American Journal of Software Engineering and Applications

2014; 3(6): 95-101

Published online December 23, 2014 (http://wwwrsopublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20140306.15
ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

EIICE R
Science Publishing Group

An empirical study on the effectiveness of automated test

case generation techniques

Bolanle F. Oladeo, Dimple T. Ogunbiyi

Department of Computer Science, University of Ibadlbadan, Nigeria

Email address:

fb.oladejo@ui.edu.ng (B. F. Oladejo), ogunbiyidim@lgmail.com (D. T. Ogunbiyi)

Tocitethisarticle:

Bolanle F. Oladejo, Dimple T. Ogunbiyi. An Empiricaiudy on the Effectiveness of Automated Test Cameation Techniquesmerican
Journal of Software Engineering and Applications. Vol. 3, No. 6, 2014, pp. 95-101. doi: 10.1164$a.20140306.15

Abstract: The advent of automated test case generation Hpecho reduce the laborious task of generating dases
manually and is prominent in the software testielfifof research and as a result, several techsifaee been developed to aid
the generation of test cases automatically. Howesgane major currently used automated test caseraon techniques have
not been empirically evaluated to ascertain theifggmances as many assumptions on technique pafaes are based on
theoretical deductions. In this paper, we perforpegiment on two major automated test case geoertachniques (Concolic
test case generation technique and the Combinhtestacase generation technique) and evaluatedb@seselected metrics
(number of test cases generated, complexitiesea$etected programs, the percentage of test cavaratyperformance score).
The results from the experiment show that the Caatbrial technique performed better than the Caatethnique. Hence, the
Combinatorial test case generation technique wasdido be more effective than the Concolic tese g@neration technique

based on the selected metrics.

Keywor ds. Automated Test Case Generation Technique, CombiagtGoncolic, Empirical Study, Software Testing,

Software Metrics

1. Introduction

Software testing plays a very significant roleha software

[1] with the intent of generating quality test cage execute

development process and serves as an important tavay programs. In recent years, several techniques Hepen

measure and improve software quality with its matant on

detecting defects in software. Software testing baen
defined as a process of verifying and validatirag thsoftware
program meets its business and technical requirestteat
guides its design and development and works asceeqh§2]

therefore, it is a very important means of assgssifitware to
determine its quality [11]. It is also heavily ustdinitiate,

locate and remove software defects [13]. Softwestrig can
be broken down into three fundamental proceduresijgd

(generation) of test cases, execution of test caseéshecking
whether the output produced is correct based onirihet

given [10].

Test case generation is a process of creatingemtifgling
test data which can satisfy a given testing cotef]. Test
case generation is among the most labour-intertsisks in
software testing and its manual approach can tekg leng
time to generate and execute test cases. Autonetedase
generation came into place to reduce the work tdadsters

developed to enhance automated test case geneaatioihis
important for testers/researchers to be convergdintcurrent
approaches to generating test cases
Furthermore, it is also important to perform expennts on
automated test case generation techniques in trdgpraise
their performances. Reference [15] encouraged relses to
carry out repeated experiments on tools and tedksign
order to give the software testers knowledge o ftiengths,
weaknesses, effectiveness and functionalities. élettiais
study is aimed at evaluating the effectivenesswaf major
automated test case generation techniques, withbjestives
stated as; identifying which technique achievestghest test
coverage; identifying the effect of program comgies on
the test coverage of techniques and identifying ctvhi
technique is most effective in general.

In this paper, we evaluate the Combinatorial andabic
test case generation techniques. In addition, wepeoe and
evaluate the techniques based on the number ofcéssts

automatically.

American Journal of Software Engineering and Agadlons 2014; 3(6): 95-101

generated, complexities of the selected prograeseptage
of test coverage and performance score for actgez@th of
the stated objectives. The results from the expamtnshows
that Combinatorial technique achieved a higherdeserage
than the Concolic technique for the programs ukd.results
also show that the complexities of the programsl ulses not
affect the Combinatorial technique in achieving hhigpst
coverage but affects the Concolic technique ineadhg high
test coverage.

The remaining part of this paper will present aebri
description of the selected techniques in sectigherelated
studies in section 3, the experimental procedurgeation 4,
the results in section 5 and the conclusion inice@&.

2. Description of Selected Techniques

This section presents a brief description of therafions of
the techniques selected for evaluation. The teclesicare;
Concolic and Combinatorial techniques. The autothadst
case generation tools (referred to as test caseraens) for
each technique, were selected based on their ésatmd
functions. The techniques/tools are described i
subsections below.

2.1. Concolic Technique

The Concolic technique is a hybrid technique tlomtlsines
Concrete execution (executes program using conomptes)
with Symbolic execution (executes program using lsylin
inputs). Concolic testing performs symbolic exeauntof a
program along a concrete execution path. It exscuate
program starting with some specified or random oetec
input and gathers symbolic constraints on input®atitional
statements during the execution caused by the etmorput
then it uses a constraint solver to create variartshe
concrete input for the next execution of the pragr&his
process will be repeated until all feasible exemupaths are
explored or a user-defined coverage criterion is[f&.

The Concolic test case generator used for the ewpat is
a publicly available tool named LIME Concolic Tegt# and
is available at http://www.tcs.hut.fi/Software/lime

2.2. Combinatorial (Pairwise) Technique

The Combinatorial technique generates test cases fo
combination of parameters for programs. It placescil
emphasis on selecting a sample of input paramedeesing a
recommended subset of combinations of elements tedted.
For each pair of input parameters it will test ptissible
discrete combinations of those parameters, usiogeshtest
vectors [9]. Pairwise testing is a prominent corabbnial
strategy that reduces the number of test casetedrd@airwise
testing strategy is defined as: Given a set ofdé¢pendent test
factors: i, f,, ..., &, with each factor;fhaving L possible
levels: f={l;,5, ..., |,Li}, a set of tests R is produced. Each tes
in R contains N test levels, one for each testofagt and
collectively all tests in R cover all possible gaaf test factor
levels i.e. for each pair of factor levglsdnd | o, where I< p<

96

Li, 1= g< Ljand i# j there exists at least one test in R that
contains both;}, and |4 [3]. The Combinatorial test case
generator used for the experiment is also a pybdichilable
tool named Test Case Generattayeloped by Bulmahn M. in
2007 and is available at
http://www.download.microsoft.com/download\.

3. Related Studies

Several experimental studies have been carriedoaut
various automated test case generation techniqlbs
section presents the methods and results of sanikasivork
that have been carried out on automated test caseragion.
Reference [6] conducted experiment on four testa dat
generation techniques (Random technique, IRM based
Method, Korel method and GA based method). Theltsesti
the experiment show that the genetic algorithm (Baged
test data generation performs the best. Referesjceafried
out an experiment comparing a total of 49 subjesgtht
between writing tests manually and writing testthvthe aid
of an automated unit test generation tool, EVOSUITRe

thpurpose of this study was to investigate how the efsan

automatic test generation tool, when used by testepacts
the testing process compared to traditional matesting.
Their results indicated that while the use of awted test
generation tools can improve structural coverags avanual
testing, it does not appear to improve the abdityesters to
detect current or future regression faults. Refegelfi7]
compared the effectiveness of Concolic testing mamtiom
testing. Theexperiment shows that Concolic testing is able to
find significantly more bugs than random testinghie testing
domain. Reference [4] presented an empirical coisqarof
automated generation and classification technifpresbject
oriented unit testing. Pairs of test-generatiomégues based
on random generation or symbolic execution and
test-classification techniques based on uncaexgteptions or
operational models were compared. Their findingsasthat
the techniques are complementary in revealing Sa@dome
otherexperimental studies conducted are on the evaluafio
tools [17], [14].

This study extends existing empirical studies Isfitg the
effectiveness of two techniques that have been Iyidsed
over the years for test case generation and testrage
improvement. We present in this study an experialent
structure describing the activities involved in lexding the
techniques, this can also serve as a frameworkuigher
experiments or can be advanced.

4. Experimental Procedure

This section presents the methods and proceduegsfas
the experiment. It covers the programs selecteueraxental

rocesses and the metrics used for evaluatiordditian, we
Eresent an experimental structure that simplifide t
description of the experimental procedure usedvaluating
the test case generation techniques selected as shdFig.
1"

97 Bolanle F. Oladejo aridimple T. Ogunbiy:

An Empirical Study on the Effectivenessfaftomated TesCase

Generation Techniques

We usedhree different java programs (test obs) based
on some features such as; arrays, loops, branshatgment:
method calls and complexity measure of the prograrhe
complexity of @ch program was measured using
cyclomatic complexity metric (see sectiéri.1) and the test
case generators were applied on the prog

The Concolic test case generator was installecaadutec
on a Linux ubuntu environment. It was appliedthe three
programs. Each program was passed as input t@shedst
generator and the resulting test cases were gedegaic

coverage measured automatically. However, duriagthurse
of carrying out the experiment, it was discoverbdtta
limitation of the Concolic test case generator used is tt
does not accept string parameters. Therefore, ébie cast
generator was applied on only two of programs out of the
three selected programs as one of the programgtacsteing
inputs only.

“Fig. 2" shows a snapshot of the Concolic test ¢
generator environment.

Test Cases Generated &
Test Coverage %

Test Cases Generated &
Test Coverage %

Program 2

Program 3

Metrics

Cyclomatic Complexity,
Test Cases Generated &
Test Coverage %

j%
.

Program 1

Program 2

Program 3

Figure 1. Experimental Structure for the Evaluation of Selected Techniques.

LIME interface Testbench

Meniter Tegtar Commands Conflguratlen

Qpen Emars Traces

Lompile Hain

ready {ne sewrce divectory open)

Figure 2. The Concolic Test Case Generator Environment.

American Journal of Software Engineering and Agadlons 2014; 3(6): 95-101

The Combinatorial test case generator was instaltedi
executed on a windows 7 environment. It was apmiethree
of the programs for individual results and appl@dtwo of
the programs for the compare results. The testscasze
generated automatically from a list of user spedifi
parameters, expected outcomes and rules for eadheof

98

programs. A combination depth of two (2) was seldct
because this study considers pairwise combinatetiategy
and the test coverage was determined from the ceests
generated. “Fig. 3” shows a snapshot of the Contbiiza te st
case generator environment.

2 TestCasslmemrrten
M Dpen See By | Akoit Eegirser Fie Type

Farsmstom | bgmabence dauses

i Mew Parymster

Listwr Wi ajicni

Mew Epvatence Cla:

Calouenis Ms ks

= s

ParmmeLees | Fousvslenoe dEEses

Tamrmos SERorpian

BI_T IT F I _k'_l .I E‘L "E-JI = I = -‘ m__. .:"i".i } El ﬂ= = |

Figure 3. The Combinatorial Test Case Generator Environment.

4.1. Selected Metrics

This section presents the metrics used for companéthe
techniques. They were selected amongst other ra@trimrder

to achieve the stated objectives of this study. ifThe

descriptions are given in the following subsections

4.1.1. Cyclomatic Complexity
We used the cyclomatic complexity metric to meashee

complexity of each program used in this study. Thi Program 2

complexity metric was selected because it quarviiyt
measures the logical capability of a program. Tywaenatic
complexity was calculated from each program’s adritow
graph. A control flow graph showthe flow of control of
statements and decisions in a program. It consistsodes

Table 1 shows the complexity values for the thregmams
with the range from a low complexity value to a thig
complexity value.

Table 1. Cyclomatic Complexity Value for Selected Programs.

Program Cyclomatic Complexity
Program 1 3

5
Program 3 25

The complexity values of the programs as shownhin t
table above ranges from the lowest complexity @ltghest
complexity. Some researchers have deduced that

(used to represestatements and decisions in a program) angomplexity value of a program above ten (10) haerg high

edges. The complexity of each of the programs weasored
using the McCabe’s cyclomatic complexity formul2].1
The formula is given as;

V(G)= E -N+ 2P

where:
v(G) = Cyclomatic Complexity
E = The number of edges of the graph
N = The number of nodes of the graph
P = The number of connected components

complexity. Furthermore, Reference [14], categatizbe
cyclomatic complexity value range of programs itioee
parts which include; LOW (complexity value rangelis4),
MID (complexity value range is 5-10) and HIGH (cdeyty
value range is above 10).

We used the cyclomatic complexity metric to testhié
complexities of the programs would affect the testerage of
the automated test case generation techniquessgumgption
is that the techniques should be able to achieyle ¢tdverage
even with complex programs to prove that it islyeatfective.

the

99 Bolanle F. Oladejo and Dimple T. Ogunbiyi: An fnctal Study on the Effectiveness of Automatedt Tease
Generation Techniques

4.1.2. Number of Test Cases Generated we believe that if the test case generators wepbeapon the
The number of test cases generated for each progesm third program, the result would still be the samavould be
gotten from the test case generators. very similar to the present results. Also, if thed program

was used for comparison of the techniques, the Guatdrial

4.1.3. Test Coverage _ _ technique would have achieved an average test ageenf
We used the test coverage metric to determinedese 0 ggos \yhich is still very reasonable and still makesffective.
which the programs have been executed by the testsc

generated. The branch coverag#erion wasdetermined for 5 R It
the Concolic technique while the state spawmverage - Results

criterion was determined for the Combinatorial taéghe [9]. The previous section gave a description of the outtand

The average percentage of test coverage by eatltdss oyherimental procedures used in this study. Thistice

generator was calculated and their performancese Wefresents and discusses the results gotten fromxperiment

compared. performed on the automated test case generatibnitges.

4.2. Threatsto Validity We present the individual results for the technggaad the
compared results. The compared results are preséatzed

Our initial intent was to apply the test case gatws on the on the objectives of this study.

three selected java programs partially because haf t .

complexity range of the programs but in the congaariphase, -1 Individual Results Generated

the techniques were applied on only two of thedtwelected

programs because of the limitation of the Conctdit case

generator stated earlier. Furthermore, the test gaserators

were chosen amongst others because they meet mware

requirements and program construct specificatiblasvever,

Table 2 shows the individual results gotten for@mncolic
and Combinatorial techniques. It includes the prognames,
the cyclomatic complexity value for each prograrhe t
number of test cases generated and the percenfatgsto
coverage for each of the techniques.

Table 2. Individual results for the two Techniques.

. Concolic Technique Combinatorial Technique

Cyclomatic

Program Complexity
No. of Test Cases Generated Test Coverage (%) No. of Test Cases Generated Test Coverage (%)

Program 1 S - - 18 67
Program 2 5 1 50 3 100
Program 3 25 400 41 8764 100
Total/Average 55 401 46 8785 89

Test Coverage

The Concolic test case generator was applied ograno 2

and Program 3 and generated a total number oftfondred Table 3. Comparison of Test Coverage of Techniques.
and one (401) test cases and an average test gewvaréorty Program Concolic Test Combinatorial Test
six percent (46%) while the Combinatorial test cgeeerator Coverage (%) Coverage (%)
was applied on the three programs generating adbgight ~ Program 2 50 100
thousand, seven hundred and eighty five (8785)ctes#s and "rodram3 4l 100
. . Average Test

an average test coverage of eighty nine perceft)89 Coverage 46 100
5.2. Compared Results

Only Program 2 and Program 3 were used for th _ Test Coverage Comparison
comparison of the techniques. The results are preddased % 100
on the objectives of this study as follows. = 20

Objective 1: Identify which technique achieves the highest z jg]
test coverage E M - Concolic

The test coverage is highly important in evaluatthg = 0 - . .
techniques. A test case generation technique wditieves & Program? Program3 % Combinatonal
test coverage of 100% means that it has generastdases
which explored all the feasible paths of a progbarindoes not Programs
mean that the program is free from defects. Talda®B“Fig.

4" shows the results of the test coverage fotdlniques. Figure 4. Comparison of Test Coverage for Techniques

American Journal of Software Engineering and Agadlons 2014; 3(6): 95-101 100

The chart above shows that the Combinatorial teghni the test coverage of techniques
performs better than the Concolic technique in edhg a Knowing if the complexities of programs will affettie test
high test coverage because for the two programd, use coverage of techniques is a very essential factanéasure
achieved a test coverage of 100% each. The Concotiteir effectiveness. Fon programs with different levels of
technique achieved a lower coverage for the pwograms complexities, the techniques should be able toeaehia
compared to the Combinatorial technique. Henceait be substantial amount of test coverage to prove thigangth.
inferred that the Combinatorial test case generdgohnique The result for the comparison of the effect of peogy
performs better than the Concolic test case gdparat complexities on techniques is presented in Tatdadla chart
technique in achieving high test coverage. describing the comparison is shown in “Fig. 5.

Objective 2: Identify the effect of program complexities on

Table 4. Complexity Effect Comparison.

Program Cyclomatic Complexity Concolic Test Coverage (%) Combinatorial Test Coverage (%)
Program 2 5 50 100
Program 3 25 41 100
Total/Average Test Coverage 30 46 100

technique performs better than the Concolic teamidip

Comparison of Cyclomatic Complexity achieving high test coverage for complex programs.
Objective 3: Identify which technique is most effective in
100

& 20 Concolic genera,l

2 e identified the technique that is most effectivgeneral.

% 60 _ _ We identified the tech that t effect I

& 40 | B Combmatonal| By the word ‘general’ we mean the technique thafques

E 10 | best in meeting the objectives presented previouslythe

L8] 0 - techniquethat achieves the highest test coverage tred

_E technique that program complexities have littl@moreffecton.

Program 2 Program 3

(©C-5) (©C:25 We allocated a score to each objective and thédotae was

given as three (3), one for each objective. The Kipatorial
CC: Cyclomatic Complexity technique scored the highest value of 3 becayserfibrmed
better in all the objectives than the Concolic téghe. The
Concolic technique scored 1 for attaining at |éeat| of test
coverage. Table 4 shows the summary of the evaluatid it

The chart above compares the Concolic and thi cludes; the overall result for each techniqueetasn the

Combinatorial technique based on the effect otthaplexity : r(:]e_metrlcs used in the study and the score &whe
of two programs on the percentage of test coveaabeved. echnique.
From the chart it can be stated that the Combirstor

Figure 5. The Effect of Program Complexities on both Techniques.

Table 5. Summary of Evaluation.

Technique Complexity Effect Total Number of Test Cases Generated Aver age Test Cover age (%) Score
Concolic Has Effect 401 46 1
Combinatorial No Effect 8767 100 3

From the table above, it is possible that if thenbar of test
cases generated by the Concolic test case genérateases
then the average test coverage achieved woulddsere References

[1] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohéh,
Grieskamp, M. Harman, M. J. Harrold, and P. McMit¥an

. orchestrated survey on automated Software test case
We have been able to evaluate two major automastdase generation,” Antonia Bertolino, J. Jenny Li and Hafigu,

generation techniques (Concolic and Combinatogahfiques) Editor/Orchestrators, Journal of Systems and Soé#2a13.
through experiment. The results from the experirsbotv that . .
the Combinatorial test case generation techniquéonpeed [2] 3. E. Bentley, "Software testing fundamentals-cotseles,

9 queones and terminology,” Corporate Data Management and

better than the Concolic test case generation igoarand is Governance, Wachovia Bank, 201 S. College Street]0&5,
thereby a more effective technique based on théuaien Charlotte NC 28210, 2001.

criteria used. Hence, future works should be dadbwards —— _ _

conducting further empirical studies on the Comituiral (81 J. Czerwonka, “Painwise testing in real World: picat
. g . p_ . extensions to test case generators,” Microsoft Gatfmm, One

technique with other major techniques and a lawgaber of Microsoft way Redmond, WA 98052, 2006.

programs to validate its effectiveness.

6. Conclusion

101

(4]

(5]

(6]

(7]

(8]

(9]

Bolanle F. Oladejo and Dimple T. Ogunbiyi:

Amgirical Study on the Effectiveness of AutomatedtT@ase

Generation Techniques

M. d'Amorim, C. Pacheco, T. Xie, D. Marinov, and M.Ernst,
“An empirical comparison of automated generationd an
classification techniques for object-oriented utésting,”
Department of Computer Science, University of lligo
Urbana-Champaign, IL, U.S.A., 2006.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, andPRdberg,
“Does automated White-Box test generation reallyphel

generation for coverage: haven't we solved thiblam yet?,”
King’s College, CREST centre, London,WC2R 2LS, U.K,,
20009.

11] L. Luo, “Software Testing Techniques,” Institute fBoftware

Software Testers,?” Department of Computer Sciencdl1?]

University of Sheffield, United Kingdom, 2013.

S. Han and Y. Kwon, “An empirical evaluation of ttefata
generation techniques.” Journal of Computing Scieacd
Engineering, vol. 2, No. 3, September, 2008.

K. Kahkonen, R. Kindermann, K. Heljanko and |. Neda
“Experimental comparison of Concolic and Random iifigst
for Java Card Applets,” Department of Informationdan
Computer Science Aalto University, P.O. Box 1540006076
AALTO, Finland, 2010.

B. Korel, “Automated Software test data generatidiEE
Transactions on Software Engineering, Vol. 16, 8/d990

D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical Camdtorial
Testing,”. National Institute of Standards and Texbgy
(NIST), U.S. Government Printing Office, WashingtohS.A.,
2010.

[10] K. Lakhotia, P. McMinn, and M. Harman, “Automatest data

[13]

[14]

[15]

[16]

[17]

Research International, Carnegie Mellon UniversitiysBurgh,
PA15232, U.S.A., 2001.

T. J. McCabe, “A complexity measure,” IEEE Transawsi on
Software Engineering, Vol. Se-2, No., 4, 1976.

J. Pan, “Software Testing, Dependable Embeddecdefgst
Electrical and Computer Engineering Department, Gaene
Mellon University, 1999.

X. Qu, and B. Robinson, “A case study of Concolictihgs
tools and their limitations,” ABB Corporate Research @#hin
campus drive, Raleigh, NC, U.S.A., 2010.

M. Roper, J. Miller, A. Brooks, and M. Wood, “Towartise
experimental evaluation of Software testing techesy”
EuroSTAR '94, pp 44/1-44/100ctober 10-13, 1994, Balsss

K. Sen, “Concolic testing and constraint satisfattio
Proceedings, 1% International Conference on Theory and
Applications of Satisfiability Testing (SAT'11), 2Q.

S. Wang, and J. Offutt, “Comparison of unit-levetcamated
test generation tools,” Software Engineering, Gedwpson
University, Fairfax, VA 22030, USA, 2008.

