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Abstract: Bayesian model averaging was employed to study the dynamics of aircraft departure delay based on airport 

operational data of aviation and meteorological parameters collected on daily basis for the period 2004 through 2008 in 

matrix X. Models were evaluated using the R programming language mainly to establish the combinations of variables that 

could formulate the best model through assessing their importance. Findings showed that out of the sixteen covariates, 62.5% 

were suitable for model inclusion to determine aircraft departure delay of which 40% exhibited negative coefficients. The 

following parameters were found to negatively affect departure delay; number of aircrafts that departed on time (-0.562), 

number of persons on board of the arriving aircrafts (-0.002), daily average visibility (-0.001) and year (-1.605). 

Comparison between Posterior Model Probabilities (PMP Exact) and that based on Markov Chain Monte Carlo (PMP 

MCMC) revealed a high correlation (0.998; p<0.01).The study recommended the MCMC as providing a more efficient 

approach to modelling the determinants of aircraft departure delay at an airport. 
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1. Introduction 

Aviation provides an interesting example of 

interdependences of functions and activities. Aircraft delay 

is the most destabilizingcovariate in estimations 

ofairportoperational efficiency, in comparison to other 

determinants known to influence airport’s efficiency at any 

given time of the day. Uncertainties always prevail when 

estimations are derived to determine suitable models for 

aircraft departure delay. To deal with model uncertainties 

that arise during model selection, Bayesian Model 

Averaging, BMAwas employed in the analysis[1].In this 

study, aviation and meteorological parameters for the 

period 2004 through 2008 in matrix X were evaluated 

mainly to establish the combinations of variables �� � ��� 

that could formulate the best model[2, 3]. Secondly, the 

study sought to establish the importance of the variables in 

the selected model for determinants of departure delay[4]. 

2. Methodology and Data 

Parameter-based framework was recommended asone 

best suited to determine the probability of aircraft delay at 

an airport[5, 6]. However, the method did not fall short of 

the usual practice whereby standard statistical approaches 

tend toignore model uncertaintyanda model is selected 

from some class of models then proceed as if the selected 

model had generated the data[1]. In order to develop a 

coherent mechanism for accounting for model uncertainty, 

BMA[7] was employed in this study. 

To develop a model for determinants of aircraft departure 

delay, we assumed a canonical regression[8-11]problem as 

presentedin Equation 1. 

� � �� 	 ��
� 	 ��                              (1) 

� ~ ��0, ���� � ����� ���� 

�  � ���������  �!���  ��  �"���#�� "��  �� 

�� � ��$������� �� � ��� �� �! % 


� � ��&������' ���������'�� ��� �� �! % 

�� � ��&������' ��'���'� ��� �� �! % 

The posterior model probability, PMP was assumed to be 

proportional to the marginal likelihood of the model times a 

prior model uncertainty [12, 13].Thus, 
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The posterior model probability, PMP was used to 

answer how probable we were that the model )� would 

provide reliable estimates before the data could be 

examined.Re-normalization led to the PMPs and the model 

weighted posterior distribution for the statistic Θ. Thus, the 

β-coefficients were given by: 

",4 �3 , �- �  ∑ " 64 )�3 , �, �7�8
�9: "�)� �3 , ��        (4) 

",)�- �  our established beliefs about the covariates 

",)�- * 1 �  implied lack of knowledge apriori 
2R �  the number of variable combinations �the numb 

S �  number of variables  in the model 
Subsequently, the posterior model probability obtained 

through thecomputation was considered to be the exact 

PMP. Given that MCMC lends another approach of 

computing PMPs[14] so a comparison of the results 

between the exact PMP and MCMC PMP[15, 16]was 

deemed necessary. 

In thestudy, sixteen covariates in matrix X were assessed. 

The first question we attempted to answer was to establish 

which variables �� � ���would be included in the model. 

Secondly, we evaluated their importance in estimation of 

aircraft departure delay.One way was doing inference on a 

single model that could include all variables, but this 

proved to be inefficient and infeasible. We therefore 

employed the Bayesian model averaging; BMA that took 

the problem through estimating models for all possible 

combinations of {X} and then constructed a weighted 

average over all of them. Since X containedsixteen (16) 

potential variables as determinants, this meant estimating 

2
16

(65,536) variable combinations and thus the same 

number of models. The model weights for this averaging 

stemmed from posterior model probabilities that arise from 

the Bayes’ theorem. 

Specific expressions for maximum 

likelihoods " 6)� �3 , �7  and posterior 

distributions " 64 )�3 , �, �7 were found to depend on the 

chosen estimation framework. The literature standard was 

to use a ‘Bayesian regression’ linear model with a specific 

prior structure called the ‘Zellner’s g prior’ that has 

remained robust and popular over time[17]. Thus, for each 

individual model)�, we assumed a normal error structure 

as shown in Equation 1. This resulted into posterior 

distributions which are requiredto specify the priors on the 

model parameters. We then placed improper priors on the 

constant and error variance with an assumption that they 

were evenly distributed over their domain. Thus, ",��- *
1,so as to representa complete prior uncertainty where prior 

was located. Similarly, we set  ",��- * �T: . The crucial 

prior was the one on regression coefficients 
�  assumed 

before looking into the data (y,X); we formulated prior 

beliefs on coefficients into a normal distribution with a 

specified mean and variance. We therefore, assumed a prior 

conservative mean of zero for the coefficients to reflect that 

much was known about regression coefficients. Their 

variance structure was defined according to 

Zellner’s  g:  σ��:
W ��:���T:[18]. Thus, 


� &3 ~ � 60, σ� X:
W ��:��YT:7                 (5) 

In this case, a small g would suggestthat there werefewer 

prior coefficient variances and therefore imply that wewere 

quite certain that the coefficients are indeed zero and vice 

versa. The smaller the value of g, the more important is the 

prior, and the more the expected value of coefficients 

wouldshrink towards the prior mean zero.However, 

when & Z  ∞ , the coefficient estimator approaches the 

ordinary least square estimator, OLS.  

Similarly, the posterior variance of 
�was affected by the 

choice of g[19]: 

��$,
� , �, &, )�- �  �/T/\�]�/T/\�
^T_

W
:`W X1 a W

:`W b��Y ,��:��-T:
 (6) 

This implied that the posterior covariance would be 

similar to that of the OLS estimator; times a factor that 

included g andb��, the OLS R-squared for model γ. The 

main form of the hyper-parameter, g, we used was the 

popular default approach of the unit information prior, UIP, 

which set g=N for all models and thus attributed about the 

same information to the prior as was contained in 

ourobservation[20]. 

The data for the study comprised of 1827 cases and 17 

variables; one was the dependent while the rest were 

covariates. The variables were of scale type, derived from 

aviation[21] and meteorological parameters that affect 

departure of aircrafts at the airport while cases were daily 

records collected over a period of five years.  

2.1. Algorithm for Model Selection  

The following algorithm was developed and model 

analysis performed in R statistical computing language so 

as to develop the best model that could determine airport 

departure delay: 

1. Estimated model parameter inclusion probability; 

2. Examined performance of PMP (Exact) and PMP 

(MCMC) on selected best models and parameter 

inclusion; 

3. Determined the parameter inclusion in the model 

while distinguishing between signs of their 

coefficients; 

4. Examined how far the posterior model size 

distribution matchedup the prior on different 

indices of models. 
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3. Findings and Discussions 

The dependent variable for the study was ‘number of 

aircrafts that delay to depart’which was regressed on 

sixteen covariates so as to developthe best model. Table 1 

shows parameter grading according to the posterior 

inclusion probabilities (PIP) for each of the sixteen model 

parameters. They represent the sum of PMPs for all models 

wherein a covariate is included. The higher PIPs signify the 

importance of the covariate in the model.Therefore, from 

the analysis, there were ten covariates with maximum PIPs 

of one, four of which had negative post means. The 

Bayesian model averaging computations used on average 

11 regressors, 3000 draws, 1000 burnins in about 0.5 

seconds on an Intel Core i5 computer processor.During the 

same time, the statistics including coefficients as presented 

were averaged over a total of 413 models visitedby 

applying the hyper parameter of unit information prior 

(UIP). 

Table 1.Posterior model estimation showing parameter inclusion 

probability 

 Posterior 

Parameter 
Inclusion 

Probability 

Mean 

�cd� 

Standard 

deviation(δ) 

Scheduled flights 1.000 0.189 0.014 

Freighters 1.000 0.161 0.036 

Non-commercial flights 1.000 0.071 0.012 

Aircrafts departing on time 1.000 -0.562 0.017 

Aircrafts arriving on time 1.000 0.732 0.017 

Aircrafts delaying to arrive 1.000 0.649 0.014 

Persons on board-in 1.000 -0.002 0.001 

Persons on board-out 1.000 0.002 0.001 

Visibility 1.000 -0.001 0.001 

Year (2004-2008) 1.000 -1.605 0.108 

Queen’s nautical height 0.588 0.004 0.003 

Chartered aircrafts 0.306 0.011 0.018 

Dew point temperature 0.057 0.001 0.011 

Wind direction 0.034 0.000 0.001 

Air temperature 0.019 0.001 0.005 

Wind speed 0.0170 0.001 0.005 

Note: (i) Columns show Posterior Inclusion Probability (value of 1 is 

highly desired) (ii) posterior mean whose sign show the effect of the 

parameter on the departure delay (iii) posterior standard deviation 

The posterior mean coefficients show some interesting 

findings as far as their effect on aircraft departure delay is 

concerned. Four of the ten covariates found suitable for the 

model indicated negative coefficients. The four covariates 

were number of aircrafts that departed on time (-0.562), 

number of persons on board of the arriving aircrafts (-

0.002), daily average visibility (-0.001) and year(-1.605). 

All the four covariates, according to the analysis confirmed 

that the higher their values, the lower were the number of 

aircrafts that delay to depart.  

Markov Chain Monte Carlo, MCMC samplers were 

applied on the 16 covariates to gather results on the most 

important part of the posterior model distribution and thus 

approximate it as closely as possible. The MCMC method 

applied mostly relied on the Metropolis-Hastings algorithm 

which is known to walk through the model space[22]. The 

number of times each model was kept then converged to 

the distribution of posterior model probability  ()( �
" X)e �3 , �Y .Comparison of the top six models kept is 

shown in Table 2andthe MCMC PMPs showed statistically 

significant correlation withthe Exact PMPs (ρ=0.998, 

p<0.01) in the results of the computations. 

Table 2.Posterior model probability estimates for the exact and Markov 

Chain Monte Carlo for the six best models 

Parameter Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 

Scheduled flights 1 1 1 1 1 1 

Chartered flights 0 0 1 1 0 0 

Freighters 1 1 1 1 1 1 

Non-commercial 
flights 

1 1 1 1 1 1 

Aircraft on-time 

departures 
1 1 1 1 1 1 

Aircrafts arriving 

on time 
1 1 1 1 1 1 

Aircrafts delaying 

arrival 
1 1 1 1 1 1 

Persons on board-
in 

1 1 1 1 1 1 

Persons on board-

out 
1 1 1 1 1 1 

Wind direction 0 0 0 0 1 0 

Windspeed 0 0 0 0 0 1 

Visibility 1 1 1 1 1 1 

Airtemperature 0 0 0 0 0 0 

Dewpoint 

temperature 
0 0 0 0 0 0 

Queen’s nautical 

height 
1 0 1 0 1 1 

Year 1 1 1 1 1 1 

PMP (Exact) 0.39 0.27 0.14 0.10 0.01 0.01 

PMP (MCMC) 0.36 0.26 0.14 0.11 0.02 0.01 

Note: (i)1 indicates that parameter was included in the model (ii)0 

indicates parameter exclusion from the model (iii)the last two rows show a 

comparison between Exact and MCMC approaches 

From the best six models generated, we were able to see 

how different models treated different parameters in the 

estimation of determinants of aircraft departure delay. The 

binary digits were used to indicate performance of different 

parameters over the six best models with zero (0) indicating 

the variable did not qualifywhile one (1) indicates that the 

variable qualified and was considered under the prescribed 

model. 
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Figure 1 further shows the graphical illustration of the 

candidate variables selected from the best 20 modelsthat 

qualified for model inclusion. We note an agreement with 

the results in Table 1 when the posterior inclusion 

probabilities were used. We also note that the 20 best 

models represent a cumulative probability of 0.98and the 

selected variables have full colouring where dark 

shadesindicatedthat the variable had a positive influence 

while lighter shades showed that the variable had a 

negative influence to departure delay.It is further noted that 

for Entebbe International Airport in Uganda, 80% of the 

variables selected for the model are actually aviation 

parameters.Hence, according to the results, the only and 

most significant meteorological parameter selected and 

recommended for the model was visibility. Important to 

note further is the variability of these parameters over the 

days for the periodof the study. 

 

Figure 1.Candidate model parameter against their cumulative 

probabilities 

 

Figure 2.Variations of posterior and prior model size distributions  

We examined how far the posterior model size 

distribution matched up the prior. Findings showed that the 

mean number of regressors was 11 whereby 100,000 draws 

were performed resulting in 50,000 burnins which lasted 

for about 18 seconds. The number of models visited was 

14657 constituting 22% of the model space of 65536 to 

generate 100% of the top models for the study with the 

correlation of 0.9985 for the PMPs.  

 

 

Figure 3. Posterior model probabilities for PMP(Exact) and PMP 

(MCMC) when the index of models is 10 and 50 respectively 

As recommended [22],to evaluate and accelerate MCMC 

sampler convergence, application of diagnostic procedures 

to a small number of parallel chains, monitoring of 

autocorrelations and cross-correlations and where 

necessary modification ofparameterizations or sampling 

algorithms[19]were performed appropriately. In this 

studytherefore, before looking at the coefficients, we 

checked convergence of PMP (Exact) versus PMP 

(MCMC). Figure 3 shows that there was a sufficient 

convergence with high values of correlations for varying 

index of models 10 and 50 respectively. 

4. Conclusion 

Of the sixteen parameters, ten were recommended for 

inclusion into the model, six of which had positive 

coefficients; number of scheduled flights, number of 

freighters, number of non-commercial flights, proportion of 
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flights arriving on time, proportion of aircrafts delaying to 

arrive, persons on board departing aircrafts. MCMC was 

found to perform equally and very often more efficiently 

with the correlation coefficient between PMP(Exact) and 

PMP(MCMC) (0.9985;p<0.01)which confirmedstatistically 

significant relationship between the two computational 

approaches. Forty percent(40%) of the parameters that 

qualified for model inclusion; aircrafts that departed on 

time, persons on-board of incoming aircrafts, visibility and 

year under study (2004-2008) exhibited negative signs. 

This was found to be in conformity with other findings[5, 

21, 23].Although the posterior mean (11.022) varied from 

the prior mean (8.000), this still indicated a good estimate 

by the prior. The findings show that Markov Chain Monte 

Carlo provides a moreefficient approach to derive the best 

model for estimation of departure delay at Entebbe 

International Airport in Uganda. Like[24], this study 

established that efficient tools such as MCMC would 

facilitate optimal solutions through airport analysis, 

planning and design for demand and capacity to support 

sustainable development. Thus, further studies and 

development endeavors of the airport need to critically 

consider parameters derived and recommended in this 

study for efficient management of air traffic flow. 
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