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Abstract: This paper proposes and develops the use of the non-cummulative dummy variables of 1’s and 0’s to represent 

levels of parent independent variables in dummy variable multiple regression models. The regression coefficients obtained 

using the proposed methods are easier to interprete and clearly understand than the use of the cummulatively coded ordinal 

dummy variables of 1’s and 0’s that could be used for the same purpose. The proposed method also enables the 

simultaneous estimation of the total, absolute or overall effect of a parent independent variable as well as its direct effect 

through its representative dummies and its indirect effect on a given independent variable through the mediation of other 

parent independent variables in the model was demonstrated. The use of these procedures was illustrated with an example. 
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1. Introduction 

Cumulatively coded ordinal dummy variables of 1’s and 

0’s have been used to represent independent variables in a 

regression model [1]. Estimates of the partial regression 

effects of these dummy variables on a given independent 

variable are provided. Interpretation of these regression 

coefficients is often difficult and not easily understood, this 

is because the regression coefficient of an ordinal dummy 

variable representing a given level of a parent independent 

variable is interpreted as the effect on the dependent 

variable per unit change in the level of the parent 

independent variable represented by that dummy variable 

in comparism or relative to a unit increase in the level of 

the parent independent variable represented by an 

immediately preceding ordinal dummy variable or per unit 

decrease in the level of the parent independent variable 

represented by an immediately succeeding ordinal dummy 

variable [2]. This interpretation is rather cumbersome. 

2. The Proposed Method 

An easier to interprete and understand method is to 

perhaps use the more regular non-cumulative dummy 

variables of 1’s and 0’s to represent levels of parent 

independent variables in a regression model. It may also be 

of interest to use this method to estimate the total, absolute 

or overall effect of a parent independent variable as well as 

its direct effect through its representative dummies and its 

indirect effect on a given independent variable through the 

mediation of other parent independent variables in the 

model as discussed below. 

Here, the dependent variable may or may not be 

quantitative. The dependent variable or the so-called parent 

independent variables may also each be either a 

quantitative or qualitative variable. But for the present 

purpose, each of these parent independent variables that is 

not already categorical is to be partitioned into a number of 

mutually exclusive categories, classes or levels. 

Now suppose yi is the score, value, observation on ith 

subject on a criterion or dependent variable Y, for i = 1, 

2, …, n. Suppose further that the effects of characteristics A, 

B, C, … etc, with levels a, b, c, … of each subject with 

respect to the dependent variable are of interest. To use 

these parent independent variables in a dummy variable 

regression model, we would represent each of them with 

one dummy variable of 1’s and 0’s less than the number of 

its levels or categories. This is to ensure that the resulting 

design matrix is of full column rank and hence non-singular 

([2], [3], and [4]). Thus if the parent independent variable A 

has ‘a’ levels coded 1, 2, .., a, then these ‘a’ levels are 

represented by a-1 dummy variables of 1’s and 0’s in the 

regression model, that is by the dummy variables 

AiaAiAi xxx ;1;2;1 ...,,, −  for the ith subject, i = 1, 2, …, n. 

Other parent independent variables are similarly 

represented. Thus factor B with ‘b’ levels is represented by 

b–1 dummy variables of 1’s and 0’s and factor C with c 

levels is represented by c–1 dummy variables of 1’s and 0’s, 
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and so on. 

Now a dummy variable multiple regression model 

expressing the dependence of scores or observations yi 

drawn from the criterion variable Y on the parent 

independent variables A, B and C represented by dummy 

variables ,...,,...,,, ;1;1;2;1 CicAiaAiAi xxxx −−  is expressed 

as 

iCicCcBiBAiaAaAiAAiAi exxxxxy +++++++++= −−−− .................. ;1;1;1;1;1;1;2;2;1;10 ββββββ     (1) 

where
jβ ’s are partial regression coefficients and ei’s are 

error terms uncorrelated with
ijx ’s with ( ) 0=ieE , for i = 

1, 2, …, n. The partial regression coefficient 
jβ  of the 

dummy variable
jx representing the jth level of a given 

parent independent variable is interpreted as the change in 

the dependent variable per unit change in the jth level of 

that parent independent variable relative to or in comparism 

with its other levels holding all other parent independent 

variables in the model at constant levels [2]. 

The expected value of yi of equation (1) is 

( ) .................. ;1;1;1;1;1;1;2;2;1;10 ++++++++= −−−− CicCcBiBAiaAaAiAAiAi xxxxxyE ββββββ    (2) 

Use of the usual least squares method with equation (1) gives the fitted or predicted dummy variable multiple regression 

model as 

CicCcBiBAiaAaAiAAiAi xbxbxbxbxbby ;1;1;1;1;1;1;2;2;1;10 ..............ˆ −−−− +++++++=              (3) 

for i = 1, 2, … n 

Note that if in equation (1) or (3) we set some selected 

dummy variables equal to 1 and some equal to 0, several 

other models and estimates of the parameters of these 

models describing the dependence of the criterion variable 

on various combinations of the levels of the different parent 

independent variables used in the model are obtained, 

thereby further highlighting the tremendous versatility and 

usefulness of dummy variable regression models in 

statistical modelling. 

Use of the usual F test enables one assess the adequacy 

of a hypothesised model in correctly describing the true 

pattern of relationships between the dependent variable and 

the set of parent independent variables used in the model. 

If the model fits, that is, if the model is adequate, leading 

to a rejection of the null hypothesis, in which case not all 

the regression coefficients are zero, then one may proceed 

to test other hypotheses and also estimate additional 

parameters of interest, including absolute direct and 

indirect effects of parent independent variables on the 

criterion variable. 

Now to estimate the so called direct effect [5] which is 

actually the partial regression coefficient or effect of a 

given parent independent variable Z say with z levels on a 

criterion or dependent variable Y, we treat the dummy 

variables representing the parent independent variable Z as 

intermediate variables between Z and Y in a regression 

model. Then following the method of path analysis we 

obtain the required direct effect of Z on Y as a weighted 

sum of the partial regression coefficients of the dummy 

variables used as regressor on the dependent variable. For 

example, we obtain the direct effect 
Adir ;β  of the parent 

independent variable A on each of its representative dummy 

variables   
Aijx ;

, i = 1, 2, … n; j = 1, 2, ….., a - 1 

Specifically, to determine the partial regression 

coefficient or the so-called direct effect of the parent 

independent variable A on the dependent variable Y, we 

take the partial derivative of the expected value of yi of 

equation 1, that is of equation 2 with respect to A, obtaining 

( ) ( ) ( ) ( ) ( )1; 2; 1; ;
; 1; 2; 1; ;.......

i A i A ia A is Zi
dir A A A a A S Z

s

dE x dE x dE x dE xdE y

dA dA dA dA dA
β β β β β−

−= = + + + +∑  

  
s = 1, 2, ….. for all parent independent variables Z different 

from A. 

or 

( )
dA

xdE Aij
a

j

AjAdir

;
1

1

;; ∑
−

=

= ββ                (4) 

Since  
( )

0;

; =∑
dA

xdE Zis

s

ZSβ  

because  
( )

0; =
dA

xdE Zis
 

Now the weight 
( )
dA

xdE Aij

Aj

;

; =α , to be applied to 

Aj;β , the partial regression effect of the dummy variable 

Aijx ;  
representing the jth level of the parent impendent 

variable A on the dependent variable Y is obtained by 

fitting a simple regression model of A regressing on 
Aijx ;
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for j = 1, 2, … , a-1 using assigned numerical codes. 

Thus for the dummy variable 
Aijx ;

 representing the jth 

level of the parent independent variable A we obtain the 

weight 
jα by fitting the simple regression line 

Ax AjAAij ;;0; αα +=                        (5) 

for i = 1, 2, … n; j = 1, 2, …, a -1 and E(ei) = 0 

Now taking the partial derivative of the expected value 

of 
Aijx ;

 of equation 5 with respect to A, we obtain 

( )
Aj

Aij

dA

xdE
;

; α=     for j = 1, 2, …, a -1      (6) 

The direct effect which is actually the partial regression 

effect of the parent independent variable A on the 

dependent variable Y is now obtained by using equation 6 

in equation 4 as 

∑
−

=

=
1

1

;;;

a

j

AjAjAdir βαβ                           (7) 

whose sample estimate is obtained as a weighted sum of 

the sample estimates of the partial regression coefficients 

AjAj b ;;
ˆ =β  as 

∑
−

=

=
1

1

;;;

a

j

AjAjAdir bb α                      (8) 

An advantage of using dummy variables to represent 

independent variables in a multiple regression model is that 

it enables separate estimation of the partial effect of each 

level or category of a parent independent variable on a 

dependent variable which clearly provides additional 

information. It also enables the simultaneous estimation of 

not only the direct effects as we have already seen, but also 

the total or absolute effect and the indirect effect of a parent 

independent variable on a dependent variable through the 

mediation of other parent independent variables in the 

regression model. 

The indirect effect of a given parent independent variable 

on a dependent variable is the difference between its total 

or absolute effect and its direct effect through its 

representative dummy variables. The total or absolute effect 

itself is the simple regression coefficient or regression 

effect of the parent independent variable using directly its 

assigned numerical codes on the dependent variable. 

Thus the indirect effect 
Aind ;β of the parent independent 

variable A on a dependent variable Y through the mediation 

of other parent independent variables in the model is 

estimated as its total or absolute effect 
Atb ;

less its direct 

effect Adirb ; . That is 

AdirAtAind bbb ;;; −=                      (9) 

where 
Atb ;

is the sample estimate of the simple regression 

coefficient or effect of the parent independent variable A 

using its numerical codes on the dependent variable Y. 

The total, direct and indirect effects of other parent 

independent variables in the model (Equation 1) are 

similarly estimated. 

3. Illustrative Example 

A researcher is interested in estimating the effects of 

maternal age (A), mother’s body weight (W) and her parity 

(P) has on birth weight (B = y) of her most recent live birth. 

She collected a random sample of 25 newly delivered 

mothers as shown in table 1 below 

Table 1: Child birth weight and some demographic factors of a random 

sample of 25 mothers 

S/N 
Mother’s Age 

(A) 
Parity (P) 

Mother’s 

Body Weight 

(W) 

Baby’s 

Weight 

(B;y) 

1 31 2 75 3.5 

2 26 1 63 3.9 

3 30 3 55 3.5 

4 28 9 90 2.8 

5 24 4 90 3.0 

6 36 1 76 3.8 

7 20 1 59 2.7 

8 34 1 73 3.7 

9 25 1 62 2.8 

10 25 2 83 2.9 

11 30 5 75 3.0 

12 24 2 68 3.2 

13 21 1 72 3.4 

14 26 3 78 2.6 

15 22 1 72 2.7 

16 28 1 68 3.1 

17 39 7 65 3.6 

18 28 3 61 3.2 

19 28 5 70 2.8 

20 18 2 72 2.8 

21 19 1 73 2.9 

22 21 1 78 3.2 

23 28 4 75 3.1 

24 28 3 68 3.0 

25 17 1 65 2.8 

To use dummy variable multiple regression methods with 

data of table 1 above we first partition age of mother (A) 

into three groups or levels as (1) < 25years (2) 25 – 29 

years (3) ≥ 30 years[(1), (2) and (3) being parent 

independent variables representing the various age ranges]; 

Parity into three classes or groups as (1) 0 or 1, (2) 2 – 3 (3) 

4 or more, [(1), (2) and (3) being the parent independent 

variables for indicated parity]. Mother’s body weight is 

grouped into two classes (1) ≤ 70kg, (2) > 70kg. [Similarly, 

(1) and (2) are parent independent variables for the two 

weight intervals]. Hence maternal age (A) and parity (P) 

each with 3 levels will each be represented by 2 dummy 

variables of 1’s and 0’s while Mother’s body weight with 2 
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levels will be represented with only 1 dummy variable of 

1’s and 0’s in the dummy variable regression model. 

The resulting design matrix is 

Table 2: Design Matrix X of Dummy variables for the data on table 1 

S/No Xi1;A Xi2;A Xi1;P Xi2;P Xi1;W Baby’s Weight 

1 0 0 0 1 0 3.5 

2 0 1 1 0 1 3.9 

3 0 0 0 1 1 3.5 

4 0 1 0 0 0 2.8 

5 1 0 0 0 0 3.0 

6 0 0 1 0 0 3.8 

7 1 0 1 0 1 2.7 

8 0 0 1 0 0 3.7 

9 0 1 1 0 1 2.8 

10 0 1 0 1 0 2.9 

11 0 0 0 0 0 3.0 

12 1 0 0 1 1 3.2 

13 1 0 1 0 0 3.4 

14 0 1 0 1 0 2.6 

15 1 0 1 0 0 2.7 

16 0 1 1 0 1 3.1 

17 0 0 0 0 1 3.6 

18 0 1 0 1 1 3.2 

19 0 1 0 0 1 2.8 

20 1 0 0 1 0 2.8 

21 1 0 1 0 0 2.9 

22 1 0 1 0 0 3.2 

23 0 1 0 0 0 3.1 

24 0 1 0 1 1 3.0 

25 1 0 1 0 1 2.8 

 

Hence the fitted dummy variable multiple regression 

model expressing the dependence of child birth on maternal 

age, body weight and parity represented by dummy 

variables is 

WPPAAAi xxxxxxy ;1;2;1;2;2;1 069.0078.0243.0512.0512.0622.0387.3ˆ +++−−−=                  (10) 

Now, for the direct effects of the parent independent 

variables on Y (ie baby weight), we obtain the regression 

coefficients (
jα ’s) each of 

Aix ;1
on A, 

Aix ;2
 on A, 

Pix ;1
on 

P, 
Pix ;2

on P with the following results 

Aix ;1
 vs A yields 0.070A  - 2.192 =;1 Aix  

07.0;1 −=∴ Aα                                            (11) 

Aix ;2  vs A yields 0.011A  - 0.122 =;2 Aix  

011.0;2 −=∴ Aα                                             (12) 

Pix ;1  vs P yields  0.166P-0.872 =;1 Pix  

166.0;1 −=∴ Pα                                          (13) 

Pix ;2  vs P yields 0.008P - 0.340 =;2 Pix  

008.0;2 −=∴ Pα                                          (14) 

Also Wix ;1  vs W yields 0.046W - 3.710 =;1 Wix  

046.0;1 −=∴ Wα                                           (15) 

Thus, the direct effect of mothers age (A) on the baby’s 

weight (y) from equation (8) using equation (10) and 

equations (11) and (12), is 

( ) ( ) 049.0011.05.007.0622.0; =−×−+−×−=Adirb

      (16) 

Similarly, the direct effect of parity (P) on baby’s weight 

(y) using equations (8), (13) and (14) is 
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( ) ( ) 041.0008.0078.0166.0243.0; −=−×+−×=Pdirb     (17) 

And finally, the direct effect of mother body weight (W) 

on baby’s weight (y) using equation (8), (10) and (15) is 

003.0041.0069.0; −=−×=Wdirb             (18) 

For the total effects, the dependent variable, baby’s 

weight (y), is regressed on each of the parent independent 

variables 1, 2 and 3 for the three levels of mother’s age (A), 

another 1, 2 and 3 parent independent variables for the 

three levels of parity (P) and two levels of mother’s body 

weight (W) represented by 1 and 2. 

These regressions produced the following equations 

AY 333.0453.2 +=  (for mother’s Age)             (19) 

PY 069.0244.3 −=  (for Parity)                         (20) 

and 

WY 045.0191.3 −=  (for Mother’s Weight)       (21) 

The coefficients for A, P and W respectively from 

equations (19), (20) and (21) are the total effects of age, 

parity and mother’s weight. 

The indirect effects for mother’s age, parity and mother’s 

weight on baby’s weight are obtained using equation (9), 

thus indirect effect for mother’s age is 

284.0049.0333.0;;; =−=−= AdirAtAind bbb       (22) 

For parity, it is 

028.0041.0069.0;;; −=−−−=−= pdirptpind bbb    (23) 

and lastly, the indirect effect of mother’s weight on baby’s 

weight is 

042.0003.0045.0; −=−−−=windb                (24) 

4. Conclusion 

We have presented a method for the estimation of total or 

absolute effects and the direct effect of parent independent 

variables on a dependent variable through the effects of 

their set of representative dummy variables of 1’s and 0’s as 

well as indirect effects of these parent independent 

variables through the mediation of other parent independent 

variable in a dummy variable regression model. 

It is shown that an advantage of using these dummy 

variables of 1’s and 0’s is the ease of understanding and 

interpretation of the resulting estimated regression 

coefficients in comparison with the regression coefficients 

obtained when cummulatively coded ordinal dummy 

variables of 1’s and 0’s are used in such models. 
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