
 

American Journal of Remote Sensing 
2018; 6(2): 64-73 

http://www.sciencepublishinggroup.com/j/ajrs 

doi: 10.11648/j.ajrs.20180602.12 

ISSN: 2328-5788 (Print); ISSN: 2328-580X (Online)  

 

Application of Dynamic Threshold in a Lake Ice Detection 
Algorithm 

Peter Dorofy
1
, Rouzbeh Nazari

1, *
, Peter Romanov

2 

1Department of Civil and Environmental Engineering, Rowan University, Glassboro, USA 
2NOAA Cooperative Remote Sensing Science and Technology Center (CREST), City University of New York, New York, USA 

Email address: 

 
*Corresponding author 

To cite this article: 
Peter Dorofy, Rouzbeh Nazari, Peter Romanov. Application of Dynamic Threshold in a Lake Ice Detection Algorithm. American Journal of 

Remote Sensing. Vol. 6, No. 2, 2018, pp. 64-73. doi: 10.11648/j.ajrs.20180602.12 

Received: July 23, 2018; Accepted: August 2, 2018; Published: August 29, 2018 

 

Abstract: The traditional method involved in the classification of surface types such as water, ice, and snow rely on thresholds 

values of spectral properties that are fixed. However, the use of daily fixed thresholds leaves a substantial number of either 

unclassified and/or misclassified ice and water pixels. In this study, a new dynamic threshold technique is proposed to identify 

and map lake ice cover in the imagery of GOES-I to P series satellites. In addition, dynamic threshold can be used as an 

alternative solution to Bidirectional Reflectance Distribution Function (BRDF) models. The technique has been applied using 

GOES-13 imager data over Lake Michigan, one of five of the Great Lakes. Nine scenes based on an hourly acquisition of a single 

day are used to visually sample water and ice pixels. A threshold for the visible (0.62 µm) and the reflective component of the 

mid-infrared (3.9 µm) is determined for each scene by the intersection of the probability distributions of the water and ice 

samples. The thresholds are used as decision thresholds in a binary test algorithm applied on a per-pixel basis. Both fixed 

threshold (single scene) and dynamic thresholds (multiple scenes) have been compared. Dynamic threshold shows a significant 

gain in classified pixels over fixed threshold. A preliminary quantitative assessment is introduced to evaluate the algorithm’s 

performance using sensitivity and specificity testing. The classification results show a sensitivity of 98% when delineating thick 

ice and water and 87% when delineating thick/thin ice and water. Implementing a dynamic threshold, can be used in constructing 

ice maps in applications that benefit from high temporal resolution imagery. 

Keywords: Lake Ice Concentration, Dynamic Threshold, GOES Imager, Remote Sensing, Shortwave Infrared, Snow Index, 

Geographical Information System (GIS) 

 

1. Introduction 

With the launch of GOES-16 in November 2016, a new era 

of remote sensing research over the North and South Atlantic 

basin and adjacent land masses has begun. The primary 

GOES-16 instrument is the Advanced Baseline Imager 

capable of providing high spatial and temporal resolution data 

in 16 bands. The remote sensing scientific and engineering 

community has developed various products based on this 

instrument including ice and snow maps [1]. This particular 

study is twofold. 1) Present the use of dynamic threshold in 

developing a sea and lake ice map [2]; 2) Promote further the 

use of the GOES-13 imager in snow and ice mapping [3, 4] 

and the potential to develop these maps using historical 

imagery. It is the intention of the authors, that this work may 

contribute to the study of climate data in the Great Lakes 

region of which over 30 years of data from NOAA’s GOES 

program are available. 

Remote sensing based snow and ice maps for the North 

American region are generally limited to the short-wave 

infrared (SWIR) snow/ice detection bands (1.58-1.64 µm 

window) of certain multispectral sensors typically found on 

polar orbiting satellites. These include the Moderate 

Resolution Imaging Spectroradiometer (MODIS) on board 

NASA’s Terra and Aqua satellites, the Advanced Very High 

Resolution Radiometer (AVHRR) on post NOAA-14 weather 

satellites, and the Visible Infrared Imaging Radiometer Suite 

(VIIRS) onboard the Suomi National Polar-Orbiting 

Partnership (Suomi NPP) spacecraft. Use of these optica 



 American Journal of Remote Sensing 2018; 6(2): 64-73 65 

 

sensors for snow and ice mapping are limited to clear sky 

conditions. Unlike polar-orbiting satellites, the higher 

temporal resolution of geostationary satellites offer greater 

opportunity in monitoring for cloud-free conditions and pixel 

classification via a daily composite map of cloud-free pixels. 

Prior to GOES-16, the GOES imagers were limited to 5 bands, 

none of which were in the SWIR needed for ice mapping. 

However, research in the use of the mid-infrared (MIR) 3.9 

µm band for snow and ice maps have been investigated 

through the GOES imagers [3, 4]. 

Ice mapping products derived from polar orbiting satellites 

are also limited in the use of constant threshold in their 

algorithms [2]. For example, an ice concentration algorithm 

for VIIRS uses fixed threshold for the visible (vis>0.08) and 

(NDSI>0.45) for ice identification [5]. A reflectance threshold, 

as referred to in this study, is a reflectance value shared by two 

dissimilar surfaces (differences in spectral properties). The 

ambiguity that exists when classifying these surfaces is 

predominantly a result of the particular viewing and 

illumination geometry at the time of data acquisition. For 

example, snow has a significantly higher albedo than liquid 

water (difference between albedo and reflectance will be 

discussed in a moment). However, when sunlight reflects off 

the surface of a water body at the same angle that a sensor is 

viewing the surface there is a significant “boost” in the 

reflectance of water, a phenomena known as sunglint; this can 

lead to classification errors while distinguishing ice from 

water. Ice mapping products with fixed or static thresholds 

that do not account for the variation in illumination geometry 

during the day are susceptible to these errors. Unlike polar 

orbiting satellites, which have low frequency of coverage 

offering at best a daily snapshot of the illumination geometry 

for a given area, geostationary satellites offer continuous 

coverage that allows observations across various illumination 

geometries. This information is useful in building a threshold 

that adapts to these changing lighting conditions. 

The challenge for developing any surface type 

classification process, accounting for the ambiguity of 

dissimilar surfaces with overlapping spectral signatures, 

requires an understanding of multispectral surface reflection 

which depends upon both illumination and viewing direction, 

and is described by a particular surface’s Bidirectional 

Reflectance Distribution Function (BRDF). Albedo is defined 

as the fraction of incident radiation that is reflected by a 

surface. The albedo of snow and ice is dependent on the solar 

zenith angle, �. Reflectivity of snow and ice increases with 

increasing �  [6]. Albedo differs from reflectance in that 

albedo is the directional integration of reflectance over all 

possible sun-view geometries. Albedo depends on the spectral 

and angular distribution of incident radiation and thus is 

dependent on BRDF [7]. A Lambertian surface (completely 

diffuse) would have a BRDF plot that is cylindrical in shape 

with a nearly flat top; however, the reflectance of radiation 

from most natural surfaces is dependent on the sun-view 

geometry. Work has been done on laboratory measurements of 

BRDF [8], including field investigations [9] and the 

usefulness of these measurements in remote sensing 

applications. Application of laboratory measurements of 

BRDF on remote sensing data presents challenges including 

the broader scale of remote sensing instruments, complexity 

of physically-based BRDF models in transposing them onto 

remote sensing data, and the heterogeneity of land cover. 

These challenges have been investigated by measuring BRDF 

of various surface types through remote sensing instruments; 

including airborne [10] and geosynchronous [11] and 

evaluated against existing BRDF models. Today, natural 

surface BRDF databases exist that can be used to validate 

satellite sensors [10]. 

Dynamic threshold has been proposed in this study as an 

alternative to investing in a BRDF model for an ice mapping 

algorithm. In order to build a robust and reliable ice detection 

algorithm, it is necessary to properly account for the effects of 

the variable viewing and illumination geometry of 

observations. Conceptually, a dynamic threshold can be an 

alternative solution to accounting for these effects over the use 

of Bidirectional Reflectance Distribution Function (BRDF) 

models which mathematically correct for surface reflectance 

anisotropy during the classification process. As a continuation 

of previous work [4], which provided a preliminary evaluation 

of the MIR band to lake ice detection using a single threshold, 

the results of applying a dynamic threshold are presented in 

this paper. A dynamic threshold in this study is a time series of 

hourly reflectance thresholds based on �(� ∩ �), where I is 

the probability of a pixel detected as ice and W is the 

probability of a pixel detected as water. These probabilities 

have been derived from hourly plots of normal distributions of 

ice and water pixels and applied to an ice detection algorithm 

that uses the mid-infrared band to delineate thick ice and water. 

Dynamic thresholds in the visible have been used in previous 

studies including ice mapping which has been demonstrated 

over the Caspian Sea [2] and in brightness temperature for 

cloud detection [12]. 

2. Method 

The Great Lakes are a vital freshwater resource for the 

millions of people who live along the shores. In addition, the 

whitefish fishery is the most economically valuable 

commercial fishery in the upper Great Lakes. Climate change 

and variability may have implications on these resources. The 

Great Lakes in general are seeing a decrease in annual ice 

cover due to rising temperatures in the region that by the end 

of the century, are predicted to increase up to near 11°C in the 

summer and 0.5 to 9.1°C in the winter. Lake Michigan has 

been chosen as the study area for lake ice detection. Lake 

Michigan is one of five of the Great Lakes located in the 

northeastern Midwest United States along the U.S.–Canadian 

border The lake has a surface area of approximately 57,800 

km
2
 and a volume of 1,180 km

3
. 
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Figure 1. Ice cover on Lake Michigan. Image acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on February 28, 2015 (NASA). 

2.1. Satellite Channels 

The GOES-13 satellite is in geosynchronous orbit, with a nadir located at approximately 0.05°N, 75°W. Data collected by the 

GOES-13 imager instrument is being used in this study. The GOES imager is a five-channel instrument (one visible, four 

infrared), as listed in Table 1. All channels except channel 3 are used in this study. 

Table 1. GOES-13 imager channels. 

GOES-13 Imager 

Channel # 1 (VIS) 2 (MIR) 3 (Moisture) 4 (IR1) 6 (IR2) 

Wavelength Range (µm) 0.54–0.71 3.73–4.08 5.90–7.28 10.19–11.18 13.00–13.71 

Central Wavelength (µm) 0.62 3.90 6.54 10.7 13.34 

Instantaneous Field of View (IFOV), km 1 4 4 4 4 

 

2.2. Approach and Algorithm Development 

The Normalized Difference Snow Index (NDSI) is a snow 

index measurement that has traditionally been used in 

delineating snow and ice from other land surface features. 

NDSI is the normalized difference between the 0.6 µm visible 

band and the 1.6 µm SWIR band. An alternative to this, for 

sensors not operating in the SWIR window, is the ratio of the 

0.6 µm visible band and the 3.9 µm MIR band. This method is 

chosen since GOES-13 does not operate in the SWIR. 

Thick ice and snow have relatively high reflectivity in the 

visible. Ice reflectance substantially increases when ice 

thickness is above 5 cm, but noticeably lower reflectivity in 

the MIR. In this study, a new ratio of VIS to MIR called MISI 

(Mid-Infrared Sea and Lake Ice Index) is proposed to discern 

thick ice above 5 cm with a high MISI value and thinner or 

broken ice with a lower MISI value. GOES-13 channels 1 and 

2, VIS (0.62 µm) and MIR (3.9 µm), are used in the 

development of MISI. Channel 4 (10.7 µm) is used to obtain 

the skin temperature. The reflectance values of channels 1 and 

2, MISI, and skin temperature are the basis for ice 

classification in the algorithm. As this study is a continuation 

from previous work [4], the method for data acquisition, 

pre-processing, calibration and conversion, determination of 
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skin temperature, and the derivation of the 3.9 µm reflection 

component has been implemented. Readers are encouraged to 

refer to that work for a detailed explanation of the 

pre-processing and processing procedures used in the 

algorithm. 

As in the previous study [4], data was acquired for February 

28, 2015. Acquisition times for that day were every half-hour 

from 1430 UTC to 2030 UTC. These are the times that 

GOES-13 is in the continental US (CONUS) extended scan 

mode with the exclusion of near 18:00 UTC which is during 

the time GOES-13 is operating in full disc mode. These times 

also correspond to daytime conditions over the eastern half of 

the North American continent. The mean solar zenith angle 

across all scenes was 56.8° with a range from 51.73° to 

70.18°. 

The distinction between various surface types in a satellite 

image becomes possible owing to their different spectral 

response. A threshold-based decision-tree image classification 

scheme is used to distinguish between water, gray ice, and 

thick ice. In this study, gray ice is referred to as thin or broken 

ice. The spectral properties of gray ice and thick ice are 

significantly different [4]. In this paper, R1 is referred to the 

visible and R2 as the reflective component of the mid-infrared. 

The R1, R2, MISI [4] thresholds were determined through a 

visual inspection of the visible reflectance for a sampling of 

pixels from southern Lake Michigan. The sampling consists of 

a mix of water and ice pixels. 50 water pixels and 50 ice pixels 

were identified from each acquired image. The scene images 

were rendered in gray scale. Cloud-free pixels relatively dark 

were visually classified as water, cloud-free moderately bright 

pixels were classified as ice. Example is shown in Figure 2. 

The identification of ice was visually validated against ice 

charts of the Great Lakes from the National Ice Center. 

Delineating the different ice concentrations as classified by 

NIC was not conducted. It should be noted that darker ice such 

as thin or broken ice will have reflectivity in the visible similar 

to water. The data is next best fitted to a normal distribution. 

Figure 3 are the distributions for R1, R2, and MISI at 1430, 

1730, 2030 UTC. Blue is water, and red is ice. The number of 

bins for each distribution is equal to √	. As the sampling size 

was relatively small, the width of the bins is relatively wide. 

The R1 distributions show a clear distinction in the mean value 

between water and ice. The ambiguity occurs where both 

distributions overlap. The overlapping indicates that a pixel 

has probability of being water or ice. For the scope of this 

paper, the point of intersection �(� ∩�� , where I is the 

probability of a pixel detected as ice and W is the probability 

of a pixel detected as water, is chosen as a threshold value for 

that particular time. All data values above this point are 

classified as ice and all data values below this point are 

classified as water. Since thick ice will have R1 values 

significantly higher than water, it is reasonable to suggest that 

gray ice may occur at or near ��� ∩��. 

 

Figure 2. Visual inspection of 50 water pixels (blue) and 50 ice pixels (red) at 1730 UTC. 
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Figure 3. Probability distribution functions of water (blue) and ice (red) at 1430, 1730, 2030 UTC on February 28, 2015; (top) distribution of 0.64 µm refl; 

(middle) distribution of 3.9 µm refl; (bottom) distribution of MISI. 

Table 2 lists the probability threshold values for R1 (Tr1), R2 (Tr2), MISI (Tmisi) for each acquisition time. Tr2 is calculated: 

Tr1/Tmisi. In addition, observation geometry is also provided: solar zenith angle (θ), solar azimuth angle (ϕ), solar-satellite relative 

azimuth angle (γ). The observation geometry has been calculated from a point located at 43.450°N, 87.222°W. GOES-13 azimuth 

and zenith angles at this location are approximately 162.22°, and 51.72° respectively. 

Table 2. Probability thresholds (Tr1, Tr2, Tmisi) for individual acquisition times from population density plots for normal distributions of ice and water. 

Hour (UTC) Tr1 Tmisi Tr2 θ ϕ γ 

1430 0.14769 33.6477 0.044 70.18 122.94 39.28 

1600 0.10119 30.8794 0.033 58.28 143.95 18.27 

1630 0.088731 26.2937 0.034 55.39 152.12 10.10 

1700 0.088848 28.0156 0.032 53.21 160.88 1.34 

1730 0.091435 25.8933 0.035 51.83 170.08 7.86 

1830 0.092061 16.5419 0.056 51.73 189.03 26.81 

1900 0.08 15.523 0.051 53.01 198.27 36.05 

Hour (UTC) Tr1 Tmisi Tr2 θ ϕ γ 

1930 0.11904 15.1372 0.079 55.11 207.08 44.86 

2000 0.12614 18.4379 0.068 57.92 215.33 53.11 

2030 0.1019 33.6477 0.0302 61.36 222.97 60.75 

 

The fixed threshold values used in the original ice mapping 

algorithm [4] are replaced by the threshold values from Table 

2. Figure 4 shows the revised detection algorithm. Sampling 

cloud pixels was not conducted as it was not a goal of this 

study; therefore, the threshold values from the previous study 

for cloud identification were used. 
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Figure 4. GOES snow/ice detection algorithm. 

Figure 5 compares the fixed to dynamic threshold values for 

R1. Fixed threshold has been selected at 1730 UTC which is 

close to local solar noon [4]. There is high variability in the 

dynamic threshold values near the end of the day, this may be 

an artifact in the relatively small volume of the training data 

set. 

 

Figure 5. Fixed threshold against dynamic threshold versus acquisition times. 

3. Result 

Figure 6 compares the lake ice map generated for 1430 

UTC at a fixed threshold (left) generated from 1730 UT 

(Figure 4) and dynamic threshold (right). A visual inspection 

reveals there are substantially less unclassified pixels. 

Figure 7 is the resulting gain of classified pixels across the 

ten acquisition times (Table 2) for dynamic threshold over a 

fixed threshold. Gain is defined as the change in the number of 

pixels with a positive response against the same pixels tested 

using a static threshold (gain is zero). The most significant gains 

are near sunrise and sunset. Figure 8 is the final daily composite 

lake ice map. Application of a dynamic threshold provides less 

unclassified pixels, resulting in a more complete ice map. 

 

Figure 6. Lake ice map at 1430 UTC. (left) fixed threshold. (right) dynamic threshold at 1430 UTC. 
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Figure 7. Dynamic threshold pixel classification gains over fixed threshold. 

 

Figure 8. Lake ice daily composite. (left) fixed threshold; (right) dynamic threshold. 

4. Discussion 

At this point, the application of dynamic threshold for this 

particular scene has resulted in substantially fewer 

unclassified pixels. The next step is to test the performance of 

the algorithm in its ability to delineate ice and water. The use 

of spatial analysis methods commonly used in Geographic 

Information System (GIS) has been used to quantify this 

performance. ESRI ArcGIS (10.2.1) is used in validating the 

classified pixels against Interactive Multisensor Snow and Ice 

Mapping System (IMS) and NIC ice maps. Vector and raster 

data are the two basic spatial data types used in GIS. Vector 

data are comprised of vertices and paths. Vertices can be used 

to construct lines and polygons (areas). The simplest vector 

data – vector points – are XY coordinates. Vector data are 

stored as XY coordinate pairs (latitude and longitude). Raster 

data are comprised of pixels (grid cells). Each pixel is 

associated with a value. Discrete rasters have distinct 

categories. These data may be stored as integer values to 

represent classes. For example, in land or surface cover, a 

value of 4 may represent snow, a value of 3 may represent sea 

ice. Raster data may be stored in the GeoTIFF file format 

which allows georeferencing information to be embedded 

within a TIFF file. Raster data can be converted into vector 

data which may then be stored as a shapefile. The shapefile 

format is developed and regulated by ESRI and allows 
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geospatial data to be shared across multiple GIS platforms. 

The U.S. National Ice Center provide ice and snow products 

in various formats including geotiff and shapefiles. In this 

study, the IMS data is obtained as a geotiff and the NIC ice 

concentration map is obtained as a shapefile. The MISI 

classification data stored as a matrix in Matlab is converted to 

vector data for use in GIS. 

There are multiple techniques in performing quantitative 

analysis in GIS. The process of validation in this study 

involves testing a MISI pixel class that satisfies a boundary 

condition derived from the IMS and NIC maps that best 

represents the class. This decision boundary will be referred to 

as a catchment area. For the IMS, this is done by vectorizing 

the input raster. The process of vectoring a raster is shown in 

Figure 9. The polygons conform exactly to the raster’s cell 

edges (non-simplified output). This method should work well 

as IMS classifications are relatively homogeneous. Table 3 

presents the classification scheme of this model (MISI), IMS, 

and NIC. The MISI values are the classes and the IMS and 

NIC are values of the catchment areas. 

 

Figure 9. Process of vectorizing raster data. (Used with permission. Copyright © 2017 Esri. All rights reserved.) 

Table 3. Classification values for three products. 

MISI IMS NIC (CT Codes) 

2 Water 1 Water 00 Ice Free 

3 Gray Ice 3 Ice 20 Young Ice 

4 Snow/Thick Ice 4 Snow 91 Medium 1st Year Ice 

5 Cloud  92 Fast Ice 

To prepare for analysis in GIS, the classification map was 

down-sampled to a resolution of (4km)
2
/pixel. The resulting 

3440 test pixels (16km
2
/pixel) total area of coverage is 55,040 

km
2
 (area of Lake Michigan is approximately 58000 km

2
). 

These 3440 test pixels that fall within the Lake Michigan 

boundary are spatially queried and checked for containment 

within each catchment area. Figure 10 shows the IMS ice 

catchment area in red and water catchment area in light blue 

(a). All MISI pixels are queried within the ice catchment (b); 

and within the water catchment (c). The percentage of each 

MISI pixel classification within each IMS catchment area are 

tabulated (Table 4). 2.56% remain unclassified. For the IMS 

product, the ice/water numerical fraction is 78.97%/20.35%; 

MISI product is 70.3%/12.61%. 

 

Figure 10. (a) IMS ice catchment area in red and water catchment area in blue. Spatial query of MISI pixels within (b) IMS ice area; (c) IMS water area. 

Table 4. Percentage of MISI classified pixels within IMS catchment areas. 

 Snow/Thick Ice Gray Ice Water Cloud 

IMS Ice 40.98% 29.33% 2.5% 3.95% 

IMS Water 0.75% 9.27% 10.11% 0.55% 

Here the performance of the classification is discussed. 

Sensitivity and specificity are statistical measures of the 

performance of a binary classifier. Sensitivity measures the 

proportion of actual lake ice pixels which are correctly 

identified. Specificity measures the proportion water pixels 

that are correctly identified. Table 5 presents a breakdown of 

these measurements. From the performance evaluation table, 

the inclusion of gray ice in the classification results in lower 

performance (86.52%) than without it (94.01%). This is due to 

the ambiguity that exists between cold water and gray ice. 

Both gray ice and water have similar reflectivity and the only 

ice-water discrimination that occurs in the algorithm is from 
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the skin temperature [4]; therefore, there are a significant 

number of misclassified water pixels as gray ice (Figure 9c). 

NIC provides a more comprehensive ice concentrations 

delineation. The MISI model is compared. Figure 11 shows 

the NIC catchment areas for various ice concentrations (a). All 

MISI pixels are queried within fast sea ice catchment (b); 

within the medium 1
st
 year ice catchment (c); and within the 

ice free catchment. 

The percentage of each MISI pixel classification within 

each NIC catchment area are tabulated (Table 6). The table 

shows a possible delineation of thick ice and grey ice outside 

the medium 1
st
 year ice catchment area. 

Table 5. MISI Performance evaluation in IMS ice prediction using sensitivity and specificity tests. 

 MISI Ice Prediction 

IMS Ice snow/thick ice snow/thick/gray ice water 

T 
ice (TP) = 1410 (40.98%) (TP) = 2419 (40.98%+29.33%) (FP) = 86 (2.5%) 

E 

S 
water (FN) = 26 (0.75%) (FN) = 345 (0.75%+9.27%) (TN) = 348 (10.11%) 

T 

 sens = 1410/(1410+26) = 0.98 sens = 2419/(2419+345) = 0.87 spec=348/(348+86) = 0.80 

 Accuracy = 94.01% Accuracy = 86.52%  

 

Figure 11. (a) NIC catchment areas. Spatial query of MISI pixels within (b) NIC CT92; (c) NIC CT91; (d) NIC CT00. 

Table 6. Percentage of MISI classified pixels within NIC catchment areas. 

 Snow/Thick Ice Gray Ice Water Cloud 

NIC 00 Ice Free 0.2% 9.68% 11.19% 0.17% 

NIC 20 Young Ice  0.03% 3.89% 0.049% 0.03% 

NIC 91 Medium 1st Year Ice  23.17% 24.48% 1.02% 3.89% 

NIC 92 Fast Ice 18.49% 0.23% 0.03% 0.38% 

 

5. Conclusion 

A dynamic threshold is an alternative to Bidirectional 

Reflectance Distribution Function (BRDF) correction which 

accounts for the biophysical, reflectance, and specular 

properties of a surface. In this study, a dynamic threshold 

based on lake ice detection method using an hourly threshold 

is developed. The threshold values are calculated on an hourly 

basis and applied to an ice detection algorithm through each 

iteration. The algorithm has been applied over Lake Michigan, 

one of five of the Great Lakes. Both fixed and dynamic 

thresholds have been compared. The resulting composite map 

using dynamic threshold yields significantly less unclassified 

pixels then the composite map using fixed threshold. A 

preliminary quantitative evaluation of the algorithm against 

IMS reveals good performance when delineating thick ice 

from water but lower performance when delineating gray ice 

from water. The use of a dynamic threshold may be used in 

constructing ice maps in applications that require higher 

temporal resolution. Future work proposed in this area 

includes additional yearly test scenes of the same region in 

identical solar-view geometries to validate the robustness of 

the dynamic threshold followed by the development of 

additional dynamic threshold for other solar-view geometries, 

in the same region. 
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