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Abstract: In this paper, based on a new type of censoring scheme called a progressive first-failure censored, the maximum 

likelihood (ML) and the Bayes estimators for the two unknown parameters of the Generalized Pareto (GP) distribution are 

derived. This type of censoring contains as special cases various types of censoring schemes used in the literature. A Bayesian 

approach using Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions and in turn 

computing the Bayes estimators are developed. Point estimation and confidence intervals based on maximum likelihood and 

bootstrap methods are also proposed. The approximate Bayes estimators have been obtained under the assumptions of 

informative and non-informative priors. A numerical example is provided to illustrate the proposed methods. Finally, the 

maximum likelihood and different Bayes estimators are compared via a Monte Carlo simulation study. 

Keywords: Generalized Pareto Distribution, Progressive First-Failure Censored Sample, Gibbs and Metropolis Sampler, 

Bayesian and Non-Bayesian Estimations, Bootstrap Methods 

 

1. Introduction 

Censoring is very common in life tests. There are several 

types of censored tests. One of the most common censored 

test is type II censoring. It is noted that one can use type II 

censoring for saving time and money. However, when the 

lifetimes of products are very high, the experimental time 

of a type II censoring life test can be still too long. 

(Johnson, 1964) described a life test in which the 

experimenter might decide to group the test units into 

several sets, each as an assembly of test units, and then run 

all the test units simultaneously until occurrence the first 

failure in each group. Such a censoring scheme is called 

first-failure censoring. (Jun, et.al 2006) discussed a 

sampling plan for a bearing manufacturer. The bearing test 

engineer decided to save test time by testing 50 bearings in 

sets of 10 each. The first-failure times from each group 

were observed. (Wu, et.al 2003; Wu, and Yu, 2005) 

obtained maximum likelihood estimates (MLEs), exact 

confidence intervals and exact confidence regions for the 

parameters of the Gompertz and Burr type XII distributions 

based on first-failure censored sampling, respectively. Also 

see (Wu, et.al 2001; Lee, et.al 2007). Recently, (Wu, and 

Kuş, 2009) obtained maximum likelihood estimates, exact 

confidence intervals and exact confidence regions for the 

parameters of Weibull distribution under the progressive 

first-failure censored sampling. Note that a first-failure 

censoring scheme is terminated when the first failure in 

each set is observed. If an experimenter desires to remove 

some sets of test units before observing the first failures in 

these sets this life test plan is called a progressive 

first-failure censoring scheme which recently introduced by 

(Wu, and Kuş, 2009). (Soliman, et.al 2012a) obtained 

estimation from Burr type XII distribution using 

progressive first-failure censored data. (Soliman, et.al 

2012b) discussed estimation of the parameters of life for 

Gompertz distribution using progressive first-failure 

censored data. (Soliman, et.al 2011a) obtained Bayesian 

inference and prediction of Burr type XII distribution for 
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progressive first-failure censored sampling, (Soliman, et.al 

2011b) proposed a simulation-based approach to the study 

of coefficient of variation of Gompertz distribution under 

progressive first-failure censoring. Therefore, the purpose 

of this paper is to develops the Bayes estimates and Markov 

Chain Monte Carlo (MCMC) techniques to compute the 

credible intervals and bootstrap confidence intervals of the 

unknown parameters of Lomax distribution under the 

progressive first-failure censoring plan. 

A random variable X is said to have generalized Pareto 

(GP) distribution, if its probability density function (pdf) is 

given by 

( )

( )1 / 1

, ,

1
1 ,

x
f

ζ

ζ µ σ
µζ

σ σ

− +− = + 
 

 

where , Rµ ζ ∈ and (0, )σ ∈ +∞ . For convenience, we 

reparametrized this distribution by defining 

/ ,1/σ ζ β ζ α= = and 0µ = . Therefore, 

( 1)( ) ( ) , 0,  , 0.f x x xα ααβ β α β− += + > >    (1) 

The cumulative distribution function (cdf) is defined by 

( ) 1 ( ) , 0,  , 0.F x x xα αβ β α β−= − + > >    (2) 

Here α and β are the shape and scale parameters, 

respectively. It is also well known that this distribution has 

decreasing failure rate property. This distribution is also 

known as Pareto distribution of type II or Lomax 

distribution. This distribution has been shown to be useful 

for modeling and analyzing the life time data in medical 

and biological sciences, engineering, etc. So, it has been 

received the greatest attention from theoretical and applied 

statisticians primarily due to its use in reliability and life 

testing studies. Many statistical methods have been 

developed for this distribution, for a review of Pareto 

distribution of type II or Lomax distribution see 

(Chahkandi, and Ganjali, 2009; Lomax, 1954). For its 

applications as lifetime distribution and extensions, we 

refer to (Marshall, and Olkin, 2007). (Bryson, 1974) has 

argued that Pareto distribution of type II provide a very 

good alternative to common lifetime distributions like 

exponential, Weibull, or gamma distributions when the 

experimenter presumes that the population distribution may 

be heavy-tailed. Details on Pareto distributions as well as 

areas of application can be found in (Arnold, 1983; 

Habibullh, and Ahsanullah, 2000; Upadhyay, and Peshwani, 

2003; Abd Ellah, 2003 and 2006). A great deal of research 

has been done on estimating the parameters of Pareto 

distribution of type II or Lomax using both classical and 

Bayesian techniques. 

The rest of this paper is organized as follows. In Section 2, 

we describe the formulation of a progressive first--failure 

censoring scheme as described by (Wu, and Kuş, 2009). 

Estimation of the parameters is given in Section 3. In this 

section, the ML estimators of the parameters, approximate 

confidence intervals and bootstrap confidence intervals are 

presented. We cover Bayes estimates and construction of 

credible intervals using the MCMC techniques in Section 4. 

A numerical examples are presented in Section 5 for 

illustration. In Section 6 we provide some simulation results 

in order to give an assessment of the performance of the 

different estimation method. 

2. A Progressive First-Failure Censoring 

Scheme 

In this section, first-failure censoring is combined with 

progressive censoring as in (Wu, and Kuş, 2009). Suppose 

that n independent groups with k items within each group 

are put in a life test, 1R groups and the group in which the 

first failure is observed are randomly removed from the test 

as soon as the first failure (say 1: : :m n kx R
) has occurred, 

2R groups and the group in which the second failure is 

observed are randomly removed from the test as soon as the 

second failure (say 2: : :m n kx R
) has occurred, and finally 

( )mR m n≤ groups and the group in which the 

m th− failure is observed are randomly removed from the 

test as soon as the m th− failure (say : : :m m n kx R
) has 

occurred. The 1: : :m n kx <R

2: : : ...m n kx < <R

: : :m m n kx R
 are 

called progressively first-failure censored order statistics 

with the progressive censoring scheme R . It is clear that 

1 2 ... mn m R R R= + + + + . If the failure times of the 

n k× items originally in the test are from a continuous 

population with distribution function ( )F x  and 

probability density function ( )f x , the joint probability 

density function for 1: : : ,m n kx R

2: : : ,...,m n kx R

: : :m m n kx R
is 

given by 

1,2,..., 1: : : 2: : : : : :

( 1) 1

: : : : : :

1

( , ,..., )

( )(1 ( )) j

m m n k m n k m m n k

m
km

j m n k j m n k

j

f x x x

Ak f x F x
+ −

=

=

−∏

R R R

RR R
  (3) 

1: : : 2: : : : : :0 ... ,m n k m n k m m n kx x x< < < < < ∞R R R
   (4) 

where 

1 1 2

1 2 1

( 1)( 1)...

( ... 1).
m

A n n R n R R

n R R R m−

= − − − − −
− − − − +

     (5) 

There are four special cases: 

The first one if (0,...,0)R = , Equation (3) reduces to 

the joint (pdf) of first-failure censored order statistics. The 

second case if 1,k = Equation (3) becomes the joint (pdf) 

of the progressively type II censored statistics. The third 
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case if 1k = and (0,...,0)R = , then n = m which 

corresponds to the complete sample. The last one if 

1k = and (0,..., )R n m= − , then the type II censored 

order statistics are obtained. Also, it can be seen that the 

progressive first-failure censored order statistics 

X1;m,n,k
R ,X2;m,n,k

R , . . . , Xm;m,n,k
R

can be viewed as a 

progressively type II censored sample from apopulation with 

distribution function 1 (1 ( ))kF x− − . 

3. Estimation of the Parameters 

In this section, we estimate α  and ,β  by considering 

the maximum likelihood and we compute the observed 

Fisher information based on the likelihood equations. These 

will enable us to develop pivotal quantities based on the 

limiting normal distribution, the resulting pivotal quantities 

can be used to develop interval estimates also, we construct 

the bootstrap confidence interval. 

3.1. Maximum-Likelihood (ML) Estimation 

Let : : :i m n kx R
 , 1, 2,...,i m=  , be the progressively 

first-failure censored order statistics from GP( ,α β  ) the 

distribution of reparametrized Generalized Pareto (GP) 

distribution, with censoring scheme R  . from (3), the 

likelihood function is given by 

( ) ( )( 1 ) 1 ( 1 ) 1

1

( | , )

( ) ,i i

m m m

m
k R k R

i

i

d ata A k

x

α

α α

α β α β

β β+ − − + +

=

=

+∏

ℓ

   (6) 

where A  is defined in (5) and ix  is used instead of 

: : :i m n kx R
 . The log-likelihood function may then be written 

as 

1

1

( | , ) log log log

( ( 1) 1) log( )

( 1) log .

m

i i

i

m

i

i

L data A m k m

k R x

k R

α β α

α β

α β

=

=

= + +

− + + +

+ +

∑

∑

  (7) 

Upon differentiating (7) with respect to ,α  and β  , 

and equating each result to zero, two equations must be 

simultaneously satisfied to obtain MLE of 
⌢
α  and 

⌢
β  , 

The maximum likelihood equations of ,α  and β  can be 

obtained as the solution of 

1

1

( | , )
( 1) log

( 1) log( ),

m

i

i

m

i i

i

L data m
k R

k R x

α β β
α α

β

=

=

∂ = + +
∂

− + +

∑

∑
   (8) 

and 

1

1

( 1)( | , )

( ( 1) 1)
.

( )

m

i

i

m

i

i i

k RL data

k R

x

αα β
β β

α
β

=

=

+∂ =
∂

+ +−
+

∑

∑
     (9) 

Solving 
( | , )

0
L data α β

α
∂

∂ =  for α  gives, from (8)  

⌢

⌢

⌢

1

1

1

( 1) log( )

.

( 1) log

m

i i

i

m

i

i

k R x

m

k R

β
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−

=

=
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 =
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− + 
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∑

∑
    (10) 

By using (10) in (9) we obtain 

⌢

⌢

⌢

⌢

1 1

( 1) ( ( 1) 1)
0.

( )

m m

i i

i i i

k R k R

x

α α
β β= =

+ + +− =
+∑ ∑   (11) 

Since (11) cannot be solved analytically some numerical 

methods such as Newtons method must be employed.to 

solve (11) and get the MLE, 
⌢

,β  and hence 
⌢
α  , by using 

Equation (10). 

3.2. Approximate Interval Estimation 

The asymptotic variances and covariances of the MLE for 

parameters ,α  and β  are given by elements of the 

inverse of the Fisher information matrix 

2

;  ,  1, 2.ij

L
E i j

α β
 ∂= − = ∂ ∂ 

I     (12) 

Unfortunately, the exact mathematical expressions for the 

above expectations are very difficult to obtain. Therefore, 

we give the approximate (observed) asymptotic 

varaince-covariance matrix for the MLE, which is obtained 

by dropping the expectation operator E 

⌢ ⌢

⌢ ⌢ ⌢

⌢ ⌢ ⌢

1
2 2

2

2 2

2

( , )

var( ) cov( , )
,

cov( , ) var( )

L L

L L

α β

α α βα α β
β α β

β α β

−
 ∂ ∂− −   ∂ ∂ ∂  =  
 ∂ ∂   − − ∂ ∂ ∂ 

 

with 

2

2 2
                                            

L m

α α
∂ = −
∂

(13) 
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2 2

1 1

( 1) ( 1)
,

( )

m m

i i

i i i

L L

k R k R

x

α β β α

β β= =

∂ ∂=
∂ ∂ ∂ ∂

+ += −
+∑ ∑

    (14) 

2

2 2
1

2
1

( ( 1) 1)

( )

( 1)
.

m
i

i i

m
i

i

k RL

x

k R

α
β β

α
β

=

=

+ +∂ =
∂ +

+−

∑

∑
        (15) 

The asymptotic normality of the MLE can be used to 

compute the approximate confidence intervals for 

parameters ,α  and β . 

Therefore, (1 )100%γ−  confidence intervals for 

parameters ,α  and β .become 

⌢ ⌢

⌢ ⌢

/ 2

/ 2

var( )  and

var( ),

Z

Z

γ

γ

α α

β β

±

±
          (16) 

where 
/ 2Z γ  is the percentile of the standard normal 

distribution with right-tail probability / 2γ  . 

3.3. Bootstrap Confidence Intervals 

In this subsection, we propose to use confidence intervals 

based on the parameteric bootstrap methods (i) percentile 

bootstrap method (Boot-p) based on the idea of (Efron, 

1982). (ii) bootstrap-t method (Boot-t) based on the idea of 

(Hall, 1988). The algorithms for estimating the confidenc 

eintervals using both methods are illustrated as follows 

3.3.1. Percentile Bootstrap Method 

1) From the original data 1: : : ,m n kx x≡ R
 2: : : ,...,m n kx R

 

: : :m m n kx R
 compute the ML estimates of the parameters 

⌢
α  and 

⌢
β  by solving the nonlinear equations (10) 

and (11). 

2) Use 
⌢
α  and 

⌢
β  to generate a bootstrap sample x

∗
 

with the same values of , ; ( 1,2,.., )iR m i m=  

using algorithm presented in (Balakrishnan, and 

Sandhu, 1995). 

3) As in step 1, based on x
∗

 compute the bootstrap 

sample estimates of α  and ,β  say 
⌢
α

∗
 and 
⌢

.β
∗

 

4) Repeat steps 2-3 N  times representing N  

bootstrap MLE's of ( , )α β  based on N  different 

bootstrap samples. 

5) Arrange all 
⌢

sα
∗′

 and 
⌢

,sβ
∗′

 in an ascending order to 

obtain the bootstrap sample ( 
[1],lϕ  

[2],lϕ  
[ ]..., ),N

lϕ  

1, 2l =  (where 
⌢ ⌢

1 2, ).ϕ α ϕ β
∗ ∗

≡ ≡  

Let ( ) ( )lG z P zϕ= ≤  be the cumulative distribution 

function of 1.ϕ  Define 
1( )lboot G zϕ −=  for given .z  

The approximate bootstrap 100(1 )%γ−  confidence 

interval of lϕ  is given by 

1
[ ( ), ( )].

2 2
lboot lboot

γ γϕ ϕ −
 

3.3.2. Bootstrap-t Method 

1) From the original data 1: : : ,m n kx x≡ R
 2: : : ,...,m n kx R

 

: : :m m n kx R
 compute the ML estimates of the parameters 

⌢
α  and 

⌢
β  by solving the nonlinear Equations (10) 

and (11). 

2) Using 
⌢
α  and 

⌢
β  generate abootstrap sample 

1 2{ , ,..., }.nx x x∗ ∗ ∗
 Based on 1 2{ , ,..., }nx x x∗ ∗ ∗

 

compute the bootstrap estimate of α  and β  using 

(10 ) and ( 11)  , say 
⌢
α

∗
 and 
⌢
β

∗
 and following 

statistics 

⌢ ⌢

⌢

⌢ ⌢

⌢1 2

( ) ( )
,

( ) ( )

n n
T T

Var Var

α α β β

α β

∗ ∗
∗ ∗

∗ ∗

− −= =

 

where 
⌢

( )Var α
∗

 and 
⌢

( )Var β
∗

 are obtained using the 

Fisher information matrix. 

3) Repeat step 2, N boot times. 

4) For the 1T ∗
 and 2T ∗

 values obtained in step2, 

determine the upper and lower bounds of the 

100(1 )%γ−  confidence interval of α  and β  as 

follows: let ( ) ( ), 1, 2iH x P T x i∗= ≤ =  be the 

cumulative distribution function of 1T ∗
 and 2T ∗

 . For 

a given x  , define 

⌢ ⌢ ⌢

⌢ ⌢ ⌢

1/ 2 1

1/ 2 1

( ) ( ) ( ),

( ) ( ) ( ).

Boot t

Boot t

x n Var H x

x n Var H x

α α α

β β β

− −
−

− −
−

= +

= +

 

Here also, 
⌢

( )Var α  and 
⌢

( )Var β  can be computed as 

same as computing the 
⌢

( )Var α
∗

 and 
⌢

( )Var β
∗

 . The 

approximate 100(1 )%γ−  confidence interval of α  and 

β  are given by 

⌢ ⌢

⌢ ⌢

( ), (1 ) ,
2 2

( ), (1 ) .
2 2

Boot t Boot t

Boot t Boot t

γ γα α

γ γβ β

− −

− −

 − 
 

 − 
 
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4. Bayesian Estimation Using MCMC 

In this section we describe how to obtain the Bayes 

estimates and the corresponding credible intervals of 

parameters α  and β  when both are unknown. For 

computing the Bayes estimates, we assume mainly a squared 

error loss (SEL) function. In some situations where we do 

not have sufficient prior information, we can use 

non-informative uniform distribution as the prior 

distribution. This is particularly true for our study. The 

non-informative uniform prior distribution can be used for 

parameters α  and β  . The joint posterior density will 

then be in proportion to the likelihood function. Here we 

consider the more important case when the shape parameter 

α  and the scale parameter β  have independent gamma 

priors with the pdfs 

1

1

    if 0
( | , ) ,( )

    0                  if 0.

a
a bb

e
a b a

αα α
π α

α

− −
>= Γ

 ≤

    (17) 

and 

1

2

    if 0
( | , ) .( )

    0                  if 0.

c
c dd

e
c d c

ββ β
π β

β

− −
>= Γ

 ≤

     (18) 

The likelihood function of the observed sample is same as 

(6) . Using the joint prior distribution of α  and β  , we 

obtain the joint distribution of the data, α  , and β  as 

1 2( | , ) ( | , ) ( | , ).data a b c dα β π α π β× ×ℓ   (19) 

Based on (19), the joint posterior density of α  and β  

given the data is 

1 2

1 20 0

( , | )

( | , ) ( | , ) ( | , )
,

( | , ) ( | , ) ( | , )

l data

data a b c d

data a b c d d d

α β
α β π α π β

α β π α π β α β∞ ∞

=
× ×

× ×∫ ∫

ℓ

ℓ

 (20) 

therefore, the Bayes estimate of any function of α  and 

β  say ( , )g α β  , under squared error loss function is 

⌢

, |

1 20 0

1 20 0

( , ) ( ( , ))

( , ) ( | , ) ( | , ) ( | , )
.

( | , ) ( | , ) ( | , )

datag E g

g data a b c d d d

data a b c d d d

α βα β α β

α β α β π α π β α β
α β π α π β α β

∞ ∞

∞ ∞

=

∫ ∫=
∫ ∫

ℓ

ℓ

(21) 

It is not possible to compute (21)  analytically. 

Therefore, we propose the MCMC technique to generate 

samples from the posterior distributions and then compute 

the Bayes estimates of α  and β  under progressively 

first-failure censored GP( ,α β  ) distribution. An 

important sub-class of MCMC methods are Gibbs sampling 

and more general Metropolis-within-Gibbs samplers, see for 

example (Robert, and Casella, 2004) and Recently, (Rezaei, 

et.al 2010). 

4.1. The Metropolis-Hastings -Within-Gibbs Sampling 

We propose using the Gibbs sampling procedure to 

generate a sample from the posterior density function 

( , | )l dataα β  and in turn compute the Bayes estimates 

and also construct the corresponding credible intervals based 

on the generated posterior sample. In order to use the 

method of MCMC for estimating the parameters of the 

GP( ,α β  ) distribution, namely, α  and β  . Let us 

consider independent priors (17) and (18), respectively, for 

the parameters α  and β  . The expression for the 

posterior can be obtained up to proportionality by 

multiplying the likelihood with the prior and this can be 

written as 

( )

( ) ( )

1 1

1

1

( , | )

exp 1 log

( 1 1)log .

m a c

m

i

i

m

i i

i

data

k R b

k R x d

π α β α β

α β

α β β

∗ + − −

=

=

∝

  − + +  
 

− + + + − 


∑

∑

  (22) 

The posterior is obviously complicated and no closed 

form inferences appear possible. We, therefore, propose to 

consider MCMC methods, namely the Gibbs sampler, to 

simulate samples from the posterior so that sample-based 

inferences can be easily drawn. From (22), the full posterior 

conditional distribution for α  as the following 

( )

( ) ( )

1

1

1

1

( | , )

1 log

exp .

1 log

m a

m

i

i

m

i i

i

data

b k R

k R x

π α β α

β
α

β

∗ + −

=

=

∝

  − +  
  −
  

+ + +  
  

∑

∑

   (23) 

It can be seen that Equation (23) is a gamma density with 

shape parameter ( m a+  ) and scale parameter 

( )
( ) ( )

1

1

1 log

1 log

m
i i

m
i i i

b k R

k R x

β
β

=

=

 − +∑
 
 + + +∑ 

 and, therefore, samples of 

α  can be easily generated using any gamma generating 

routine. 

Similarly, the marginal posterior density of β  is 

proportional to 

( )

( ) ( )

1

2

1

1

( | , )

exp 1 log

( 1 1)log ,

c

m

i

i

m

i i

i

data

d k R

k R x

π β α β

β α β

α β

∗ −

=

=

∝

− + +


− + + + 


∑

∑

  (24) 
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the conditional posterior distribution of β  Equation (24) 

cannot be reduced analytically to well known distributions 

and therefore it is not possible to sample directly by standard 

methods, but the plot of it show that it is similar to normal 

distribution. So to generate random numbers from this 

distribution, we use the Metropolis-Hastings method with 

normal proposal distribution. 

Now, we propose the following scheme to generate α  

and β  from the posterior density functions and in turn 

obtain the Bayes estimates and the corresponding credible 

intervals 

1) Start with an ( 
(0) )β  

2) Set 1t =  . 

3) Generate 
( )tα  from Gamma distribution 

1 ( | , )dataπ α β∗
 

4) Using Metropolis-Hastings (Metropolis, et.al 1953), 

generate ( )tβ  from 
2 ( | , )dataπ β α∗  with the 

N( 
( 1) 2,tβ σ−

 ) proposal distribution where 
2σ  is 

the variance of β  obtained using variance-covariance 

matrix. 

5) Compute 
( )tβ  and 

( )tα  . 

6) Set 1.t t= +  

7) Repeat steps 3 6−  N times. 

8) Obtain the Bayes estimates of β  and α  with respect 

to the SEL function as 

�

1

1
( | ) ,  

N

i

i

E data
N

β β
=

= ∑
 

�

1

1
( | ) .           

N

i

i

E data
N

α α
=

= ∑
 

1) To compute the credible intervals of β  and α  , 

order 
1,..., Nβ β  and 1,..., Nα α  as 

(1) ( )... Nβ β< <  

and 
(1) ( )... .Nα α< <  Then the 100(1 2 )%γ−  

symmetric credible intervals of β  and α  become 

2) 
( ) ( (1 )) ( ) ( (1 ))( , )   and   ( , ).N N N Nγ γ γ γβ β α α− −  

5. Illustrative Example 

To illustrate the use of the estimation methods proposed in 

this paper. A set of data consisting of 64 observations were 

generated from GP ( ,α β ) the distribution of 

reparametrized Generalized Pareto (GP) distribution, with 

parameters ( , ) (0.5,2)α β =  , The generated data are 

given in Table 1 

This data are randomly grouped into 16  groups with 

( 4k = ) items withen each group. Suppose that the 

pre-determined progressively first-failure censoring scheme 

is given by R = {1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}. 

then a progressively first-failure censored sample of size 

12 out of 16 groups of data is obtained as 

1 12( ,..., ) (0.2579,X X = 0.2881, 0.4332, 0.5397, 0.5800,

0.7111, 0.7539, 0.8957, 1.3905, 2.0358, 2.1791, 20.027).  For 

this example, 4 groups of data failure times are censored, 

and 12 first failures are observed. Under the given previous 

data we compute the approximate MLEs, Bootstrap and 

Bayes estimates of α  and β  using MCMC method. Also 

the 95%  , approximate MLE confidence intervals, 

Bootstrap confidence intervals and approximate credible 

intervals based on the MCMC samples, the results are given 

in Table 2  . The plot of Simulation number of α  and β  

generated by MCMC method are given in Figures 1 and 2, 

the plot of histogram of α  and β  generated by MCMC 

method are given in Figures 3 and 4. This was done with 

1000  bootstrap sample and 10 000  MCMC sample and 

discard the first 1000  values as `burn-in' 

 

Figure 1. Simulation number of Alfa generated by MCMC. 

 

Figure 2. Simulation number Beta generated by MCMC. 

 

Figure 3. Histogram of Alfa generated by MCMC. 
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Figure 4. Histogram of Beta generated by MCMC. 

6. Simulation Study 

In this section we report some numerical experiments 

performed to evaluate the behavior of the proposed methods, 

we simulated 1000 progressively first- failure censored 

samples from a GP( ,α β  ) distribution. The samples were 

simulated by using the algorithm described in (Balakrishnan 

and Sandhu, 1995). We used different sample of sizes ( )n  , 

different effective sample of sizes ( )m  , different k  

( 1,5),k =  different hyperparameters ( ,a  ,b  ,c  )d  , 

and different of sampling schemes (i.e., different iR  

values).We used two sets of parameter values 0.2,α =  

2β =  and α  0.5,=  β  1.5=  , mainly to compare 

the MLEs and different Bayes estimators and also to explore 

their effects on different parameter values. First, we used the 

noninformative gamma priors for both the parameters, that is, 

when the hyperparameters are 0  . We call it prior 0: 

0.a b c d= = = =  Note that as the hyperparameters go 

to 0, the prior density becomes inversely proportional to its 

argument and also becomes improper. This density is 

commonly used as an improper prior for parameters in the 

range of 0  to infinity, and this prior is not specifically 

related to the gamma density. For computing Bayes 

estimators, other than prior 0, we also used informative prior, 

including prior 1  , 1,a =  1,b =  3c =  and 2d =  . 

In two cases, we used the squared error loss function to 

compute the Bayes estimates. We also computed the Bayes 

estimates and 95%  credible intervals based on 10000  

MCMC samples and discard the first 1000  values as 

`burn-in'. We report the average Bayes estimates, mean 

squared errors (MSEs) , coverage percentages, and average 

confidence interval lengths. For comparison purposes, we 

also compute the MLEs and the 95%confidence intervals 

based on the observed Fisher information matrix. 

Note that Scheme (0,..., )n m−  when 1k =  is the 

usual type II censoring scheme for fixed n  and m  ; that 

is , n m−  items are removed at the time of the m -th 

failure. Scheme ( ,...,0)n m−  is just the opposite of the 

type II censoring scheme in the sense for fixed n  and m  , 

n m−  items are removed at the time of the first failure. It 

is well known that when 1k =  for fixed n  and m  , the 

expected experimental time of the type II censoring scheme 

(0,..., )n m−  are less than that for ( ,...,0)n m−  . In 

fact, the expected time of any other censoring scheme (for 

fixed m and n  ) is always between these two extremes; 

for example, the expected experimental time of Scheme 

(0,..., ,...,0)n m−  lies between Schemes 

( ,...,0)n m−  and (0,..., )n m−  . Finally, we used the 

same 1000  replicates to compute different estimates for 

each scheme Tables 3 − 7 report the results based on 

MLEs and the Bayes estimators (using both the Gibbs 

sampling procedure) using noninformative prior and 

informative prior on both α and β . 

7. Conclusion 

In this paper we consider the Bayes estimation of the 

unknown parameters of the GP( ,α β  ) distribution when 

the data are progressively first-failure censored. We assume 

the gamma priors on the unknown parameters and provide 

the Bayes estimators under the assumptions of squared error 

loss functions. It is observed that the Bayes estimators can 

not be obtained in explicit forms and they can be obtained 

using the numerical integration. Because of that we have 

used MCMC technique to generate posterior sample. We 

observe the following. 

1) From the results obtained in Tables 3  and 4  . It can 

be seen that the performance of the Bayes estimators 

with respect to the noninformative prior (prior 0) is 

quite close to that of the MLEs. 

2) Tables 5  and 6  report the results based on 

informative prior, (prior 1) also in these case the results 

based on using the Gibbs sampling procedure are quite 

similar in nature when comparing the Bayes estimators 

based on informative prior clearly shows that the Bayes 

estimators based on prior 1  perform better than the 

MLEs, in terms of both MSEs and lengths of the 

confidence interval and credible interval. 

3) From Tables 3 6−  , comparing the schemes 

( ,...,0)n m−  and (0,..., )n m−  , it is clear that 

the biases, MSEs, and average confidence interval 

lengths, credible interval lengths of the MLEs and 

Bayes estimators for both parameters are greater for the 

censoring scheme (0,..., )n m−  than the censoring 

scheme ( ,...,0).n m−  This may not be very 

surprising, because the expected duration of the 

experiments is greater for censoring scheme 

( ,...,0)n m−  than for the censoring scheme 

(0,..., )n m−  . Thus the data obtained by the 

censoring scheme ( ,...,0)n m−  would be expected 

to provide more information about the unknown 

parameters than the data obtained by censoring scheme 

(0,..., )n m−  . 
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4) We report the results of MLEs and Bayes estimators 

based on the Gibbs sampling procedure. For 0.5α =  

and 1.5β =  , the average values of the MLEs, Bayes 

estimates based on (prior 0) and (prior 1) and 

corresponding MSEs, are reported in Table 7  . The 

performance of the Bayes estimators based on prior 0  

is very similar of the corresponding Bayes estimators 

based on prior 1 . From Table 7  , it is clear that the 

Bayes estimators based on noninformative prior and 

informative prior perform much better than the MLEs 

in terms of biases, MSEs.

Table 1. Simulated data from Generalized Pareto with (α,β)=(0.5,2). 

14.576 4.7854 1.3924 540.16 1.3164 1.1806 27.308 0.2579 

1.3966 37.737 0.2881 183.14 3.6364 44.807 21.321 3.3763 

42.369 1.3689 467.58 54.511 0.5397 1.1582 0.4332 1.8647 

7.1081 0.5800 1.3975 1.6914 4.0923 0.7111 37.294 3.6109 

5.0149 5.0759 692.34 6.9195 0.7539 11.714 0.8957 5.4046 

2.1283 1.1501 6.3794 157.15 82.834 1.3905 12.284 26.752 

8.7481 20.027 4.9856 2.0358 6.5845 1.2483 3.9334 4.7713 

20.030 16.654 2.1791 5.1828 29.241 467.58 2.4447 13.872 

Table 2. Results obtained by MLE, Bootstrap and MCMC method of α and β.  

Method Parameter Point Interval Length 

MLEs α 0.4101 ]0.1465,0.9668-[  1.1133 

 β 2.1533 ]1.7780,6.0846-[  7.8626 

Bootstrap-p α 0.4071 ]0.1822,0.7996[  0.6173 

 β 2.3592 ]0.7648,4.7537[  3.9889 

Bootstrap-t α 0.4805 ]0.4183,0.5297[  0.1113 

 β 1.7708 ]0.1644,2.1451[  1.9808 

Bayes(MCMC( α 0.4571 ]0.2102,0.7893[  0.5792 

 β 2.7327 ]0.8078,6.6040[  5.7962 
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Table 3. Average values of the different estimators and the corresponding MSEs when α=0.2 and β=2 with prior 0. 

k n m Scheme 
MLE Bayes (MCMC) 

α β α β 

1 30 20 (10,019) 0.1895 1.6973 0.2091 1.9965 

    (0.0020) (0.5024) (0.0023) (0.1183) 

   (50,101,50) 0.1939 1.7403 0.2128 2.0435 

    (0.0022) (0.5044) (0.0023) (0.1409) 

   (190 10)  0.1901 1.7473 0.2088 2.0682 

    (0.0023) (0.5088) (0.0023) (0.1426) 

 40 20 (20,190) 0.1956 1.8347 0.2124 2.0783 

    (0.0020) (0.4570) (0.0022) (0.1166) 

   (201) 0.1968 1.7852 0.2149 2.0929 

    (0.0023) (0.4622) (0.0024) (0.1260) 

   (190,20) 0.1937 1.8539 0.2109 2.1565 

    (0.0024) (0.4635) (0.0024) (0.1290) 

 40 30 (10,290) 0.2011 1.7263 0.2218 2.0573 

    (0.0014) (0.4501) (0.0019) (0.1122) 

   (100,101,100) 0.1968 1.7792 0.2159 2.1032 

    (0.0015) (0.4553) (0.0019) (0.1380) 

   (290,10) 0.1960 1.7636 0.2151 2.1031 

    (0.0017) (0.4661) (0.0020) (0.1489) 

5 30 20 (10,019) 0.1842 1.8266 0.2039 2.1806 

    (0.0014) (0.4105) (0.0015) (0.1101) 

   (50,101,50) 0.1695 1.6741 0.1961 2.1105 

    (0.0023) (0.4111) (0.0017) (0.1294) 

   (190 10)  0.1798 1.9150 0.2028 2.3051 

    (0.0023) (0.4192) (0.0017) (0.1299) 

 40 20 (20,190) 0.1823 1.7755 0.2041 2.1658 

    (0.0013) (0.4088) (0.0015) (0.1034) 

   (201) 0.1792 1.8394 0.2035 2.2439 

    (0.0014) (0.4341) (0.0016) (0.1202) 

   (190,20) 0.1958 2.0664 0.2146 2.3470 

    (0.0015) (0.4372) (0.0016) (0.1362) 

 40 30 (10,290) 0.1878 1.7935 0.2136 2.2166 

    (0.0013) (0.4024) (0.0013) (0.1024) 

   (100,101,100) 0.1893 1.8323 0.2148 2.2486 

    (0.0018) (0.4035) (0.0020) (0.1277) 

   (290,10) 0.1855 1.8830 0.2136 2.3554 

    (0.0019) (0.4141) (0.0023) (0.1323) 

Note: Corresponding to each scheme, the first .figure represents the average estimates, with the corresponding MSEs reported below it in parentheses 
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Table 4. Average confidence interval, credible interval lengths and the coverage percentages when α=0.2 and β=2 with prior 0.  

k n m Scheme 
MLE Bayes (MCMC) 

α β α β 

1 30 20 (10,019) 0.2006 5.7986 0.1822 3.9207 

    (0.940) (0.955) (0.945) (0.989) 

   (50,101,50) 0.2221 5.3525 0.1860 3.8008 

    (0.950) (0.935) (0.965) (0.995) 

   (190 10)  0.2207 5.7264 0.1836 3.8847 

    (0.946) (0.953) (0.963) (0.998) 

 40 20 (20,190) 0.2079 5.0132 0.1853 3.711 

    (0.935) (0.975) (0.960) (0.977) 

   (201) 0.2441 5.3702 0.1916 3.7625 

    (0.950) (0.950) (0.960) (0.986) 

   (190,20) 0.2304 5.0202 0.1901 3.8721 

    (0.950) (0.968) (0.980) (0.996) 

 40 30 (10,290) 0.1745 4.8163 0.1589 3.6211 

    (0.965) (0.910) (0.960) (0.995) 

   (100,101,100) 0.1812 4.6804 0.1541 3.5855 

    (0.958) (0.944) (0.954) (0.966) 

   (290,10) 0.1806 4.7431 0.1534 3.6083 

    (0.949) (0.936) (0.947) (0.998) 

5 30 20 (10,019) 0.1955 5.5874 0.2136 3.6608 

    (0.953) (0.953) (0.986) (0.985) 

   (50,101,50) 0.2017 5.1599 0.2223 3.5583 

    (0.925) (0.915) (0.983) (0.982) 

   (190 10)  0.2255 5.6837 0.2509 3.5975 

    (0.967) (0.977) (0.985) (0.968) 

 40 20 (20,190) 0.3221 5.4337 0.2149 3.6517 

    (0.925) (0.955) (0.956) (0.969) 

   (201) 0.2822 5.055 0.2489 3.7647 

    (0.950) (0.972) (0.978) (0.979) 

   (190,20) 0.2449 3.0236 0.2906 3.973 

    (0.964) (0.947) (0.966) (0.999) 

 40 30 (10,290) 0.272 4.5144 0.1851 3.3324 

    (0.935) (0.935) (0.990) (0.993) 

   (100,101,100) 0.2839 4.6505 0.1937 3.2666 

    (0.910) (0.950) (0.970) (0.995) 

   (290,10) 0.2692 4.3072 0.2110 3.5387 

    (0.960) (0.995) (0.999) (0.998) 

Note: Corresponding to each scheme, the first figure represents the average confidence interval and credible interval lengths, with the corresponding 

coverage percentage reported below it in parentheses 
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Table 5. Average values of the different estimators and the corresponding MSEs when α=0.2 and β=2 with prior 1. 

k n m Scheme 
MLE Bayes (MCMC) 

α β α β 

1 30 20 (10,019) 0.1967 1.6867 0.2261 1.7885 

    (0.0020) (0.5045) (0.0020) (0.0891) 

   (50,101,50) 0.1952 1.7072 0.2237 1.8342 

    (0.0028) (0.5065) (0.0024) (0.0916) 

   (190 10)  0.1903 1.7339 0.2168 1.8397 

    (0.0029) (0.5381) (0.0028) (0.0959) 

 40 20 (20,190) 0.1964 1.7165 0.2253 1.8074 

    (0.0020) (0.5025) (0.0020) (0.0805) 

   (201) 0.1892 1.7508 0.2151 1.8572 

    (0.0021) (0.5110) (0.0022) (0.0823) 

   (190,20) 0.1930 1.8173 0.2173 1.9135 

    (0.0024) (0.5131) (0.0023) (0.0828) 

 40 30 (10,290) 0.1953 1.7073 0.2218 1.8229 

    (0.0016) (0.5020) (0.0020) (0.0795) 

   (100,101,100) 0.1947 1.7045 0.2207 1.8556 

    (0.0019) (0.5133) (0.0024) (0.0840) 

   (290,10) 0.1962 1.7664 0.2214 1.8831 

    (0.0019) (0.5433) (0.0025) (0.0842) 

5 30 20 (10,019) 0.1769 1.7423 0.2035 1.9583 

    (0.0016) (0.4610) (0.0017) (0.0521) 

   (50,101,50) 0.1765 1.7951 0.2023 1.9951 

    (0.0018) (0.4643) (0.0019) (0.0541) 

   (190 10)  0.1847 1.9712 0.2055 2.0934 

    (0.0027) (0.4782) (0.0019) (0.0544) 

 40 20 (20,190) 0.1829 1.7311 0.2114 1.9575 

    (0.0015) (0.4362) (0.0016) (0.0467) 

   (201) 0.1777 1.8226 0.2060 2.0529 

    (0.0022) (0.4405) (0.0019) (0.0471) 

   (190,20) 0.1964 2.0802 0.2145 2.1446 

    (0.0025) (0.4951) (0.0023) (0.0482) 

 40 30 (10,290) 0.1921 1.8746 0.2157 2.0519 

    (0.0014) (0.3738) (0.0016) (0.0457) 

   (100,101,100) 0.1962 1.9190 0.2196 2.0949 

    (0.0026) (0.3766) (0.0019) (0.0557) 

   (290,10) 0.1834 1.9266 0.2056 2.1311 

    (0.0027) (0.3881) (0.0020) (0.0571) 

Note: Corresponding to each scheme, the first figure represents the average estimates, with the corresponding MSEs reported below it in parentheses  
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Table 6. Average confidence interval, credible interval lengths and the coverage percentages when α=0.2 and β=2 with prior 1. 

k n m Scheme 
MLE Bayes (MCMC) 

α β α β 

1 30 20 (10,019) 0.2090 5.6309 0.1928 2.8472 

    (0.956) (0.940) (0.940) (0.980) 

   (50,101,50) 0.2244 5.3088 0.1917 2.8532 

    (0.955) (0.940) (0.970) (0.999) 

   (190 10)  0.2283 5.6503 0.1861 2.8797 

    (0.950) (0.940) (0.960) (0.998) 

 40 20 (20,190) 0.2090 5.6013 0.1922 2.8481 

    (0.945) (0.935) (0.930) (0.997) 

   (201) 0.2307 5.2472 0.1853 2.7931 

    (0.936) (0.933) (0.960) (0.996) 

   (190,20) 0.2729 5.0471 0.1908 2.9307 

    (0.936) (0.956) (0.973) (0.988) 

 40 30 (10,290) 0.1689 4.7923 0.1556 2.7418 

    (0.950) (0.930) (0.923) (0.979) 

   (100,101,100) 0.1780 4.4535 0.1548 2.6948 

    (0.933) (0.910) (0.936) (0.996) 

   (290,10) 0.1836 4.7391 0.1549 2.7433 

    (0.956) (0.956) (0.916) (0.996) 

5 30 20 (10,019) 0.3061 5.287 0.1971 2.8237 

    (0.903) (0.930) (0.980) (0.980) 

   (50,101,50) 0.3532 5.5953 0.2072 2.8136 

    (0.915) (0.955) (0.995) (0.997) 

   (190 10)  0.3953 5.1634 0.2261 2.0258 

    (0.955) (0.965) (0.974) (0.988) 

 40 20 (20,190) 0.3200 5.1844 0.2046 2.7733 

    (0.935) (0.940) (0.985) (0.986) 

   (201) 0.3791 5.0711 0.2247 2.8949 

    (0.970) (0.975) (0.999) (0.998) 

   (190,20) 0.3656 5.3245 0.2243 3.0930 

    (0.958) (0.969) (0.979) (0.968) 

 40 30 (10,290) 0.2824 4.7422 0.1762 2.6390 

    (0.945) (0.955) (0.980) (0.978) 

   (100,101,100) 0.3204 4.9262 0.1860 2.6212 

    (0.965) (0.950) (0.980) (0.969) 

   (290,10) 0.3036 4.4689 0.1859 2.7951 

    (0.940) (0.958) (0.985) (0.969) 

Note: Corresponding to each scheme, the first figure represents the average confidence interval and credible interval lengths, with the corresponding 

coverage percentage reported below it in parentheses. 



140 Mohamed Abdul Wahab Mahmoud et al.:  Bayesian Estimation Using MCMC Approach Based on  

Progressive First-Failure Censoring from Generalized Pareto Distribution 

Table 7. Average values of the different estimators and the corresponding MSEs when α=0.5 and β=1.5.  

K n m Scheme 
MLE MCMC (Prior 0) MCMC (Prior 1) 

α β α β α β 

1 30 20 (10,019) 0.5110 1.5646 0.7010 1.8306 0.7100 1.8202 

    (0.0244) (0.4233) (0.0780) (0.1365) (0.0822) (0.1231) 

   (50,101,50) 0.5321 1.6581 0.7074 1.9107 0.7187 1.8898 

    (0.0296) (0.4619) (0.0782) (0.1879) (0.0825) (0.1710) 

   (190 10)  0.4790 1.5166 0.6564 1.9154 0.6672 1.8928 

    (0.0298) (0.4693) (0.0783) (0.1991) (0.0828) (0.1721) 

 40 20 (20,190) 0.4989 1.5628 0.6842 1.8321 0.6938 1.7172 

    (0.0184) (0.3903) (0.0655) (0.1347) (0.0682) (0.1195) 

   (201) 0.5046 1.6074 0.6829 1.9441 0.6940 1.9187 

    (0.0213) (0.4165) (0.0683) (0.1779) (0.0688) (0.1303) 

   (190,20) 0.5030 1.6533 0.6719 1.8126 0.6828 1.7819 

    (0.0251) (0.4512) (0.0713) (0.2053) (0.0704) (0.2008) 

 40 30 (10,290) 0.5334 1.6461 0.6111 1.7531 0.7200 1.7135 

    (0.0182) (0.3901) (0.0647) (0.1294) (0.0667) (0.1141) 

   (100,101,100) 0.5091 1.5520 0.5928 1.6655 0.6015 1.6300 

    (0.0187) (0.3972) (0.0693) (0.1404) (0.0686) (0.1263) 

   (290,10) 0.5050 1.5900 0.6808 1.7100 0.6285 1.6691 

    (0.0188) (0.4035) (0.0701) (0.2086) (0.0687) (0.1962) 

5 30 20 (10,019) 0.4888 1.5914 0.6892 1.7787 0.6978 1.7403 

    (0.0181) (0.3900) (0.0495) (0.1270) (0.0521) (0.1134) 

   (50,101,50) 0.5112 1.6535 0.7151 1.7207 0.7226 1.6983 

    (0.0222) (0.3992) (0.0631) (0.1832) (0.0658) (0.1609) 

   (190 10)  0.5776 1.8224 0.7780 1.7063 0.7827 1.6520 

    (0.0247) (0.4264) (0.0676) (0.2001) (0.0682) (0.1966) 

 40 20 (20,190) 0.4792 1.5555 0.6102 1.6528 0.6004 1.5905 

    (0.0179) (0.3864) (0.0486) (0.1258) (0.0518) (0.1123) 

   (201) 0.5361 1.6995 0.7583 1.9808 0.7651 1.9368 

    (0.0203) (0.3951) (0.0492) (0.1561) (0.0544) (0.1256) 

   (190,20) 0.6044 1.8689 0.7064 1.6505 0.7102 1.6294 

    (0.0242) (0.4038) (0.0512) (0.1849) (0.0564) (0.1279) 

 40 30 (10,290) 0.5016 1.5883 0.7205 1.8074 0.725 1.7128 

    (0.0162) (0.3359) (0.0448) (0.1232) (0.0513) (0.1106) 

   (100,101,100) 0.5335 1.7277 0.7338 1.8238 0.7371 1.8749 

    (0.0223) (0.3593) (0.0486) (0.1306) (0.0597) (0.1216) 

   (290,10) 0.5708 1.7948 0.7852 1.8099 0.788 1.7991 

    (0.0232) (0.3849) (0.0492) (0.1655) (0.0606) (0.1476) 

Note: Corresponding to each scheme, the first figure represents the average estimates, with the corresponding MSEs reported below it in parentheses. 
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