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Abstract: Exact solution of an incompressible fluid of second order type by causing forced oscillations in the liquid of finite 

depth bounded by a porous bottom has been obtained in this paper. The results presented are in terms of non-dimensional 

elastic-viscosity parameter ( β ) which depends on the non-Newtonian coefficient and the frequency of excitation (σ ) of the 

external disturbance while considering the porosity (K) and magnetic parameter ( m ) of the medium into account. The flow 

parameters are found to be identical with that of Newtonian case as 0β → , 0m →  and K → ∞ . It is seen that the effect of 

elastico viscosity parameter, magnetic parameter and the porosity of the bounding surface has significant effect on the velocity 

parameter, phase parameter, skin friction and mass flow rate. Further, the nature of the paths of the fluid particles have also been 

obtained with reference to the elastico viscosity parameter, magnetic parameter and the porosity of the bounding surface. 
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1. Introduction 

When a conductive fluid moves through a magnetic field, 

an ionized gas is electrically conductive, and the fluid is 

influenced by the magnetic field. Natural convection and 

transfer of heat is of considerable interest in problems that 

arises in magneto hydrodynamic (MHD) especially in the 

technical field due to its frequent occurrence in industrial 

technology and geothermal applications. The applications are 

wide in variety of situations where the high–temperature 

plasmas are applicable in nuclear fusion energy conversion, 

liquid metal fluids, and (MHD) power generation systems. 

Further, in several problems related to geophysical, petroleum, 

chemical and biomechanical that are usually bounded by 

porous medium, the problem assumes greater significance. 

Convective boundary layer flows are often controlled by fluid 

suction or injection through a porous heated wall. This process 

can lead to enhancement of the heat transfer coefficient or 

cooling of the system. Due to several applications in the fields 

of geo physics, metallurgy, petroleum engineering, chemical 

engineering, composite metal engineering and heat 

exchanges, the problem of mass transfer and radiation effects 

are unsteady MHD flows. Free convective flow embedded in a 

porous medium with a heat generation or absorption assumes 

greater significant over the last two decades. Porous media has 

been the subject of considerable research activity in recent 

years because of its several important applications notably in 

the flow of oil through porous rock, the extraction of 

geothermal energy from the deep interior of the earth to the 

shallow layers, the evaluation of the capability of heat removal 

from particulate nuclear fuel debris that may result from a 

hypothetical accident in a nuclear reactor, the filtration of 

solids from liquids, flow of liquids through ion exchange beds, 

drug permeation through human skin, chemical reactor for 

economical separation or purification of mixtures and so on. 

In many chemical processing industries, slurry adheres to 

the reactor vessels and gets consolidated. As a result of this, 

the chemical compounds within the reactor vessel percolates 

through the boundaries causing loss of production and then 

consuming more reaction time. In view of such technological 

and industrial importance wherein the heat and mass transfer 

takes place in the chemical industry, the problem by 

considering the permeability of the bounding surfaces in the 

reactors attracted the attention of several investigators. An 
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important application is in the petroleum industry, where 

crude oil is tapped from natural underground reservoirs in 

which oil is entrapped. Since the flow behaviour of fluids in 

petroleum reservoir rock depends, to a large extent, on the 

properties of the rock, techniques that yield new or additional 

information on the characteristics of the rock would enhance 

the performance of the petroleum reservoirs. A related 

bio-mechanical application is the flow of fluids in the lungs, 

blood vessels, arteries and so on, where the fluid is bounded 

by two layers which are held together by a set of fairly 

regularly spaced tissues. 

Viscous fluid flow over wavy wall had attracted the 

attention of relatively few researchers although the analysis of 

such flows finds application in different areas, such as 

transpiration cooling of re-entry vehicles and rocket boosters, 

cross hatching on ablative surfaces and film vaporization in 

combustion chambers etc. Especially, where the heat and mass 

transfer takes place in the chemical processing industry, the 

problem by considering the permeability of the bounding 

surface in the reactors assumes greater significance. Many 

materials such as drilling muds, clay coatings and other 

suspensions, certain oils and greases, polymer melts, 

elastomers and many emulsions have been treated as 

non-Newtonian fluids. Because of the difficulty to suggest a 

single model, which exhibits all properties of non-Newtonian 

fluids, they cannot be described simply as Newtonian fluids 

and there has been much confusion over the classification of 

non-Newtonian fluids. However, non-Newtonian fluids may 

be classified as (i) fluids for which the shear stress depends 

only on the rate of shear; (ii) fluids for which the relation 

between shear stress and shear rate depends on time; (iii) the 

visco-elastic fluids, which possess both elastic and viscous 

properties. 

Because of the great diversity in the physical structure of 

non-Newtonian fluids, it is not possible to recommend a single 

constitutive equation as the equation for use in the cases 

described in (i)–(iii). For this reason, many non-Newtonian 

models or constitutive equations have been proposed and most 

of them are empirical or semi-empirical. For more general 

three dimensional representation, the method of continuum 

mechanics is needed [1]. Although many constitutive 

equations have been suggested, many questions are still 

unsolved. Some of the continuum models do not give 

satisfactory results in accordance with available experimental 

data. For this reason, in many practical applications, empirical 

or semi-empirical equations have been used. 

It has been shown that for many types of problems in which 

the flow is slow enough in the visco-elastic sense, the results 

given by Oldroyd’s constitutive equations will be substantially 

equal to those of the second or third order Rivilin–Ericksen 

constitutive equations [2]. Thus if this is the sense in which the 

solutions to which problems are to be interpreted, it would 

seem reasonable to use the second or third order constitutive 

equations in carrying out the calculations. This is particularly 

so in view of the fact that, the calculation will generally be still 

simpler. For this reason, in this paper, the second order fluid 

model is used. The constitutive equation for the fluids of 

second grade (or second order fluids) is a linear relationship 

between the stress, the first Rivlin-Ericksen tensor, its square 

and the second Rivlin–Ericksen tensor. The constitutive 

equation has three coefficients. There are some restrictions on 

these coefficients due to the Clausius–Duhem inequality and 

the assumption that the Helmholtz free energy is a minimum 

in equilibrium. A comprehensive discussion on the restrictions 

for these coefficients has been given in [3], [4]. One of these 

coefficients represents the viscosity coefficient in a way 

similar to that of a Newtonian fluid in the absence of the other 

two coefficients. The restrictions on these two coefficients 

have not been confirmed by experiments and the sign of these 

material moduli is the subject of much controversy [5]. The 

equation of the motion of incompressible second grade fluids, 

in general, is of higher order than the Navier–Stokes equation. 

The Navier-Stokes equation is second order partial differential 

equation, but the equation of motion of a second order fluid is 

a third order partial differential equation. A marked difference 

between the case of the Navier–Stokes theory and that for 

fluids of second grade is that ignoring the nonlinearity in the 

Navier–Stokes equation does not lower the order of the 

equation however, ignoring the higher order nonlinearities in 

the case of the second grade fluid, reduces the order of the 

equation. Exact solutions are very important for many reasons. 

They provide a standard for checking the accuracies of many 

approximate methods such as numerical and empirical. 

Although computer techniques make the complete numerical 

integration of the non-linear equations feasible, the accuracy 

of the results can be established by a comparison with an exact 

solution. Many attempts to collect the exact solution of the 

nonlinear equations for unsteady flow of second grade fluid 

have been by different researcher for different geometries. 

In view of several industrial and technological 

importance,[6] studied the problem of the exact solutions of 

two dimensional flows of a second order incompressible fluid 

by considering the rigid boundaries. Later, a linear analysis of 

the compressible boundary layer flow over a wall was 

presented by [7]. Subsequently, [8] studied the problem of 

Rayleigh for wavy wall while [9] examined the effect of small 

amplitude wall waviness upon the stability of the laminar 

boundary layer. Further, the problem of free convective heat 

transfer in a viscous incompressible fluid confined between 

vertical wavy wall and a particle flat wall was examined by 

[10], [11]. Later, [12] studied the free convective flow of a 

viscous incompressible fluid in porous medium between two 

long vertical wavy walls. Subsequently, [13] had examined the 

problem of MHD flow with slip effects and temperature 

dependent heat source in a viscous incompressible fluid 

confined between a long vertical wall and a parallel flat plate. 

Later, [14] examined the problem of elastico-viscous fluid of 

second order type where the bounding surface is porous and 

subjected to sinusoidal disturbances. Subsequently, [21], [22] 

studied the unsteady poiseuille flow of second order fluid in a 

tube of elliptical cross section and uniform cross section. [15] 

studied elliptical cross section on the porous boundary. Later, 

[23] had examined the problem of unsteady flow of an 

incompressible viscous electrically conducting fluid in the 
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tube of elliptical cross section under the influence of the 

magnetic field. Subsequently, [24] studied the unsteady flow 

of an incompressible viscous fluid in a tube of spherical cross 

section on a porous boundary. Recently, [25], [26] had 

examined the problem of unsteady MHD flow of elastico–

viscous incompressible fluid through a porous media between 

two parallel plates and spherical cross section under the 

influence of magnetic field. 

In all above investigations, the fluid under consideration 

was viscous incompressible fluid and one of the bounding 

surfaces has a wavy character or bounding surface subjected 

to sinusoidal disturbances. In all of the above situations, not 

much of attention has been paid on the study of unsteady flow 

of second order fluid in an infinitely long tube of circular, 

elliptical or spherical cross section on the porous boundary. 

Therefore, an attempt has been made to study the effects of the 

transverse magnetic field on the flow of incompressible 

viscous electrically conducting fluid of second order type 

creating forced oscillations on the porous boundary. Hence the 

present investigation is extended work of [27], the 

mathematical solution is obtained for skin friction, mass flow 

rate and traced the paths of the fluid particles. In this aspect is 

also studied and during the course of discussion both non–

magnetic and magnetic cases are compared. The results are 

expressed in terms of a non-dimensional porosity parameter, 

which depends on the non-Newtonian coefficient. It is noticed 

that the flow properties are identical with those in the 

Newtonian case ( 0, Kβ = → ∞  and 0m → ). 

2. Mathematical Formulation of the 

Problem 

In the sense of Noll [16], a simple material is a substance for 

which stress can be determined with entire knowledge of the 

history of the strain. This is called simple fluid, if it has 

property that at all local states, with the same mass density, are 

intrinsically equal in response, with all observable differences 

in response being due to definite differences in the history. For 

any given history ( )g s , a retarded history ( )g sψ  can be 

defined as: 

( ) ( ) :g s g sψ ψ=  0 .s≤ ≤ ∞  0 1ψ≤ ≤                  (1) 

ψ  being termed as a retardation factor. Assuming that the 

stress is more sensitive to recent deformation than to the 

deformations at distant past, it has been established by 

Coleman and Noll [17] that the theory of simple fluids yields 

the theory of perfect fluids as 0ψ →  and that of Newtonian 

Fluids as a correction (up to the order of ψ ) to the theory of 

the perfect fluids. Neglecting all the terms of the order higher 

than two in ψ , we have incompressible elastico viscous fluid 

of second order type whose constitutive relation is governed 

by: 

2(1) (2) (1)
1 2 3S PI E E Eϕ ϕ ϕ= − + + +                    (2) 

where 

1
, ,ij i j j iE U U= +                                    (3) 

and 

2
, , , ,2ij i j j i m i m jE A A U U= + +                              (4) 

In the above equations, S is the stress-tensor, iU  and iA  are 

the components of velocity and acceleration in the direction of 

the thi  coordinate iX  while P  is indeterminate hydrostatic 

pressure. The coefficients 1 2,ϕ ϕ  and 3ϕ  are material 

constants. The constitutive relation for general Rivlin–

Ericksen [18] fluid also reduces to eqn (2) when the squares 

and higher orders of 2E  are neglected, with the coefficients 

being constants. Also, the non-Newtonian models considered 

by Reiner [19] could be obtained from eqn (2) when 2 0ϕ =  

and naming 3ϕ  as the coefficient of cross viscosity. With 

reference to the Rivlin-Ericksen fluids, 2ϕ  may be called as 

the coefficient of elastico viscosity. 

It has been reported that a solution of poly-iso-butylene in 

cetane behaves as a second order fluid. In many of the 

chemical processing industries, slurry adheres to the reactor 

vessels and gets consolidated. As a result of this, the chemical 

compounds within the reactor vessel percolates through the 

boundaries causing loss of production and consuming more 

reaction time. In view of such technological and industrial 

importance wherein the heat and mass transfer takes place in 

the chemical industry, the problem of considering the 

permeability of the bounding surfaces in the reactors attracts 

the attention of several investigators. 

The aim of the present paper is to study a class of exact 

solutions for the flow of incompressible fluid of second order 

type by taking into account the porosity factor of the bounding 

surfaces and comparing the results with those in the 

Newtonian case. We study the disturbance due to forced 

oscillations of a liquid of finite depth bounded by a porous 

bottom. The results are expressed in terms of a 

non-dimensional porosity parameter K, which depends on the 

non-Newtonian coefficient 2ϕ  and the frequency of excitation 

σ . It is noticed that the flow properties are identical with 

those in the Newtonian case (K= ∞ ). 

If V 1 2 3( , , )U U U  is the velocity component and F

( , , )x y zF F F  are the body forces acting on the system, then the 

equation of motion in X, Y and Z directions are given by  

1 XX XY XZ
X

DU S S S
F

DT X Y Z
ρ ρ ∂ ∂ ∂

= + + +
∂ ∂ ∂

               (5) 

2 YX YY YZ
Y

DU S S S
F

DT X Y Z
ρ ρ ∂ ∂ ∂

= + + +
∂ ∂ ∂

                 (6) 

3 ZX ZY ZZ
Z

DU S S S
F

DT X Y Z
ρ ρ ∂ ∂ ∂

= + + +
∂ ∂ ∂

                 (7) 

where .
D V

V V
DT T

∂= + ∇
∂
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If the bounding surface is porous, then the rate of 

percolation of the fluid is directly proportional to the cross 

sectional area of the filter bed and the total force, say the sum 

of the pressure gradient and the gravity force. In the sense of 

Darcy [20] 

1 2

1 2

( )
P P

q CA G
H H

ρ−
= +

−
                      (8) 

where A is the cross sectional area of the filter bed, G is the 

gravitational force and 
k

C
µ

=  in which k  is the permeability 

of the material and µ  is the coefficient of viscosity and q  is 

the flux of the fluid. Since this law is empirical, therefore to 

generalize this result we must have the relation for variable 

thickness of the porous material. A straight forward 

generalization of the eqn (8) yields 

[ ]
k

V P Gρ η
µ

= − ∇ +                            (9) 

where V  is the velocity vector and η  is the unit vector along 

the gravitational force taken in the-ve direction. If any other 

external forces are acting on the system, instead of 

gravitational force, then we have 

[ ]
k

V P Fρ
µ

= − ∇ −                           (10) 

In the absence of external forces, 
k

V P
µ

= − ∇  which gives 

P V
k

µ∇ = −  

Therefore, the net resulting equation (in the dimensional 

form) of motions in the X, Y and Z directions are 

1
1

XX XY XZ
X

DU S S S
F U

DT X Y Z k

µρ ρ ∂ ∂ ∂
= + + + −

∂ ∂ ∂
      (11) 

2
2

YX YY YZ
Y

DU S S S
F U

DT X Y Z k

µρ ρ ∂ ∂ ∂
= + + + −

∂ ∂ ∂
       (12) 

3
3

ZX ZY ZZ
Z

DU S S S
F U

DT X Y Z k

µρ ρ ∂ ∂ ∂
= + + + −

∂ ∂ ∂
       (13) 

Introducing the following non dimensional variables as: 

1 i
i

u
U

L

ϕ
ρ

=  
2

1

L t
T

ρ
ϕ

=  
2

2 Lϕ ρ β=  

2
1

2

p
P

L

ϕ
ρ

=  

i
i

X
x

L
=  i

i

Y
y

L
=  

2
3 cLϕ ρ υ=  

2
1

2 3

i
i

a
A

L

ϕ
ρ

=  

2
1 ,

, 2

i j

i j

s
S

L

ϕ
ρ

=  

(1)
1 ,(1)

, 2

i j

i j

e
E

L

ϕ
ρ

=  

2 (2)
1 ,(2)

, 2 4

i j

i j

e
E

L

ϕ
ρ

=  
2L K

k
ρ

=

2
1

2 3i iF f
L

ϕ
ρ

=  1ϕµ
ρ

=  1vV
L

ϕ
ρ

=  1

2

m
M

L

ϕ
=  

where T  is the (dimensional) time variable, and ρ  the mass 

density and L  a characteristic length. 

The non dimensional form of Eq (10) will now be: 

( )v K p f= − ∇ −                                    (14) 

In the absence of external forces v K p= − ∇  which yields 

v
p

K
∇ = −                                  (15) 

We consider a class of plane flows given by the velocity 

components 

1 ( , )u u y t=  and 2 0u =                    (16) 

in the directions of rectangular Cartesian coordinates x and y. 

The velocity field given by eq.(16) identically satisfies the 

incompressibility condition. The stress can now be obtained in 

a non-dimensional form as: 

2
( )xx c

u
s p

y
υ ∂= − +

∂
                            (17) 

2
( 2 )( )yy c

u
s p

y
υ β ∂= − + +

∂
                     (18) 

( )xy

u u
s

y y t
β∂ ∂ ∂= +

∂ ∂ ∂
                        (19) 

In view of the above, the equation of motion in the  

x -direction is given by: 

2 2

2 2

1
( ) ( ) x

u p u u
m u f

t x t Ky y
β∂ ∂ ∂ ∂ ∂= − + + − + +

∂ ∂ ∂∂ ∂
     (20) 

where xf  is the external force acting along the x-direction. 

The equation of motion in the y -direction in the absence of 

any external forces is given by: 

2
0 (2 ) ( )c

p u

y y y
β υ∂ ∂ ∂= − + +

∂ ∂ ∂
              (21) 

The pressure gradient in eqn (20) can only be a function of 

time for this flow. 

Using Eq. (20) if 

( )
p

t
x

ξ∂− =
∂

 

0 ( ) 0

( )

p x

p t

p t xξ∂ = − ∂∫ ∫  
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0 ( ) ( )p p t t xξ= −                              (22) 

where 0 ( )p t  is the initial pressure. 

From Eq (21) 

2
(2 ) ( )c

p u

y y y
β υ∂ ∂ ∂= +

∂ ∂ ∂
 

which on integration w.r.t y yields: 

2
(2 )( )c

u
p

y
β υ ∂= + +

∂
 a function of x  say ( )xλ     (23) 

Using Eq.(22) and Eq.(23) 

2
0( ) ( ) ( ) (2 )( )c

u
x p t t

y
λ ξ β υ ∂= − − +

∂
              (24) 

Using Eq.(24) in Eq.(23) 

0 ( ) ( )p p t t xξ= −                                (25) 

Considering ( ) 0tξ = , and using eq.(25) in Eq (20) the flow 

characterized by the velocity is given by: 

2 2

2 2

1
( ) ( ) x

u u u
m u f

t t Ky y
β∂ ∂ ∂ ∂= + − + +

∂ ∂∂ ∂
            (26) 

where K is the non-dimensional porosity constant and xf  is 

the external force (non-dimensional) acting along the 

x-direction. It may be noted that the presence of β  changes 

the order of differential from two to three. 

3. Forced Oscillations of a Liquid of 

Finite Depth Bounded by Rigid Bottom 

Let the fluid of the depth  bounded by the rigid bottom 

 be influenced by the (non-dimensional) external force 

 in the  direction. A magnetic field of constant 

strength is supposed to be applied parallel to y direction. The 

induced magnetic field is negligible as comparing with 

applied magnetic field, the flow is laminar it is valid for 

magnetic Reynolds number less than unity 

In such a situation eqn (26) will now get modified as: 

2 2

2 2

1
( ) ( ) i tu u u

m u Fe
t t Ky y

σβ∂ ∂ ∂ ∂= + − + +
∂ ∂∂ ∂

             (27) 

with the no-slip condition at the bottom 

                                (28) 

and the free surface condition on the top 

at                            (29) 

Assuming the trial solution as: 

                         (30) 

                (31) 

Where 

2

2

2 2

1 1 1
( ) ( ( ) ( ( ))

1 (1 )

i m m i m
K K Kp
i

σ βσ σ βσ

βσ β σ

+ + + + + − +
= =

+ +
 (32) 

When expressed in polar form 

              (33) 

where, 

2 2 1/4

2 2

1 1
[( ( )) ( ( )]

(1 )

m m
K Kr

βσ σ βσ

β σ

+ + + − +
=

+
, 

 and 

21
( )

1
( )

m
KQ

m
K

βσ

σ βσ

+ +
=

− +
 

Also the conditions satisfied by are 

                         (34) 

This yields the solution: 

        (35) 

In view of eqn (30) 

     (36) 

hence, 

2 2

[ ]
( , )

1
[( ) ][cosh(2 ) cos(2 )]

F A B
u y t

m ah bh
K

σ

−=
+ + +

     (37) 

Where 

1
(cos ( ) sin ){cosh 2 cos 2

cosh (2 ) cos (cosh )cos (2 )}

t m t ah bh
A K

a h y by ay b h y

σ σ σ + + + − =
  − − − 

  (38) 

1
(sin ( ) cos ){sinh (2 )

sin sinh sin (2 )}

t m t a h y
B K

by ay b h y

σ σ σ + − − =
  + − 

     (39) 

,Lh

,0=y

tiFe σ x

0),0( =tu

,0=xys hy =

tieyFftyu σ)(),( =

)1(

1
)()( 2''

βσi
yfpyf

+
−=−

))
24

sin()
24

(cos(
επεπ −+−= irp

)(tan 1 Q−=ε

)(yf

,0)0( =f 0)(' =hf








 −−
+

=
ph

yhp

ip
yf

cosh

)(cosh
1

)1(

1
)(

2 βσ








 −−
+

=
ph

yhp

ip

Fe
RPtyu

ti

cosh

)(cosh
1

)1(
),(

2 βσ

σ
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on , the velocity is: 

1 1

2 2

[ ]
( , )

1
[( ) ][cosh(2 ) cos(2 )]

F A B
u h t

m ah bh
K

σ

−
=

+ + +      (40) 

where 

1

1
(cos ( ) sin ){cosh 2

cos 2 2cosh cos }

t m t ah
A K

bh ah bh

σ σ σ + + =
  + − 

           (41) 

1

1
(sin ( ) cos ){2sinh sin }B t m t ah bh

K
σ σ σ = + − 

 
     (42) 

The paths of particles may be obtained by integrating eqn 

(36) with respect to t 

    (43) 

the constant of integration may be conveniently taken to be 

zero for particles starting from the same point (taken as 

origin ) on the bottom 

For the case of large , 

cos( )2 2
4 2

1
(cos ( ) sin )

1
( ) .sin sin( )

4 2

yr

t m t
KF

u

m e yr t
K

π ε

σ σ σ

π εσ σ
− −

 + + 
 =
  + + + − −  

  

 (44) 

which for , reduces to 

2 2

1
cos ( ) sin

1
( )

F
u t m t

K
m

K

σ σ σ
σ

 ≈ + + 
 + +

    (45) 

where  

The paths of the particles in this case are given by 

cos( )2 2
4 2

1 1
(sin ( ) sin )

1
( ) .cos cos( )

4 2

yr

t m t
KF

x

m e yr t
K

π ε

σ σ
σ

π εσ σ
− −

 + − 
 =
  + + + − −  

  

 (46) 

which for , 

2 2

sin 1
( ) cos

1
( )

F t
x m t

K
m

K

σ σ
σσ

 ≈ + − 
 + +

         (47) 

2 21
( )

sin 1
( ) cos

RPx m
K

x
t

F m t
K

σ

σ σ
σ

∗

 + + 
 =

 + − 
 

              (48) 

1 2 2 2
12 2 4
4
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Phase parameter in this case is given by: 

                   (50) 

The skin-frication is given by: 

Skin-frication 

2 2

2
[ ]

u u u

y y t y
β∂ ∂ ∂+ −

∂ ∂ ∂ ∂
at 0.y =  

The mass flow rate is given by integrating the equation (36). 

Mass flow rate=

1

0

( , )u y t dy∫  

4. Conclusion 

In this paper obtained expression for skin friction and mass 

flow rate along with paths of the fluid particles. As , 

0m →  the results obtained for the velocity field, paths of the 

particles are in agreement with those of Pattabhi 

Ramacharyulu [6]. In the absence of external forces, the 

results coincide with that of Ramana Murthy and Kulkarni 

[14]. The case of Newtonian fluid can be realized as 0β →  

0K → & 0m → . 
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