

American Journal of Software Engineering and Applications
2013; 2(2): 49-53
Published online April 2, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)
doi: 10.11648/j. ajsea.20130202.14

Analogy-based software quality prediction with project
feature weights

Ekbal Rashid
1
, Srikanta Patnaik

2
, Vandana Bhattacharya

3

1Department of CS & E CIT, Tatisilwai,Ranchi, India
2Department of CS & E SOA University, Bhubaneswar, Orissa,India
3Department of CS & E BIT Mesra, Ranchi, India

Email address:
ekbalrashid2004@yahoo.com (E. Rashid), patnaik_srikanta@yahoo.co.in (S. Patnaik),
vbhattacharya@bitmesra.ac.in (V. Bhattacharya)

To cite this article:
Ekbal Rashid, Srikanta Patnaik, Vandana Bhattacharya. Analogy-based Software Quality Prediction with Project Feature Weights,
American Journal of Software Engineering and Applications. Vol. 2, No. 2, 2013, pp. 49-53. doi: 10.11648/j.ajsea.20130202.14

Abstract: This paper presents analogy-based software quality estimation with project feature weights. The objective of
this research is to predict the quality of project accurately and use the results in future predictions. The focus includes
identifying parameters on which the quality of software depends. Estimation of rate of improvement of software quality
chiefly depends on the development time. Assigning weights to these parameters to improve upon the results is also in the
area of interest. In this paper two different similarity measures namely, Euclidian and Manhattan were the measures used
for retrieving the matching cases from the knowledgebase to increases estimation accuracy & reliability. Expert judgment,
weights and rating levels were used to assign weights and quality rating levels. The results show that assigning weights to
software metrics increases the prediction performance considerably. In order to obtain the results, we have used indigenous
tools.

Keywords: Analogy, CBR, Effort Estimation, Software Quality Prediction, Similarity Function

1. Introduction

Software Quality estimation is an important and hard
management task. This is due to the lack of information on
making decisions in the early phases of the project
development. Most of today's software quality estimation
models are built on using data from projects of single
organization. Using such data has well known benefits
such as ease of understanding and controlling of collected
data. But different researchers have reported contradictory
results using different software quality estimation
modeling techniques. It is still difficult to generalize many
of the obtain results. This is due to the characteristics of
the datasets being used and dataset’s small size. In Case-
Based Reasoning (CBR) problem solving is seen as a
process, which involves the retrieval of similar prior cases
from case bases using mobile agent methodology and the
adaptation of retrieved cases’ solutions to fit the new
problem’s requirements. Estimation models in software
engineering are used to predict some important attributes
of future entities such as software development effort,
software reliability, software quality, and productivity of

programmers. Among such models, those estimating
software effort have motivated considerable research in
recent years [11]. Correct prediction of the software
quality or maintain a software system is one of the most
critical activities in managing software project. Due to the
nature of the software engineering domain, it is important
that software quality estimation models should be able to
deal with ambiguity and indistinctness associated with
such values. To serve this purpose, we propose our case-
based estimation model for software quality estimation.
We feel that case-based models are particularly useful
when it is difficult to define concrete rules about a problem
domain in addition to this, expert advice may be used to
supplement the existing stored knowledge. A case-based
reasoning model was developed in [13] for estimating
software development effort.

In this paper, we have used features with weights, which
are based on expert judgments. For example, if the
difficulty level of a program increases then there is also
increase in the efforts and development time. For our
experiment, we have assumed weights based on expert
judgment and by empirical study. We displayed the
software quality relative to the lines of code retrieved from

50 Ekbal Rashid et al.: Analogy-based software quality prediction with project feature weights

the knowledgebase in Table 4. The rest of the paper is
organized as follows: Section 2 gives a brief overview of
the various related work. Section 3 describes the methods.
In section 4, we present research methodology. Sections 5
and 6 present the production rule and the development of
models. Section 7 presents the results and analysis. Finally,
section 8 concludes the paper and presents some future
trends.

Table 4. Classification used for Software Quality prediction.

Program

Scenario

Value of

Q
Class

Sl.No Excellent Good Poor

1 0.195 √ × ×

2 0.028 √ × ×

3 0.030 √ × ×

4 0.037 √ × ×

5 0.088 √ × ×

6 0.600 √ × ×

7 0.090 √ × ×

8 2.99 × √ ×

9 4.067 × √ ×

10 7.036 × × √

11 0.014 √ × ×

12 0.092 √ × ×

13 0.142 √ × ×

14 0.037 √ × ×

15 0.074 √ × ×

2. Background and Motivation

Many researchers have used soft computing approaches
for software quality estimation. Zhong et. Al in [16] have
used unsupervised Learning techniques to build a software
quality estimation system. Idri et. Al have implemented the
COCOMO cost model using fuzzy logic in [1] and also a
fuzzy logic based analogy estimation approach in [2-4].
Case based reasoning has also been used by Kadoda et. Al
in [5].They examine the impact of the choice of number of
analogies when making predictions: They also look at
different adaptation strategies. The analysis is based on a
dataset of software projects collected by a Canadian
software house. Their results show that choosing analogies
is important but adaptation strategy appears to be less. For
this reason they urge some degree of caution when
comparing competing prediction systems and only modest

numbers of cases. Myrtveit et. Al in [6] and Ganesan et. Al
in [7] have also studied case based approach to
development effort prediction. Bhattacherjee et. Al have
proposed Expert Case Based Models in [9-14]. Rashid et.
Al emphasized on the importance of software quality
estimation [15].

3. Methods

3.1. Hypothesis

Distance between the status of two programs p1 and p2.

We can consider a particular parameter weight which
may be dependent on LOC.

Let us take LOC =X and the hypothetical parameter
weight that depends upon LOC be = Y

Then we can express the relation between the two as an
ordered pair as:

f:NR : y=f(x)

Now, we can represent the two different program states
by two points on the Cartesian plane. Let that be p1(x1,y1)
and p2(x2,y2), then the distance between the two can be
calculated using the Euclidean distance formula:ED=

dist (p1,p2)=[(x2-x1)
2 + (y2-y1)

2]1/2

The Manhattan distance (MD) of p1 from p2 is:

MD =|abs (x2-x1) + abs (y2-y1)|

A small distance indicates a high degree of similarity.
When a new project is estimated, its distances to each
project in the historical feature database are calculated.

A fundamental question in this model is how to set the
feature weights:

w i since individual features should influence project
similarity to a different degree [8]. Various approaches
have been proposed:

•Set all project feature weights to identical values: w i

=1, i = 1,….l.
•Set each project feature weight to a value determined

by human judgment.
• Set each project feature weight to a value obtained by

 American Journal of Software Engineering and Applications 2013, 2(2) : 49-53 51

statistical analysis.
•Set each project feature weight to either 0 or 1 so that

an estimation quality metric is maximized. This brute-
force approach proposed by Shepperd and Schofield tries
to identify a subset of important features. Once these
features are identified, they are all given the same weight.
We have adopted the combined approach of expert
judgment and empirical study. We now present the
methodology adopted for software quality estimation
based on Case-Based Reasoning using project feature
weights.

4. Research Methodology

The environment of our study is the university campus
and students of computer science and engineering are our
target group. All students are provided with same level of
guidance by instructors, supported by the laboratory staffs,
resources like computers, software etc.

Data collected from students included the following:
•Number of lines of code
•Number of functions
•Number of variables
•Difficulty level of program (low , medium , high)
•Number of formal parameters in each function
•Exposure to programming language and
•Programmers Experience

5. Production Rule

We have used production rules for quality rating levels.
See table 2

Table 2. Quality rating levels.

Quality Score Rating

If Q<2 Excellent

If Q >= 2 and Q<=5 Good

If Q> = 6 and Q<=10 Poor

RULE: R1 IF Q<2 THEN
EXCELLENT
RULE: R2 ELSE
IF Q>=2 AND Q<=5 THEN
GOOD
RULE: R3 ELSE
IF Q>=6 AND Q<=10 THENPOOR

6. Model Development

A knowledgebase is created and maintained to store the
cases against which the matching process has to be
performed. Parameters with weight related to the software
are given as input and the quality is predicted by finding
the best match from the knowledgebase. See Figure 1.

Figure 1. cuntest level diagram.

6.1. Input Data Module

This module accepts the values of various parameters
from the user. It also has the provision of assigning
weights to the parameters.

6.2. Prediction Module

This module predicts the quality of software for which
the parameters have been given as input. The quality is
calculated using different similarity measures. These
measures use the knowledgebase to find the matching
cases for the input parameters. Once the matching cases
are generated the new results are added to the database.
Depending upon the dissimilarity between two projects it
calculates the quality (Q) of the module with respect to
lines of code. Only those results are added that give an
error of 5% or less.

The inputs to the proposed model are as follows:
•Lines of code
•Number of Functions or Procedures
•Experience of the Programmer in years
• Difficulty level of software.

7. Results and Analysis

We present the results obtained when applying the Case-
based reasoning model to the data set. The accuracy of
estimates is evaluated by using the magnitude of relative
error MRE defined as:

MRE abs
AP TP

AP

−=

Where AP = Actual parameter
TP = Targeted parameter
Prediction level Pred is used to test the performance of

the model. It is defined as:
Pred(p)= E/R
Where, R is the total size of the data set and E is the

number of programs. We calculate Pred (0.10) values for
the various values of weights. We have used feature

weights from wi ranging between 0 to 1. These were the
values as suggested by experts, in our case, they comprised
of a team of faculty members from various colleges/
institutes actively involved in software engineering
research. The results of applying the different
combinations of weights are displayed in Table 1, quality
rating levels are shown in Table 2 and results for software
quality prediction are shown in Table 3.

52 Ekbal Rashid et al.: Analogy-based software quality prediction with project feature weights

Table 1. Results of applying different weight measures to the analogy-

based model.

S. No. W1 W2 W3 W4
Pred(0.1)

Euclidean

Pred(0.10)

Manhattan

1 0.5 1 1 1 0.97 0.883

2 1 0.5 0.5 0.5 0.833 0.316

3 0.5 1 0.5 0.5 0.816 0.3

4 0.5 0.5 0.5 1 0.833 0.316

5 1 0.25 0.3 0.3 0.616 0.316

6 0.25 1 0.3 0.3 0.65 0.25

7 0.25 0.25 1 0.3 0.66 0.26

8 1 0.5 0.5 0.5 0.816 0.33

9 1 1 1 1 0.9 0.66

10 0.5 1 1 1 0.97 0.883

11 0.5 0.5 1 1 0.8 0.633

12 1 0.5 0.5 1 0.9 0.633

13 0.4 0.25 1 0.5 0.622 0.61

14 0.25 0.25 0.25 0.5 0.80 0.360

15 0.5 0.25 1 0.25 0.77 0.522

Table 3. Quality of Software.

Rules
Quality Level of

Software
Class %

R1 High Excellent 80.1%

R2 Medium Good 13.3%

R3 Low Poor 6.6

8. Conclusions and Future Trends

The aim of paper is to improve in accuracy of
predictions and increasing the reliability of the
knowledgebase was our priority. For each program we
have evaluated the students four times. Value of Q (Quality
of software) is calculated by indigenous tools written in c
language and graph was plotted through MATLAB 7.10.0
version which is shown in Figure 2. It can be seen in Table
3 the results are very good where quality of software is
concerned because 80.1% are excellent, 13.3% are good
and 6.6% are poor (As per quality rating levels). In this
research paper we have used two similarity measures
Manhattan Distance and Euclidean Distance. The
combination (0.5, 1, 1, 1) works the best where prediction
is concerned because 97% data are within 10% error for
Euclidean distance and 88% data are within 10% error for
Manhattan distance measure. Apart from predicting quality
of software, this system can also be used to predict the
development time. As part of our ongoing work, increasing
the volume of knowledgebase is another objective.

Figure 2. Classification used for Software Quality prediction.

References

[1] A. Idri, L.Kjiri, and A Abran. (2000), “COCOMO Cost

Model Using Fuzzy Logic”, In Proceedings of the 7th
International Conference on Fuzzytheory and Technology,
pp.219-223. Atlantic City, NJ, USA.

[2] A. Idri and A Abran. (2000b), “Towards A Fuzzy Logic
Based Measures for Software Project Similarity”, In

 American Journal of Software Engineering and Applications 2013, 2(2) : 49-53 53

Proceedings of the 6th Maghrebian Conference on
Computer Sciences, pp. 9-18, Fes Morroco.

[3] A. Idri and A. Abran. (2001), “A Fuzzy Logic Based
Measures For Software Project similarity: Validation and
Possible Improvements”, In Proceedings of the 7th
International Symposium on Software Metrics, pp. 85-96,
England, UK, IEEE.

[4] A. Idri , A. Abran and T.M. Khoshgoftaar .(2001c), “ Fuzzy
Analogy: Anew Approach for Software Cost Estimation”,
In Proceedings of the 11th International workshop on
software Measurements, pp.93-101, Montreal, Canada.

[5] G.Kadoda, M Cartwright, L Chen, and M.shepperd.(2000),
“Experiences Using Case- Based Reasoning to Predict
Software Project Effort”, In Proceeding of EASE, p.23-28,
Keele,UK.

[6] I. Myrtveit and E. Stensrud. (1999), “A Controlled
Experiment to Assess the Benefits of Estimating with
Analogy and Regression Models”, IEEE transactions on
software Engineering, vol 25,no. 4, pp. 510-525.

[7] K. Ganeasn, T.M. Khoshgoftaar, and E. Allen. (2002),
“Case-based Software Quality Prediction”, International
journal of Software Engineering and Knowledge
Engineering, 10 (2), pp. 139-152.

[8] M. Auer, A. trendowicz, B. Graser, E. Haunschmid and S.
Biffl, “Optimal Project Feature Weights in analogy-based
Cost Estimation: Improvement and Limitations”, IEEE,
TSE, Vol.32, No.2, Feb 2006, pp 83-92.

[9] S. Kumar and V.Bhattacharjee,(2005),“Fuzz logic based
Model for Software cost Estimation “,In Proceedings of the
international Conference on information Technology,
Nov’05, PCTE, Ludhiana India.

[10] S. Kumar and V.Bhattacharjee,(2007),“Analogy and Expert
Judgment: A Hybrid Approach to Software Cost
Estimation“, In Proceedings of the National Conference on

information Technology: Present practice and Challenge,
Sep’07, New-Delhi, India.

[11] V. Bhattacherjee and S. Kumar,(2004),”Software cost
estimation and its relevance in the Indian software
Industry”, In Proceedings of the International Conference
on Emerging Technologies IT Industry, Nov’05, PCTE,
Ludhiana India.

[12] V. Bhattacherjee and S .Kumar,(2006),”An Expert- Case
Based Frame work for Software Cost Estimation”, In
Proceedings of the National Conference on Soft Computing
Techniques for Engineering Application (SCT-2006), NIT
Rourkela.

[13] E. Rashid, V. Bhattacherjee, S. Patnaik, “The Application of
Case-Based Reasoning to Estimation of Software
Development Effort”. International Journal of Computer
Science and Informatics (IJCSI) ISSN 2231 –5292, Vol 1
Issue 3 pp 29-34 Feb 2012.

[14] V. Bhattacherjee, S. Kumar and E. Rashid ,A Case Study on
Estimation of Software Development Effort” In
Proceedings on International Conference on Advanced
Computing Technologies(ICACT-2008), Gokaraju
Rangaraju Institute of Engg & Technology, Hyderabad,
India,p.no.161-164.

[15] Ekbal Rashid, Srikanta Patnaik, Vandana Bhattacherjee “A
Survey in the Area of Machine Learning and Its Application
for Software Quality Estimation” has been published in
ACM SigSoft ISSN 0163-5948, volume 37, number 5,
September 2012,
http://doi.acm.org/10.1145/2347696.2347709 New York,
NY, USA.

[16] Shi Zhong,Taghi M.Khoshgoftaar and Naeem Selvia
“Unsupervised Learning for Expert-Based Software Quality
Estimation”.Proceeding of the Eighth IEEE International
Symposium on High Assurance Systems Engineering
(HASE’04).

