

American Journal of Software Engineering and Applications
2015; 4(2): 35-41
Published online April 28, 2015 (http://www.sciencepublishinggroup.com/j/ajsea)
doi: 10.11648/j.ajsea.20150402.12
ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Comparisons Between MongoDB and MS-SQL Databases
on the TWC Website

Chieh Ming Wu
1
, Yin Fu Huang

2
, John Lee

3

1Dept. of Computer Science, Taiwan Water Corporation, Taichung City, Taiwan
2School of Computer Science & Information Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan
3Dept. of Sales, Formula Chemicals Corporation, New Taipei City, Shulin District, Taiwan

Email address:
g9210822@gmail.com (C. M. Wu), huangyf@yuntech.edu.tw (Y. F. Huang), jtlinternational@hotmail.com (J. Lee)

To cite this article:
Chieh Ming Wu, Yin Fu Huang, John Lee. Comparisons between MongoDB and MS-SQL Databases on the TWC Website. American

Journal of Software Engineering and Applications. Vol. 4, No. 3, 2015, pp. 35-41. doi: 10.11648/j.ajsea.20150402.12

Abstract: Owing to the huge amount of data in websites to be analysed, web innovative services are required to support

them with high scalability and availability. The main reason of using NoSQL databases is for considering the huge amount of

data and expressing large-scale distributed computations using Map-Reduce techniques. To enhance the service quality of

customers and solve the problems of the huge amount of data existing in the websites such as Facebook, Google, and Twitter,

the relational database technology was gradually replaced with the NoSQL database to improve the performance and expansion

elasticity in recent years. In this paper, we compare both NoSQL MongoDB and MS-SQL databases, and discuss the

effectiveness of the inquiry. In addition, relational database cluster systems often require larger server efficiency and capacity

to be competent, but it incurs cost problems. On the other hand, using NoSQL database can easily expand the capacity without

any extra costs. Through the experiments, it shows that NoSQL MongoDB is about ten times efficient for reading and writing

than MS-SQL database. This verifies that the NoSQL database technology is quite a feasible option to be used in the future.

Keywords: NoSQL, MS-SQL, MongoDB, Relational Database

1. Introduction

The term "NoSQL" first made its appearance by Carlo

Strozzi in the late 90s as the name of an open-source

relational database and there is no relationship between and

NoSQL currently in use. The usage of "NoSQL" that we

recognize today traces back to a meetup on June 11, 2009 in

San Francisco organized by Johan Oskarsson, a software

developer based in London. They want to organize a

discussion of the different ways of data storage, that can

make these people interested in brainstorming together,

"NoSQL" name eventually provided by Eric Evans made a

name for this party [9].

NoSQL is a non-relational database management systems,

it really means "Not Only SQL" and significant difference

from traditional relational database management systems

(RDBMS) in some ways. It is designed for distributed data

stores where very large scale of data storing needs. The data

object model may not require fixed schema, avoid join

operations and typically scale horizontally. In other word, we

can use both SQL and NoSQL database to achieve optimal

results. For example, we can use NoSQL database to store

huge amounts of unstructured data and store structured data

using SQL database, so that can make good use of SQL

syntax.

The main reason we have chosen MongoDB to do in this

paper is that MongoDB is a document-oriented database and

it uses JSON objects for data storing. In the Hadoop

platform, regardless of the huge or small amount of data, all

can be effective by management. If it’s a small amount of

data, then the performance of a single node has faster

performance than in a multi-node cluster, and vice versa,

which means that we must be manually set to one or more

nodes in the cluster. MongoDB is stored in JSON format in

the database, including tables are called collections and rows

of JSON objects are stored as documents, so we can use

MongoDB to store structured data, MongoDB also supports

query operation for database, so for the relation database

management system has a better alternative [7].

This paper uses MongoDB to store website message and

implement the user interface. Finally, we compare the

reading and writing performance between NoSQL MongoDB

and MS-SQL, and found the NoSQL MongoDB is faster

36 Chieh Ming Wu et al.: Comparisons between MongoDB and MS-SQL Databases on the TWC Website

(efficient) than MS-SQL in speed through the experiment

data.

2. Related Work

Data aggregation is one of the important functions used in

the database, especially in the face of business intelligence

(such as ETL, OLAP) and Data Mining applications. In

relational database, aggregation is used for more in-depth

analysis in visualizing data. However, it is very difficult for

the memory consumption on the huge amount of data and the

calculation time [9].

As in [1], the authors use the files in the NoSQL

MongoDB database [3], using its MapReduce algorithm to

assist in processing large amounts of data. MapReduce [2] is

a very popular program mode; 2004 Google use it to manage

large amounts of data. This model has two primitive

functions: Map and Reduce. Map is a function, and the value

of the input is a single aggregation, while the value of the

output is a key-value pairs. These applications are

independent of each other, so you can build efficient and safe

Map tasks that are parallelized operations on each node.

MongoDB can store huge amount of website information,

and these messages can be unstructured. Compared to the

relational database in the practical applications, MongoDB is

more flexible. Same as the relational database, MongoDB

entity may have multiple databases and for each database can

have multiple collections. There is a big challenge for

traditional relational database in face the rapid development

of internet web 2.0 technologies. In [4], the authors propose

the MongoDB Auto-Sharding architecture in order to

response to the rapid development of internet web 2.0

technology in the cloud environment. The Auto-Sharding

main objective is that it does not require a larger or stronger

machine and is able to take responsibility for split data on

distribution and automatic balancing to store more data and

handle more load. They propose a FODO algorithm to

improve the balance of the original algorithm so you can

balance between effective data server and enhance the cluster

effectiveness of parallel reading and writing.

In [10], the authors propose a mechanism for automatic

load balancing MongoDB, and using heat-based automatic

load balancing mechanism to reduce costs. Some studies

have proposed a NoSQL MongoDB allow seamless support

for JDBC SQL on the MongoDB database queries, and

provide a virtual architecture allowing users to query and

merge information from NoSQL and RDBMS. The main

approach is to convert a single SQL query syntax to the APIs

on NoSQL [5]. There is research study parsing LINQ query

into MongoDB collection and rewrites them for MongoDB

API format. The rewritten query execution on MongoDB and

the returned results are converted to in-memory data

structure, and then processed by JSINQ, reached the capacity

by query MongoDB with LINQ [6]. Some studies explore the

MongoDB data insertion time performance, in [7], the

authors point out that both in writing or reading on the job,

MongoDB performance come much better than MySQL.

3. Methods

3.1. Motivation

Because of the rapid growth rate of the huge amount of

data in web application, the traditional RDBMS cannot be

applied for several GB of data growth, and therefore NoSQL

has been used to solving RDBMS Problem when maxed

above limit. There are many management information

systems in Taiwan Water Corporation (TWC). Some systems

will also face the problem of huge amount of data bursts.

NoSQL provides a much more elastic, schemaless data model

that suitable maps to an application’s data organization and

simplifies the interaction between the application and the

database resulting in less code to write, debug, and maintain.

That is why we choose the best NoSQL solutions for this job.

3.2. Background

Learn MongoDB can help us to manage the huge amounts

of data from a web application; a document-oriented

database. We also found the MongoDB is indeed a reliable

and efficient system. MongoDB allows almost unlimited

horizontal expansion. This paper uses JAVA to deal with

JSON file that is language-independent configuration files.

To process records in MongoDB is simpler than in RDBMS

and more flexible. MongoDB is very powerful and use the

document to the basic unit of database, and it is a collection

of schema-free database. An independent MongoDB entity

can manage multiple databases and it has a powerful

JavaScript command line interface.

Fig. 1. System Framework.

 American Journal of Software Engineering and Applications 2015; 4(2): 35-41 37

This paper uses of JAVA programming language to read

the related messages from the website in TWC, and insert the

messages into the MongoDB database to further implement

the relevant data processing functions, such as insert、query、
delete and update functions. Fig.1 uses the JAVA JDBC

DRIVER to capture the data from TWC website, using the

JAVA DRIVER and MongoDB API to insert data into

MongoDB database and implement various functions. Fig.2

shows the insert、update and delete functions by use JAVA

syntax.

Fig. 2. The insert delete update function for JAVA.

3.3. Query

MongoDB provides find and findOne function to perform

the ad hoc query in the database. We can use $lt, $lte, $gt,

$gte comparison operator to do the scope of the query. It may

also use $OR, $NOT. etc to enhance criteria query. Fig.3

shows use of $OR to query the water suspension number

and/or reason and range of influence, and as long as one of

the inputs meet the conditions, you can find the relevant

information.

Fig. 3. Using $OR condition to query.

3.4. Indexing

Like a book’s index that allows us to become more

efficient in querying instead of looking through the whole

book. Indexing database is to create an entry point of a query.

For example, you will often query the user name in the

database, so there is necessary to build an index on the key of

user name to speed up queries. The index of MongoDB and

traditional relational database is almost the same (query

optimization; index tuning, etc.) which requires some skills

to do. This generates the command for this query as follows.

>db.people.find({"username":"wjamin"})

We can create an index based on the above query of the

key (shown below).

>db.people.ensureIndex({"username":1})

The index needs to be set only once per collection. If you

try to establish the same index again, nothing will happen.

Indexes in MongoDB make queries run faster and more

efficiently. However, indexes have their cost: for every write

includes insert, update, or delete will take longer for every

index you add. This is because MongoDB has to update all

your indexes whenever your data changes, as well as the

document itself. Thus, MongoDB limits to build 64 indexes

per collection. As shown in Fig.4, we have the username

index, but the server have to scan all the collection, then it

can find the date. Hence, it is very time consuming for a large

collection. For example, the index on "username" wouldn’t

help much for this sort:

>db.people.find({"date":date1}).sort({"date":1,

"username":1})

So we should be indexed on the date and the username.

>db.people.ensureIndex({" date":1, "username":1})

38 Chieh Ming Wu et al.: Comparisons between MongoDB and MS-SQL Databases on the TWC Website

Fig. 4. Compound query results with increasing/decreasing sorting.

3.5. MapReduce

MongoDB provides aggregation tools in several basic

query functions. These tools starts from simple task of

calculating the number of documents to complex data

analysis. MongoDB provide group function which allows us

to perform more complex aggregation (similar to SQL’s

GROUP BY). In addition, the MapReduce functions are

super useful in the aggregation tool and uses JavaScript as

its "query language" so it can express arbitrarily complex

logic. MapReduce is an aggregation method, which can be

easily on multiple servers in parallel operation. The

problem will be decomposition by different nodes to solve.

When all the solutions return after the completion of the

node, the answers will be merged into one complete answer

[3].

MapReduce uses the map and reduce. With map being a

kind of corresponding relation, it will correspond to the

collection of each document. A little like separating into

groups. The reduce will use the map list for induction, until

the list of each key reduces it to a single element. This

element is returned to the shuffle step until each key has a

list containing a single value. In the map corresponding to

use a special emit function to return values, emit function

give MapReduce a key and a value. We use average water

quality of purification plant in Taiwan Water Corporation

counties as an example to illustrate how to use the powerful

MapReduce functions.

Fig. 5. The average water quality in the JSON format.

As shown in Fig.5, this is an average water quality data.

For the convenience of description, we only input partial data

and use the TAICHUNG city, KEELUNG city and

KAOHSIUNG city as the key values. We want to get the

average value of water quality in various PH and

CHLORINE per county, and with the key values of PH and

CHLORINE.

Fig. 6. Calculate the average water quality using the MapReduce function.

Such as Fig.6, in the Map function, that emit gives

MapReduce a key like the one used by group and a value in

the collection. In this case, we emit a count and some items

of how many times a given key appeared in the document.

The map function uses an emit function to return values that

 American Journal of Software Engineering and Applications 2015; 4(2): 35-41 39

we want to process later.

> map=function() {for (var

idx=0;idx<this.waterworks.length;idx++){emit(this.area,{cou

nt: 1, chlorineV:

this.waterworks[idx].chlorine,PHV:this.waterworks[idx].PH}

)}};

Now we have little documents that associated with a key

from the collection. An array of one or more of these

documents will be passed to the reduce function. The reduce

function is passed two arguments:key, which is the first

argument from emit, and an array of one or more documents

that were emitted for that key:

>Reduce=function(key, values) {var reduced = {count:0,

C:0, P:0}; values.forEach(function(val) {reduced.C +=

val.chlorineV; reduced.P += val.PHV; reduced.count +=

val.count; });return reduced;}

We use the "finalize" function to send reduce’s output to

calculate their average value:

>Finalize=function(key, reduced) {reduced.avgchlorine =

reduced.C reduced.count;reduced.avgPH = reduced.P

reduced.count;return reduced;}

The result shown in Fig.7, which is grouped by counties

respectively and calculating the average value. The value of

"count" is the number of water purification plant. The symbol

"C" is the sum of residual chlorine effectively; "P" is the sum

of PH; "avgchlorine" is the average residual chlorine

effectively; and "avgPH" is the average PH in the

corresponding county city.

Fig. 7. The execution result of MapReduce Function.

4. Experimental Results

4.1. Experimental Environment and Data Sources

In this section, we evaluate the performances on a ASUS

PC with Intel® Core™2 Quad CPU 2.5GHZ and 2GB main

memory running Windows 7 enterprise. All the experimental

data were generated randomly and stored on a local 200GB

Disk. We also install the MongoDB 2.6.3 、SQL Server 2005

Express and Eclipse IDE for Java Developers. The version is

Juno Service Release 1, the data source comes from the TWC

website.

4.2. Experimental Analysis

In this paper, we use Java language to develop SQL Server

and MongoDB algorithm in the Eclipse integrated

environment. Fig.8 compares the efficiency of data written

between MS-SQL and MongoDB under the different

operation times. Through the experiments under the indexed

condition, MongoDB shows itself to be nearly 10 times faster

than MS-SQL in writing ability.

In Fig.9, through experiment under the indexed condition

and the different operation frequency, the ability to read data

in MongoDB is nearly 10 times faster than MS-SQL.

In Fig.10 and Fig.11, we have found that under the

1,000,000 operating frequency, whether MS-SQL or

MongoDB, the writing performance is far better than reading.

Through the experiments, we have found the performance of

writing is 3-4 times faster than reading.

Fig. 8. Compare the efficiency between MS-SQL and MongoDB on writing.

Fig. 9. MS-SQL and MongoDB performance comparison on reading.

40 Chieh Ming Wu et al.: Comparisons between MongoDB and MS-SQL Databases on the TWC Website

Fig. 10. MS-SQL performance comparison on reading writing.

Fig. 11. MongoDB performance comparison on reading/writing.

Fig. 12. The influence of search efficiency in indexing.

MongoDB insert or search for information is very fast.

And the write performance of MongoDB or MS-SQL is

better than reading efficiency. In Fig.12, under the indexed

condition, the performance of searching is naturally better,

especially in the MongoDB database.

In experiments using multithreading way to

simultaneously read and write data to calculate their literacy

effectiveness (whether it is reading or writing), Fig.13 shows

that MongoDB in execution is still more efficient than MS-

SQL. The experiment also found that MongoDB in a multi-

threaded execution will remain stable. However, MS-SQL

thread on Thread10 spends a considerable amount of time

when writing, resulting in very inconsistent situations. Fig.14

effectively expresses the Thread10 exception; the maximum

Y-axis set to only 100,000 in order to effectively reflect their

differences.

Fig. 13. MongoDB multithreading read write performance.

Fig. 14. MS-SQL multithreading read write performance.

 American Journal of Software Engineering and Applications 2015; 4(2): 35-41 41

5. Conclusions and Future Work

This paper mainly discusses the effectiveness of NoSQL;

using the document-oriented NoSQL MongoDB database

application to operate website message in Taiwan Water

Corporation. We also use the open data of average water

quality from the Taiwan Water Corporation website to

illustrate MapReduce example.

We experimented various practical ways in MongoDB and

use JAVA program to implement the task. In addition to the

practical solution that MongoDB offers, it also has most of

the internet application functions like index, replication,

sharing, rich query syntax, and super elastic data model. We

also compare the performance between MongoDB and MS-

SQL. The results confirm the NoSQL MongoDB does have a

better efficiency than MS-SQL.

Due to the popularity of the big data, the future trend for

NoSQL will be based on integration. This integration will

take place among the different varieties of NoSQL

technologies and between SQL and NoSQL options. The

convenience and the effectiveness of that integration will

determine the big data applications in the enterprises (not just

NoSQL technology).

References

[1] Bonnet, L.;Laurent, A.;Sala, M.;Laurent, B., REDUCE, YOU
SAY: What NoSQL can do for Data Aggregation and BI in
Large Repositories, 22nd International Workshop on Database
and Expert Systems Applications (DEXA), pp. 483-488, 2011.

[2] J. Dean, S. Ghemawat. Mapreduce: simplified data processing
on large clusters, Commun. ACM, pp.107-113, 2008.

[3] Kristina Chodorow & Michael Dirolf, MongoDB: The
Definitive Guide , O'Reilly Media, 2012.

[4] Liu Yimeng; Wang Yizhi; Jin Yi, Research on The
Improvement of MongoDB Auto-Sharding in Cloud
Environment, 7th International Conference on Computer
Science & Education (ICCSE), pp. 851- 854, 2012.

[5] Lawrence, R., Integration and Virtualization of Relational
SQL and NoSQL Systems including MySQL and MongoDB,
International Conference on Computational Science and
Computational Intelligence, pp.285-290, 2014.

[6] Nakabasami, K.; Amagasa, T.; Kitagawa, H., "Querying
MongoDB with LINQ in a Server-Side JavaScript
Environment", 16th International Conference on Network-
Based Information Systems (NBiS), pp.344-349, 2013.

[7] Nyati, S.S. ; Pawar, S. ; Ingle, R., Performance Evaluation of
Unstructured NoSQL data over distributed framework,
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 1623-1627,
2014.

[8] Okman, L. ; Gal-Oz, N. ; Gonen, Y. ; Gudes, E. ; Abramov, J.,
"Security Issues in NoSQL Databases", IEEE 10th
International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 541 – 547,
2011.

[9] Pramod J. Sadalage, Martin Fowler, "NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persistence",
Addison-Wesley Professional, 2012.

[10] Wang Xiaolin ; Chen Haopeng ; Wang Zhenhua, "Research on
Improvement of Dynamic Load Balancing in MongoDB",
IEEE 11th International Conference on Dependable,
Autonomic and Secure Computing (DASC), pp.124-130,
2013.

