

American Journal of Software Engineering and Applications
2014; 3(6): 95-101
Published online December 23, 2014 (http://www.sciencepublishinggroup.com/j/ajsea)
doi: 10.11648/j.ajsea.20140306.15
ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

An empirical study on the effectiveness of automated test
case generation techniques

Bolanle F. Oladejo, Dimple T. Ogunbiyi

Department of Computer Science, University of Ibadan, Ibadan, Nigeria

Email address:
fb.oladejo@ui.edu.ng (B. F. Oladejo), ogunbiyidimple@gmail.com (D. T. Ogunbiyi)

To cite this article:
Bolanle F. Oladejo, Dimple T. Ogunbiyi. An Empirical Study on the Effectiveness of Automated Test Case Generation Techniques. American
Journal of Software Engineering and Applications. Vol. 3, No. 6, 2014, pp. 95-101. doi: 10.11648/j.ajsea.20140306.15

Abstract: The advent of automated test case generation has helped to reduce the laborious task of generating test cases
manually and is prominent in the software testing field of research and as a result, several techniques have been developed to aid
the generation of test cases automatically. However, some major currently used automated test case generation techniques have
not been empirically evaluated to ascertain their performances as many assumptions on technique performances are based on
theoretical deductions. In this paper, we perform experiment on two major automated test case generation techniques (Concolic
test case generation technique and the Combinatorial test case generation technique) and evaluate based on selected metrics
(number of test cases generated, complexities of the selected programs, the percentage of test coverage and performance score).
The results from the experiment show that the Combinatorial technique performed better than the Concolic technique. Hence, the
Combinatorial test case generation technique was found to be more effective than the Concolic test case generation technique
based on the selected metrics.

Keywords: Automated Test Case Generation Technique, Combinatorial, Concolic, Empirical Study, Software Testing,
Software Metrics

1. Introduction
Software testing plays a very significant role in the software

development process and serves as an important way to
measure and improve software quality with its main intent on
detecting defects in software. Software testing has been
defined as a process of verifying and validating that a software
program meets its business and technical requirements that
guides its design and development and works as expected [2]
therefore, it is a very important means of assessing software to
determine its quality [11]. It is also heavily used to initiate,
locate and remove software defects [13]. Software testing can
be broken down into three fundamental procedures; design
(generation) of test cases, execution of test cases and checking
whether the output produced is correct based on the input
given [10].

Test case generation is a process of creating or identifying
test data which can satisfy a given testing criterion [8]. Test
case generation is among the most labour-intensive tasks in
software testing and its manual approach can take very long
time to generate and execute test cases. Automated test case
generation came into place to reduce the work load of testers

[1] with the intent of generating quality test cases to execute
programs. In recent years, several techniques have been
developed to enhance automated test case generation and it is
important for testers/researchers to be conversant with current
approaches to generating test cases automatically.
Furthermore, it is also important to perform experiments on
automated test case generation techniques in order to appraise
their performances. Reference [15] encouraged researchers to
carry out repeated experiments on tools and techniques in
order to give the software testers knowledge on their strengths,
weaknesses, effectiveness and functionalities. Hence, this
study is aimed at evaluating the effectiveness of two major
automated test case generation techniques, with its objectives
stated as; identifying which technique achieves the highest test
coverage; identifying the effect of program complexities on
the test coverage of techniques and identifying which
technique is most effective in general.

In this paper, we evaluate the Combinatorial and Concolic
test case generation techniques. In addition, we compare and
evaluate the techniques based on the number of test cases

 American Journal of Software Engineering and Applications 2014; 3(6): 95-101 96

generated, complexities of the selected programs, percentage
of test coverage and performance score for achieving each of
the stated objectives. The results from the experiment shows
that Combinatorial technique achieved a higher test coverage
than the Concolic technique for the programs used. The results
also show that the complexities of the programs used does not
affect the Combinatorial technique in achieving high test
coverage but affects the Concolic technique in achieving high
test coverage.

The remaining part of this paper will present a brief
description of the selected techniques in section 2, the related
studies in section 3, the experimental procedure in section 4,
the results in section 5 and the conclusion in section 6.

2. Description of Selected Techniques
This section presents a brief description of the operations of

the techniques selected for evaluation. The techniques are;
Concolic and Combinatorial techniques. The automated test
case generation tools (referred to as test case generators) for
each technique, were selected based on their features and
functions. The techniques/tools are described in the
subsections below.

2.1. Concolic Technique

The Concolic technique is a hybrid technique that combines
Concrete execution (executes program using concrete inputs)
with Symbolic execution (executes program using symbolic
inputs). Concolic testing performs symbolic execution of a
program along a concrete execution path. It executes a
program starting with some specified or random concrete
input and gathers symbolic constraints on inputs at conditional
statements during the execution caused by the concrete input
then it uses a constraint solver to create variants of the
concrete input for the next execution of the program. This
process will be repeated until all feasible execution paths are
explored or a user-defined coverage criterion is met [16].

The Concolic test case generator used for the experiment is
a publicly available tool named LIME Concolic Tester [7] and
is available at http://www.tcs.hut.fi/Software/lime/.

2.2. Combinatorial (Pairwise) Technique

The Combinatorial technique generates test cases for a
combination of parameters for programs. It places special
emphasis on selecting a sample of input parameters covering a
recommended subset of combinations of elements to be tested.
For each pair of input parameters it will test all possible
discrete combinations of those parameters, using chosen test
vectors [9]. Pairwise testing is a prominent combinatorial
strategy that reduces the number of test cases created. Pairwise
testing strategy is defined as: Given a set of N independent test
factors: f1, f2, ..., fN, with each factor fi having Li possible
levels: fi = {l i,1, ..., li,Li}, a set of tests R is produced. Each test
in R contains N test levels, one for each test factor fi, and
collectively all tests in R cover all possible pairs of test factor
levels i.e. for each pair of factor levels li,p and lj,q, where 1 ≤ p ≤

L i, 1≤ q ≤ Lj and i ≠ j there exists at least one test in R that
contains both li,p and lj,q [3]. The Combinatorial test case
generator used for the experiment is also a publicly available
tool named Test Case Generator, developed by Bulmahn M. in
2007 and is available at
http://www.download.microsoft.com/download\.

3. Related Studies
Several experimental studies have been carried out on

various automated test case generation techniques. This
section presents the methods and results of some similar work
that have been carried out on automated test case generation.
Reference [6] conducted experiment on four test data
generation techniques (Random technique, IRM based
Method, Korel method and GA based method). The results of
the experiment show that the genetic algorithm (GA)-based
test data generation performs the best. Reference [5] carried
out an experiment comparing a total of 49 subjects split
between writing tests manually and writing tests with the aid
of an automated unit test generation tool, EVOSUITE. The
purpose of this study was to investigate how the use of an
automatic test generation tool, when used by testers, impacts
the testing process compared to traditional manual testing.
Their results indicated that while the use of automated test
generation tools can improve structural coverage over manual
testing, it does not appear to improve the ability of testers to
detect current or future regression faults. Reference [7]
compared the effectiveness of Concolic testing and random
testing. The experiment shows that Concolic testing is able to
find significantly more bugs than random testing in the testing
domain. Reference [4] presented an empirical comparison of
automated generation and classification techniques for object
oriented unit testing. Pairs of test-generation techniques based
on random generation or symbolic execution and
test-classification techniques based on uncaught exceptions or
operational models were compared. Their findings show that
the techniques are complementary in revealing faults. Some
other experimental studies conducted are on the evaluation of
tools [17], [14].

This study extends existing empirical studies by testing the
effectiveness of two techniques that have been widely used
over the years for test case generation and test coverage
improvement. We present in this study an experimental
structure describing the activities involved in evaluating the
techniques, this can also serve as a framework for further
experiments or can be advanced.

4. Experimental Procedure
This section presents the methods and procedures used for

the experiment. It covers the programs selected, experimental
processes and the metrics used for evaluation. In addition, we
present an experimental structure that simplifies the
description of the experimental procedure used in evaluating
the test case generation techniques selected as shown in “Fig.
1”.

97 Bolanle F. Oladejo and Dimple T. Ogunbiyi

We used three different java programs (test object
on some features such as; arrays, loops, branching statements
method calls and complexity measure of the programs. The
complexity of each program was measured using the
cyclomatic complexity metric (see section 4.1.1.
case generators were applied on the programs.

The Concolic test case generator was installed and executed
on a Linux ubuntu environment. It was applied on
programs. Each program was passed as input to the test case
generator and the resulting test cases were generated and

Figure 1. Experimental Structure for the Evaluation of Selected Techniques

Figure 2.

Dimple T. Ogunbiyi: An Empirical Study on the Effectiveness of Automated Test
Generation Techniques

three different java programs (test objects) based
on some features such as; arrays, loops, branching statements
method calls and complexity measure of the programs. The

ach program was measured using the
4.1.1.) and the test

case generators were applied on the programs.
The Concolic test case generator was installed and executed

on a Linux ubuntu environment. It was applied on the three
programs. Each program was passed as input to the test case
generator and the resulting test cases were generated and

coverage measured automatically. However, during the course
of carrying out the experiment, it was discovered that a
limitation of the Concolic test case generator used is that it
does not accept string parameters. Therefore, the test case
generator was applied on only two of the
three selected programs as one of the programs accepts string
inputs only.

“Fig. 2” shows a snapshot of the Concolic test case
generator environment.

Experimental Structure for the Evaluation of Selected Techniques.

Figure 2. The Concolic Test Case Generator Environment.

Automated Test Case

coverage measured automatically. However, during the course
of carrying out the experiment, it was discovered that a

the Concolic test case generator used is that it
does not accept string parameters. Therefore, the test case
generator was applied on only two of the programs out of the
three selected programs as one of the programs accepts string

ows a snapshot of the Concolic test case

 American Journal of Software Engineering and Applications 2014; 3(6): 95-101 98

The Combinatorial test case generator was installed and

executed on a windows 7 environment. It was applied on three
of the programs for individual results and applied on two of
the programs for the compare results. The test cases were
generated automatically from a list of user specified
parameters, expected outcomes and rules for each of the

programs. A combination depth of two (2) was selected
because this study considers pairwise combinatorial strategy
and the test coverage was determined from the test cases
generated. “Fig. 3” shows a snapshot of the Combinatorial test
case generator environment.

Figure 3. The Combinatorial Test Case Generator Environment.

4.1. Selected Metrics

This section presents the metrics used for comparison of the
techniques. They were selected amongst other metrics in order
to achieve the stated objectives of this study. Their
descriptions are given in the following subsections:

4.1.1. Cyclomatic Complexity
We used the cyclomatic complexity metric to measure the

complexity of each program used in this study. This
complexity metric was selected because it quantitatively
measures the logical capability of a program. The cyclomatic
complexity was calculated from each program’s control flow
graph. A control flow graph shows the flow of control of
statements and decisions in a program. It consists of nodes
(used to represent statements and decisions in a program) and
edges. The complexity of each of the programs was measured
using the McCabe’s cyclomatic complexity formula [12].

The formula is given as;

v(G)= E −N+ 2P

where:
v(G) = Cyclomatic Complexity
E = The number of edges of the graph
N = The number of nodes of the graph
P = The number of connected components

Table 1 shows the complexity values for the three programs
with the range from a low complexity value to a high
complexity value.

Table 1. Cyclomatic Complexity Value for Selected Programs.

Program Cyclomatic Complexity

Program 1 3

Program 2 5

Program 3 25

The complexity values of the programs as shown in the
table above ranges from the lowest complexity to the highest
complexity. Some researchers have deduced that the
complexity value of a program above ten (10) has a very high
complexity. Furthermore, Reference [14], categorized the
cyclomatic complexity value range of programs into three
parts which include; LOW (complexity value range is 1- 4),
MID (complexity value range is 5-10) and HIGH (complexity
value range is above 10).

We used the cyclomatic complexity metric to test if the
complexities of the programs would affect the test coverage of
the automated test case generation techniques. An assumption
is that the techniques should be able to achieve high coverage
even with complex programs to prove that it is really effective.

99 Bolanle F. Oladejo and Dimple T. Ogunbiyi: An Empirical Study on the Effectiveness of Automated Test Case
Generation Techniques

4.1.2. Number of Test Cases Generated
The number of test cases generated for each program was

gotten from the test case generators.

4.1.3. Test Coverage
We used the test coverage metric to determine the degree to

which the programs have been executed by the test cases
generated. The branch coverage criterion was determined for
the Concolic technique while the state space coverage
criterion was determined for the Combinatorial technique [9].
The average percentage of test coverage by each test case
generator was calculated and their performances were
compared.

4.2. Threats to Validity

Our initial intent was to apply the test case generators on the
three selected java programs partially because of the
complexity range of the programs but in the comparison phase,
the techniques were applied on only two of the three selected
programs because of the limitation of the Concolic test case
generator stated earlier. Furthermore, the test case generators
were chosen amongst others because they meet our hardware
requirements and program construct specifications. However,

we believe that if the test case generators were applied on the
third program, the result would still be the same or would be
very similar to the present results. Also, if the third program
was used for comparison of the techniques, the Combinatorial
technique would have achieved an average test coverage of
89% which is still very reasonable and still makes it effective.

5. Results
The previous section gave a description of the methods and

experimental procedures used in this study. This section
presents and discusses the results gotten from the experiment
performed on the automated test case generation techniques.
We present the individual results for the techniques and the
compared results. The compared results are presented based
on the objectives of this study.

5.1. Individual Results Generated

Table 2 shows the individual results gotten for the Concolic
and Combinatorial techniques. It includes the program names,
the cyclomatic complexity value for each program, the
number of test cases generated and the percentage of test
coverage for each of the techniques.

Table 2. Individual results for the two Techniques.

Program
Cyclomatic
Complexity

Concolic Technique Combinatorial Technique

No. of Test Cases Generated Test Coverage (%) No. of Test Cases Generated Test Coverage (%)

Program 1 3 - - 18 67

Program 2 5 1 50 3 100

Program 3 25 400 41 8764 100

Total/Average
Test Coverage

33 401 46 8785 89

The Concolic test case generator was applied on program 2

and Program 3 and generated a total number of four hundred
and one (401) test cases and an average test coverage of forty
six percent (46%) while the Combinatorial test case generator
was applied on the three programs generating a total of eight
thousand, seven hundred and eighty five (8785) test cases and
an average test coverage of eighty nine percent (89%).

5.2. Compared Results

Only Program 2 and Program 3 were used for the
comparison of the techniques. The results are presented based
on the objectives of this study as follows.

Objective 1: Identify which technique achieves the highest
test coverage

The test coverage is highly important in evaluating the
techniques. A test case generation technique which achieves
test coverage of 100% means that it has generated test cases
which explored all the feasible paths of a program but does not
mean that the program is free from defects. Table 3 and “Fig.
4”, shows the results of the test coverage for the techniques.

Table 3. Comparison of Test Coverage of Techniques.

Program
Concolic Test
Coverage (%)

Combinatorial Test
Coverage (%)

Program 2 50 100
Program 3 41 100
Average Test
Coverage

46 100

Figure 4. Comparison of Test Coverage for Techniques.

 American Journal of Software Engineering and Applications 2014; 3(6): 95-101 100

The chart above shows that the Combinatorial technique
performs better than the Concolic technique in achieving a
high test coverage because for the two programs used, it
achieved a test coverage of 100% each. The Concolic
technique achieved a lower coverage for the two programs
compared to the Combinatorial technique. Hence, it can be
inferred that the Combinatorial test case generation technique
performs better than the Concolic test case generation
technique in achieving high test coverage.

Objective 2: Identify the effect of program complexities on

the test coverage of techniques
Knowing if the complexities of programs will affect the test

coverage of techniques is a very essential factor to measure
their effectiveness. For n programs with different levels of
complexities, the techniques should be able to achieve a
substantial amount of test coverage to prove their strength.
The result for the comparison of the effect of program
complexities on techniques is presented in Table 4 and a chart
describing the comparison is shown in “Fig. 5”.

Table 4. Complexity Effect Comparison.

Program Cyclomatic Complexity Concolic Test Coverage (%) Combinatorial Test Coverage (%)
Program 2 5 50 100
Program 3 25 41 100
Total/Average Test Coverage 30 46 100

Figure 5. The Effect of Program Complexities on both Techniques.

The chart above compares the Concolic and the
Combinatorial technique based on the effect of the complexity
of two programs on the percentage of test coverage achieved.
From the chart it can be stated that the Combinatorial

technique performs better than the Concolic technique in
achieving high test coverage for complex programs.

Objective 3: Identify which technique is most effective in
general

We identified the technique that is most effective in general.
By the word ‘general’ we mean the technique that performs
best in meeting the objectives presented previously i.e. the
technique that achieves the highest test coverage and the
technique that program complexities have little or no effect on.
We allocated a score to each objective and the total score was
given as three (3), one for each objective. The Combinatorial
technique scored the highest value of 3 because it performed
better in all the objectives than the Concolic technique. The
Concolic technique scored 1 for attaining at least level of test
coverage. Table 4 shows the summary of the evaluation and it
includes; the overall result for each technique based on the
three metrics used in the study and the score for each
technique.

Table 5. Summary of Evaluation.

Technique Complexity Effect Total Number of Test Cases Generated Average Test Coverage (%) Score
Concolic Has Effect 401 46 1
Combinatorial No Effect 8767 100 3

From the table above, it is possible that if the number of test

cases generated by the Concolic test case generator increases
then the average test coverage achieved would increase.

6. Conclusion
We have been able to evaluate two major automated test case

generation techniques (Concolic and Combinatorial Techniques)
through experiment. The results from the experiment show that
the Combinatorial test case generation technique performed
better than the Concolic test case generation technique and is
thereby a more effective technique based on the evaluation
criteria used. Hence, future works should be directed towards
conducting further empirical studies on the Combinatorial
technique with other major techniques and a large number of
programs to validate its effectiveness.

References
[1] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W.

Grieskamp, M. Harman, M. J. Harrold, and P. McMinn, “An
orchestrated survey on automated Software test case
generation,” Antonia Bertolino, J. Jenny Li and Hong Zhu,
Editor/Orchestrators, Journal of Systems and Software 2013.

[2] J. E. Bentley, “Software testing fundamentals-concepts, roles,
and terminology,” Corporate Data Management and
Governance, Wachovia Bank, 201 S. College Street, NC-1025,
Charlotte NC 28210, 2001.

[3] J. Czerwonka, “Pairwise testing in real World: practical
extensions to test case generators,” Microsoft Corporation, One
Microsoft way Redmond, WA 98052, 2006.

101 Bolanle F. Oladejo and Dimple T. Ogunbiyi: An Empirical Study on the Effectiveness of Automated Test Case
Generation Techniques

[4] M. d'Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst,
“An empirical comparison of automated generation and
classification techniques for object-oriented unit testing,”
Department of Computer Science, University of Illinois,
Urbana-Champaign, IL, U.S.A., 2006.

[5] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and P. Padberg,
“Does automated White-Box test generation really help
Software Testers,?” Department of Computer Science,
University of Sheffield, United Kingdom, 2013.

[6] S. Han and Y. Kwon, “An empirical evaluation of test data
generation techniques.” Journal of Computing Science and
Engineering, vol. 2, No. 3, September, 2008.

[7] K. Kahkonen, R. Kindermann, K. Heljanko and I. Niemela,
“Experimental comparison of Concolic and Random Testing
for Java Card Applets,” Department of Information and
Computer Science Aalto University, P.O. Box 15400, FI-00076
AALTO, Finland, 2010.

[8] B. Korel, “Automated Software test data generation,” IEEE
Transactions on Software Engineering, Vol. 16, No. 8, 1990.

[9] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical Combinatorial
Testing,”. National Institute of Standards and Technology
(NIST), U.S. Government Printing Office, Washington, U.S.A.,
2010.

[10] K. Lakhotia, P. McMinn, and M. Harman, “Automated test data

generation for coverage: haven’t we solved this problem yet?,”
King’s College, CREST centre, London,WC2R 2LS, U.K.,
2009.

[11] L. Luo, “Software Testing Techniques,” Institute for Software
Research International, Carnegie Mellon University, Pittsburgh,
PA15232, U.S.A., 2001.

[12] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, Vol. Se-2, No., 4, 1976.

[13] J. Pan, “Software Testing, Dependable Embedded Systems,”
Electrical and Computer Engineering Department, Carnegie
Mellon University, 1999.

[14] X. Qu, and B. Robinson, “A case study of Concolic Testing
tools and their limitations,” ABB Corporate Research 940 main
campus drive, Raleigh, NC, U.S.A., 2010.

[15] M. Roper, J. Miller, A. Brooks, and M. Wood, “Towards the
experimental evaluation of Software testing techniques,”
EuroSTAR ’94, pp 44/1-44/10October 10-13, 1994, Brussels.

[16] K. Sen, “Concolic testing and constraint satisfaction,”
Proceedings, 14th International Conference on Theory and
Applications of Satisfiability Testing (SAT’11), 2011.

[17] S. Wang, and J. Offutt, “Comparison of unit-level automated
test generation tools,” Software Engineering, George Mason
University, Fairfax, VA 22030, USA, 2008.

