step 

(Expectation Step) .At the E (expectation) step, expectation 
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of the log-likelihood function of the parameters, given the 

observed data is calculated. 

Given that. = �./0123425 , .	
11
78), the distribution of . 

conditional on an unknown parameter ∅ is: 

:� �./∅� = :� �./0123425 , .	
11
78/∅�  
= :� �./0123425/∅� × :� �.	
11
78/./0123425 , ∅� 

In terms of the likelihood function, the posterior 

probability of each estimate or rather the complete-data 

likelihood is given as: 

< �∅/.� = <�∅/./0123425 , .	
11
78�  
= <�∅/./0123425� × :� �.	
11
78/./0123425 , ∅� 

Taking logs on both sides, 

=�∅/.� = =�∅/./0123425 , .	
11
78�  
= =�∅/./0123425� × =>?:� �.	
11
78/./0123425 , ∅� 

Where =�∅/.� is the complete data log likelihood and =�∅/./0123425�  is the observed-data log likelihood. :� �.	
11
78/./0123425 , ∅�is the predictive distribution of the 

missing data, given∅.We cannot predict the likelihood of the 

complete-data log likelihood =�∅/.� , since the distribution 

of the missing data is unknown. But we can compute the 

expectation of the likelihood of the complete data set given 

an initial guess of the parameter∅ @A∅B. This first guess can 

be determined by first analyzing the data by complete case. 

This gives a rough idea of the estimate of the parameter. The 

expectation of the complete data log-likelihood function is 

calculated as follows: 

C�∅/∅D� = EF=�∅/.�/./0123425 , ∅DG 

Since . is a missing random variable under an assumed 

distribution :� �.	
11
78/./0123425 , ∅�, then the expectation 

of the complete data log-likelihood function can be written 

as: 

C H∅ ∅DI = J = H∅ . I × Pr � .	
11
78./0123425 , ∅D +.	
11
78 

The second step is the M-Step (Maximization Step). At 

this step, the next guess of ∅is obtained by maximizing the 

expectation of the complete data log likelihood from the 

previous E-step. 

∅M = ��?��N∅�C�∅/∅D��  

This guess of∅is thus used in the next E-step. The EM 

algorithm then alternates between E-Step and M-step. The 

algorithm is terminated when the successive estimates of∅ 

are almost identical. 

4. Results and Discussion 

4.1. Description of the Data 

The study involved secondary data analysis of the 2010 

Kenyan Demographic and Health Survey (KDHS) dataset for 

children. The data involved 950 cases randomly chosen from 

the total cases interviewed. The dependent variable in the 

data was created following the age of death of the child. If 

the child had lived for twelve months or less before death, the 

case was treated as infant mortality. Table 1 shows the 

explanatory variables that were used in the study. 

Table 1. Table of Explanatory Variables. 

Variable Definition 

BORD Birth Order Number 

DELIVERY Place where the child was born 

A.VISITS Number of antenatal visits 

SIZE Size of child at birth 

BF Months of Breastfeeding 

AGE_1stBIRTH Age of the Mother at her first birth 

WORKING Whether the respondent is working or not 

RESIDENCE Type of Place of Residence 

BWEIGHT Birth Weight in grams 

EDUC.LEVEL Highest Education Level 

SMOKE Whether the respondent smokes or not 

Table 2. shows the distribution of the missing values under 

each variable. 

Table 2. Table of distribution of missing values per variable. 

Variable Frequency Percentage 

BORD 0 0 

DELIVERY 772 81.3% 

A.VISITS 685 72.1% 

SIZE 685 72.1% 

BF 691 72.7% 

AGE_1stBIRTH 0 0.0% 

WORKING 0 0.0% 

RESIDENCE 0 0.0% 

BWEIGHT 685 72.1% 

EDUC.LEVEL 0 0.0% 

SMOKE 0 0.0% 

From the table, the variables containing missing data are 

size of the child at birth, months of breastfeeding, place of 

delivery, birth weight and number of antenatal visits. Those 

that do not contain missing data are birth order, age at first 

birth, whether the respondent is working or not, residence, 

education level, and whether the respondents smokes or not. 

4.2. Assessing the Missing Data Pattern 

Table 3. Table of Missing Data Pattern. 

No. of. 

Cases 
Residence 

Educ.

Level 

Age_Ist

Birth 
Smoke 

Birth 

Order 
Working 

Inf. 

Mortality 
Size Delivery 

Birth 

weight 

Months 

of BF 

A. 

Visits 

Missing 

Var 

178 1 1 1 1 1 1 1 1 1 1 1 1 0 

81 1 1 1 1 1 1 1 1 1 1 1 0 1 

6 1 1 1 1 1 1 1 1 1 1 0 0 2 

685 1 1 1 1 1 1 1 0 0 0 0 0 5 
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From Table 3, the data contained four missing data 

patterns. As seen in the first column, 178 cases had no 

missing values in all the variables, 81 cases had missing 

values in the number of antenatal visits variable, 6 cases had 

missing values in both the months of breastfeeding and 

number of antenatal visits and 685 cases had missing values 

in five variables, namely, size of child at birth, place of 

delivery, birth weight, months of breastfeeding and number 

of antenatal visits. From the last column, 178 cases did not 

have any missing values, 81 cases had missing values in only 

one column i.e. number-of-antenatal-visits, 6cases had 

missing values in two columns i.e. months of breastfeeding 

and number of antenatal visits variable and 685 cases had 

missing values in 5 columns i.e. size of child at birth, place 

of delivery, birth weight, months of breastfeeding and 

number of antenatal visits. 

4.3. Assessing the Missing Data Mechanism 

4.3.1. Test for MCAR Mechanism 

Test for MCAR was done using Little MCAR Chi-square 

test. The chisquare statistic obtained was 132.2474 with 28 

degrees of freedom and a p-value of 1.776357×10
-15

. Since 

this p-value is less than 0.05, the null hypothesis was rejected 

thus the researcher concluded that the data was not Missing 

Completely at Random. The researcher therefore went ahead 

to test the MAR assumption. 

4.3.2. Test for MAR Mechanism 

The MAR assumption was tested by creating dummy 

variables for each variable that had missing values in it. The 

researcher coded 1where the value in the original variable 

was missing and 0 where the value was observed. The 

researcher then ran chi-square tests between each dummy 

variable and other variables in the dataset to see if the 

missingness in this variable was related to the values of the 

other observed variable. If the p-value between a dummy 

variable and an observed variable was less than 0.05, the null 

hypothesis was rejected concluding that missingness was 

dependent on the observed variable. For all the five variables 

containing missing values, i.e. size of child at birth, months 

of breastfeeding, place of delivery, birth weight, and number 

of antenatal visits, missingness was dependent on residence, 

educational level, age at first birth and infant mortality. Since 

the p-values of the four variables were less than 0.05, the null 

hypothesis was rejected and thus the research concluded that 

the missingness was dependent on the stated variables. So in 

general, the study concluded that there was dependence 

between completely observed variables and missingness and 

thus missing observations in the data were Missing at 

Random. 

4.4. Methods of Dealing with Missing Data 

4.4.1. Complete Case Analysis 

The three methods that were intended to be used in this 

study include the complete case, the multiple imputation 

method and expectation maximization method. But the 

missing data mechanism present in this data is MAR, thus the 

use of complete case would result into biased estimates. The 

researchers thus decided to use multiple imputation and 

expectation maximization to deal with the missing data. 

4.4.2. Multiple Imputations 

(i). The Imputation Procedure 

The missing data was imputed using Multiple Imputation. 

One of the assumptions of using Multiple Imputation is that 

the missing data needs to be MAR, as had already been tested 

and proved. The method used to impute the missing values 

was dependent on the type of variable itself. For size and 

delivery, since they are categorical variables with more than 

two levels, polytomous regression was used for imputation. 

For numeric variables such as months of breastfeeding, birth 

weight and number of antenatal visits, predictive mean 

matching was used. The algorithm imputed each incomplete 

column in the data from left to right. The variables that 

predicted missingness under each variable containing missing 

values were used to impute the missing values in that 

variable. To determine the number of imputations, the study 

first made use of 100 imputations. This was motivated by 

White et.al's claim that the number of imputations should be 

at least equal to the percentage of missing cases in the data. 

Since the percentage of missing cases was 82%, the study 

made use of 100 imputations. However, there is no literature 

on the optimal number of imputations to use for a given rate 

of missing information. The researcher thus decided to 

impute the data using various numbers of imputations in 

order to examine the behavior of the logistic model. The 

research made use of 100, 200,500, 750 and 1000 

imputations. The statistics used to judge on the optimal 

number of imputations include the the within imputation 

variance, the fraction of missing information as a result of the 

missing data and the relative efficiency of using the specified 

number of imputations given certain fraction of missing data. 

The within imputation variances generally decreased as the 

number of imputations approached 1000. The fraction of 

missing information due to non-response generally decreased, 

albeit by a small margin, as the number of imputations 

approached 1000. The relative efficiencies for using the m 

imputations were all very high, 99%.This is because the 

fraction of missing information were relatively small as 

compared to the number of imputations. From the results, the 

research concluded that using a large number of imputations 

yielded smaller fractions of missing information and very 

relatively efficiencies. Since there was a general decrease in 

the statistics as the number of imputations approached 1000, 

the researchers thus decided to use 1000imputations for the 

study. 

(ii). Diagnostic Checking of the Imputations 

From the results achieved from using 1000 imputations, 

summary statistics of the observed and imputed values were 

examined. This was in order to achieve the extent to which 

the imputed values matched or differed from the imputed 
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values. Kobi Abayomi and Levy (2008) in their paper of 

2008, titled ‘Diagnostics of Multivariate Imputations’ 

suggested the use of Kolmogorov Smirnov test to compare 

the distribution of the observed data and the imputed data, for 

each variable, and raise a flag when statistically significant 

differences were found. Moreover, they indicated that a 

difference in distribution does not necessarily signal a 

problem with imputation, unless the difference is very big. 

Let FO be the distribution of the observed dataset and let FI be 

the distribution of the imputed data set. The hypothesis to be 

tested here is: 

HO:FO=FI 

vs 

HA:FO≠FI 

Table 4 shows the p-values obtained from the Kolmogorov 

Smirnov Test of the data before and after imputation through 

Multiple Imputation. 

Table 4. Table of Kolmogorov Smirnov Test of MI. 

Kolmogorov Smirnov Test 

Variable P-Value 

A.VISITS 0.9477 

DELIVERY 0.4887 

SIZE 1.0000 

BF 0.5272 

BWEIGHT 0.2276 

From the table, the p-values were all greater than 0.05, so 

there was no sufficient evidence to reject the null hypothesis. 

The study thus concluded that the observed data and the 

imputed data had the same distribution and thus the 

imputations were viable. 

4.4.3. Expectation Maximization Algorithm  

(i). The Imputation Procedure 

The incomplete data was then imputed using Expectation 

Maximization criterion. This involved imputing the missing 

data only once, by getting the maximum likelihood estimates 

of the available data and using these estimates to impute the 

missing data. 

(ii). Diagnostic Checking of the Imputations 

The imputation was accessed to check whether the 

imputed values matched the observed data. Table 5shows the 

p-values obtained from the Kolmogorov Smirnov Test of the 

data before and after imputation through Expectation 

Maximization Algorithm. 

Table 5. Table of Kolmogorov Smirnov Test of EM. 

Kolmogorov Smirnov Test 

Variable P-Value 

A.VISITS 0.0000 

DELIVERY 0.0000 

SIZE 0.0000 

BF 0.0000 

BWEIGHT 0.0000 

From the table, the p-values were all less than 0.05, so 

there was insufficient evidence to reject the null hypothesis. 

The study thus concluded that the distribution of the 

observed data and the imputed data did not match and thus 

the imputation was not viable. This was due to the fact that 

the percentage of missing information was larger than that of 

the available information. So using a small percentage of 

information, to impute a large percentage of information, 

leads to the distortion of the distribution of the data 

4.5. Fitting the Logistic Model 

Since the occurrence of infant mortality was a binary 

outcome, logistic models were fitted to both datasets; i.e the 

dataset imputed using Multiple Imputation and the one 

imputed using Expectation Maximization Algorithm. The 

models were fitted in order to establish how significant and 

important the explanatory factors were in explaining infant 

mortality. Table 6 shows the estimates, standard errors, width 

of confidence intervals, odds ratio and P-Values obtained for 

each of the explanatory variables 

Table 6. Logistic Model Estimates of Expectation Maximization Algorithm and Multiple Imputation. 

Variable Category Estimate SE Width OR P-Value 

Constant  
-3.4965 

(-4.231) 

1.3014 

(1.3869) 

5.1024 

(5.7689) 

0.0303 

(0.0145) 

0.0072 

(0.0023) 

Birth Order  
0.1046 

(0.1721) 

0.0715 

(0.0615) 

0.2802 

(0.2416) 

1.1102 

(1.1878) 

0.1435 

(0.0051) 

Number of Antenatal 

Visits 
 

0.0040 

(0.1894) 

0.1752 

(0.1577) 

0.6873 

(0.6185) 

1.0039 

(1.2085) 

0.9820 

(0.2298) 

Delivery Public 
1.6907 

(0.3950) 

0.6800 

(0.3167) 

2.6669 

(1.2433) 

5.4236 

(1.4844) 

0.013 

(0.2123) 

 Private 
1.7494 

(-0.3165) 

0.8071 

(0.8068) 

3.165 

(3.2332) 

5.7513 

(0.7287) 

0.0303 

(0.6949) 

 Others 
-0.0958 

(-13.38) 

242.4931 

(851.985) 

950.56 

(-) 

0.9086 

(0.0000) 

0.9997 

(0.9875) 

Size >Average 
-2.0008 

(0.1448) 

0.7870 

(1.2349) 

3.0861 

(5.29) 

0.8180 

(1.1559) 

0.7986 

(0.9066) 

 Average 
0.3816 

(1.3072) 

0.6920 

(1.1075) 

2.7135 

(4.761) 

1.4647 

(3.6957) 

0.5813 

(0.2379) 

 <Average 
0.1665 

(0.6983) 

0.7827 

(1.2416) 

3.0691 

(5.3079) 

1.1812 

(2.0104) 

0.8315 

(0.5738) 
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Variable Category Estimate SE Width OR P-Value 

 Very Small 
1.0369 

(1.8006) 

0.8580 

(1.3338) 

3.3647 

(5.6515) 

2.8205 

(6.0533) 

0.2269 

(0.1770) 

Birth Weight  
-0.0003 

(0.0000) 

0.0002 

(0.0001) 

0.0009 

(0.0005) 

0.9997 

(1.0000) 

0.2368 

(0.7389) 

Months of 

Breastfeeding 
 

-0.2006 

(-0.1377) 

0.0405 

(0.0274) 

0.1588 

(0.1077) 

0.8183 

(0.8714) 

0.0000 

90.878 

Age at 1st Birth  
0.0073 

(0.0002) 

0.0429 

(0.0333) 

0.168 

(0.1309) 

1.0073 

(1.0003) 

0.8654 

(0.9938) 

Working Yes 
0.1744 

(-0.0828) 

0.3426 

(0.2414) 

1.3431 

(0.9458) 

1.1905 

(0.9205) 

0.6108 

(0.7315) 

Residence Rural 
2.1798 

(1.7785) 

0.5247 

(0.3957) 

2.0571 

(1.5627) 

8.8450 

(5.9212) 

0.0003 

(0.0000) 

Education Level Primary 
0.1675 

(-0.0601) 

0.4272 

(0.2654) 

1.6749 

(1.0436) 

1.1823 

(0.9416) 

0.6951 

(0.8206) 

 Secondary 
-1.0927 

(-1.1591) 

0.6328 

(0.4099) 

2.4808 

(1.6172) 

0.3353 

(0.3138) 

0.0842 

(0.0047) 

 Higher 
0.0471 

(0.3775) 

1.0630 

(0.7633) 

4.1672 

(3.0709) 

1.0482 

(1.4587) 

0.9647 

(0.6209) 

Smoke Yes 
-12.195 

(-12.14) 

708.137 

(547.89) 

2775.8444 

(-) 

0.0000 

(0.0000) 

0.9863 

(0.9823) 

+ The values in brackets are for Expectation Maximization Algorithm model while those without brackets are for Multiple Imputation. 

4.6. Evaluating the Logistic Model 

4.6.1. Assessing the Importance of the Variables 

From the MI model, for a one unit increase in the birth order, 

the odds of infant mortality increase by 11%.A one unit 

increase in the number of antenatal visits results in a 1% 

decrease in the odds infant mortality. A child whose size is 

greater than average is about 2% more likely to die as an infant, 

as compared to a child of large size. One that is of average size 

is 46%more likely to die as an infant, as compared to a child of 

large size. A child whose size is less than average is 18% more 

likely to die as an infant, as compared to a child of large size. A 

child born of a very small size is 2 times more likely to die as 

an infant, as compared to a child born of large size. Children 

born by working ladies have 19% higher chances of dying as 

infants as compared to children born by women who are not 

working while those bore by women living in rural areas are 9 

times more likely to dye as infants, as compared to those 

living in urban areas. A one unit increase in the months of 

breastfeeding reduces the chances of infant mortality by 

80% .Other factors kept constant, the odds of infant mortality, 

for a child born by a woman who delivers in a private place are 

5 times greater than the odds of those born by women who 

delivers at home. The odds of infant mortality of a child born 

by a woman, who delivers in a public place, are 6 times higher 

than a child delivered at home. Children bore by women who 

have attained a secondary education are 66% less likely to die 

as infants as compared to those bore by women with no 

education, while those bore by women who's highest level of 

education is primary are 18%more likely to die as infants as 

compared to those bore by women with no education. 

From the EM model, for a one unit increase in the birth 

order, the odd of infant mortality increase by 19%. A one unit 

increase in the number of antenatal visits results in a 21% 

increase in infant mortality. A child whose size is greater than 

average is 16% more likely to die as an infant, as compared to 

a child of large size. One that is of average size is 4 times more 

likely to die as an infant, as compared to a child of large size. A 

child whose size is less than average is 2 times more likely to 

die as an infant, as compared to a child of large size. A child 

born of a very small size is 6 times more likely to die as an 

infant, as compared to a child born of large size. Children born 

by working ladies have 8%lower chances of dying as infants 

as compared to children born by women who are not working 

while those bore by women living in rural areas are 6 times 

more likely of dying as infants, as compared to those living in 

urban areas. A one unit increase in the months of breastfeeding 

reduces the chances of infant mortality by 12%. Other factors 

kept constant, the odds of infant mortality, for a child born by a 

woman who delivers in a private place are 4 times greater than 

the odds of those born by women who deliver at home. The 

odds of infant mortality of a child born by a woman, who 

delivers in a public place, are 48 % higher than a child 

delivered at home. Children bore by women who have attained 

a secondary education are 70% less likely to die as infants as 

compared to those bore by women with no education, while 

those bore by women who's highest level of education is 

primary are 6% less likely to die as infants as compared to 

those bore by women with no education. 

4.6.2. Assessing the Significance of the Variables 

The Wald test was used to determine the significance of 

each parameter in the model. From the MI model, the 

significant variables were delivery in a public and private 

place, months of breastfeeding and residence. From the EM 

model, the significant variables were birth order, months of 

breastfeeding, residence and educational level (secondary).  

Table 7. Likelihood Ratio Test. 

Likelihood Ratio Test 

Imputation Method Test Statistic P-Value 

Expectation Maximization 85.62 0.0001 

Multiple Imputation 298.92 0.0000 
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The likelihood Ratio test was also used to determine the 

joint significance of the models. Table 7 shows the Likelihood 

Ratio test statistics and their p-values. 

From Table 7, Multiple Imputation has a smaller test 

statistic value and p-value, of the two models. This means that 

the predictors of the Multiply Imputed dataset model were 

more significant in explaining infant mortality better than 

predictors of the model of the dataset imputed using 

Expectation Maximization method. 

4.6.3. Assessing the Goodness of Fit of the Models 

Three tests were used to test the goodness of fit of the two 

models. These tests include the Akaike’s Information 

Criterion (AIC), the Root Mean Square Error of 

Approximation (RMSEA) and the Cox and Snell’s R-Squared. 

Table 8 shows the values obtained from the three tests, for the 

EM and MI models. 

Table 8. Goodness of Fit Tests. 

 Goodness of Fit Tests 

Imputation Method AIC RMSEA COX 

Expectation Maximization 684.61 2.8406 0.0862 

Multiple Imputation 505.49 0.2709 0.2689 

From the table, based on the RMSEA and Cox and Snell’s 

R-Squared value, Multiple Imputation was seen to be the 

better model. Multiple Imputation had a smaller AIC value as 

compared to Expectation Maximization. Based on Anderson 

and Burhnam 2002, when the difference in AIC values is 

greater than 7, then there is strong evidence to support the 

conclusion of differences between the models. Hence 

generally, Multiple Imputation was a better method of 

Imputation as compared to Expectation Maximization. 

4.6.4. Assessing the Predictive Power of the Models 

The predictive abilities of the two models were later 

assessed using Area under Receiver Operating Curve 

(AUROC) and Accuracy of the models, as obtained from 

confusion matrices. 

Table 9 shows the values obtained under the two measures. 

Table 9. Measures of Predictive Ability of the Models. 

Measures of Predictive Ability 

Imputation Method AUROC ACCURACY 

Expectation Maximization 0.733 0.8695 

Multiple Imputation 0.916 0.8916 

From the table, the MI model was more accurate in 

predicting infant mortality as compared to EM model. This is 

because the MI model had a higher accuracy value (0.8916), 

as compared to the EM model (0.8695). 

5. Conclusion and Recommendation 

The objectives aimed by the study were met. The type of 

missing data present in the data was shown to be missing at 

Random. The missing data was imputed using Expectation 

Maximization Algorithm and Multiple Imputation. The study 

made use of 1000 imputations. Imputation using Multiple 

Imputation was seen to be more viable as compared to 

Expectation Maximization, since the distribution of the data 

after imputation was the same as that before imputation. 

Previous studies have shown that when data is MAR, 

complete case produces estimates that are biased, and hence it 

was not considered as a method of dealing with missing data. 

Results from fitting logistic regression model showed that 

Multiple Imputation model was a better fit as compared to 

Expectation Maximization. This was as a result of examining 

the distribution of the fitted values, before and after 

imputation, the predictive ability of the model and the 

goodness of fit tests of the models. The researchers 

recommend that the type of missingness present in the data 

should be examined. If the amount of missing data is large, 

and the data is MAR, then data should be imputed using 

multiple imputation before any inference are made. 
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Nomenclature 

AUROC: Area under Receiver Operating Characteristic 

Curve 

CC: Complete Case Analysis 

EM: Expectation Maximization Algorithm 

FIML: Full Information Maximization Likelihood 

KDHS: Kenya Demographic and Health Survey 

MAR: Missing at Random 

MCAR: Missing Completely at Random 

MNAR: Missing Not at Random 

MI: Multiple Imputation 

MICE: Multiply Imputed Chained Equations 
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