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Abstract: Recent scientific articles published by many of the most popular authors in HPLC, based both in Academia, as 

well as at industry leading companies, regarding the relatively new technology in chromatography known as UHPLC, have 

increasingly focused on a methodology of evaluating the performance of packed chromatographic columns, by suggesting that 

the value of the Kozeny constant is variable, rather than a constant. This practice is totally invalid and, in addition, is 

demonstrably false. In this paper, we will prove, conclusively, that this is the case. In so doing, we will use the experimental 

data provided by these very authors themselves, in combination with well – settled fluid dynamics theory dating back to 1901, 

to prove that their conclusions relative to their calculated values for the Kozeny constant, are entirely without merit and not 

supported by their own measurements. In addition, we will further demonstrate that, based upon a newly minted theory of fluid 

dynamics in closed conduits, published for the first time in 2019, representing the most recently published reference in fluid 

dynamics, the unique constant value for this Kozeny parameter, which has been previously shown to be validated over the 

entire fluid flow regime, will be identified and applied to the reported data, thus, correcting for the errors made by the paper 

authors and ending approximately 150 years of ambiguity in the science of packed conduits and, HPLC, in particular. 
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1. Introduction 

We begin by introducing a methodology used in 

engineering circles, as opposed to chromatographic circles, 

called hydraulic gradient [1]. To put this term into context for 

all disciplines, we show the relationship between hydraulic 

gradient j and pressure gradient (∆P/L): 

j �
∆�

����
                                   (1) 

Where ∆P = the pressure differential across the packed 

conduit and L = the length of the conduit. 

We can see from the righthand side of equation (1) that 

hydraulic gradient, j, involves, not only, the pressure 

gradient, (∆P/L,) across a packed conduit, but also, includes 

the additional variables, ρf, the fluid density, and g, the 

acceleration due to gravity. Thus, from an empirical 

perspective regarding packed column permeability, a 

practitioner needs to identify the measured pressure drop, ∆P, 

at any given fluid flow rate, q, the length of the conduit, L, 

and, because both these following entities are already baked 

into the measured pressure drops, obtain from reference text 

books the values for the density of the fluid used in the 

measurement, ρf, as well as the acceleration due to gravity, g. 

In addition, since it is customary when carrying out 

permeability determinations in packed conduits, to record the 

measured flow rate corresponding to the measured pressure 

drop, as fluid flux, µs, through the packed conduit, plotting 

fluid flux, µs, versus hydraulic gradient, j, is a popular 

engineering methodology. Thus, we can write: 

	


�

4�
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                                      (2) 

Where, µs = fluid flux, also called linear superficial fluid 

velocity, q = volumetric fluid flow rate, D = the conduit 

diameter and π = a universal constant. 

Accordingly, in order to use the fluid flux parameter, the 

practitioner must measure, in addition to the fluid volumetric 

flow rate, the conduit diameter, which means that, when 

evaluating the permeability of packed conduits 
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experimentally, he must ascertain, independently, the values 

of D, L, q, ∆P, η, ρf, g and π, i.e., 8 independently determined 

entities. 

Where, η = the fluid absolute viscosity. 

2. Methods 

The Forchheimer Fluid Flow Model 

When reporting empirical results of permeability in packed 

conduits, the Forchheimer fluid flow model is a popular 

engineering methodology, especially when the fluid flow 

regime involves significant kinetic contributions [2]. We can 

write the Forchheimer equation as follows: 

� � �	� � �	�2                                 (3) 

Where, a, and b, are the Forchheimer coefficients for the 

viscous and kinetic contributions, respectively. 

Thus, we can see from equation (3) that hydraulic gradient 

is a quadratic function of fluid flux. It is customary in 

engineering circles to make a plot of equation (3), a typical 

example of which is shown in Figure 1. 

 

Figure 1. Forchheimer coefficients. 

As shown in Figure 1, the second order polynomial trend 

line associated with this plot, which contains only measured 

values, renders the values of a, and b, both of which are 

represented as having a constant value, over all flow rate 

ranges, when there are no significant wall effects, i.e., at 

large values of the D/dp ratio. Thus, we can describe the 

Forchheimer coefficients, a, and, b, as “residual fudge 

factors” which guarantee that, not only, does our measured 

values for pressure gradient correspond exactly to our 

calculated values, on the one hand, but also, on the other 

hand, the correct mix of viscous and kinetic contributions 

embodied in our measured values for pressure gradient will 

be maintained in our calculated values. 

Darcy’s Law 

When experimental measurements are confined to the flow 

regime known as laminar, which is typically the case in the 

chromatographic columns depicted in published articles 

relative to UHPLC, the value of the modified Reynolds 

number, Rem, is always less than unity and the plot in Figure 

1, above, will appear linear, as opposed to curved. In this 

scenario of empirical data, Darcy’s Law is typically used to 

justify the pressure flow relationship and, in the publications 

referred to here, the authors generally use the specific 

permeability, K, as a means of communicating their 

conclusions relative to their measured pressure drop data [3]. 

Thus, we may write as follows: 

K �
	
��

∆�
                                 (4) 

Where, K = the specific permeability. 

Accordingly, we can see from equation (4) that this 

methodology differs from that of using the hydraulic gradient 

because it does not contain a term representing the kinetic 

contributions to pressure gradient, being confined to viscous 

contributions only. Consequently, it does not contain specific 

terms for, either the fluid density, ρf, or the acceleration due 

to gravity, g, both of which are readily available from 

reference text books and are, more importantly, embedded in 

the pressure flow relationship, as dictated by the Laws of 

Nature. 

The Kozeny/Carman Fluid Flow Model 

Since many authors report their experimental results in 

terms of the so-called Kozeny constant, Kc, we include herein 

a definition as follows [4]: Thus, we may write, based upon 

the Kozeny-Carman equation: 

�� �
��
���
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Where, ɛ0 = the external porosity of the packed conduit, dp 

= the spherical particle diameter equivalent, Kc = the Kozeny 

constant. 

Accordingly, we can see that the Kozeny/Carman 

equation, similar to Darcy’s Law, does not contemplate 

kinetic contributions to pressure gradient. 

We have now defined a methodology based upon the well-

settled theory taught by Forchheimer (1901) of evaluating the 

values reported by authors who suggest that the value of the 

Kozeny constant is a variable. By comparing the calculated 

value for Kc, using equation (5), in conjunction with the 

teaching of the Forchheimer model, therefore, we can debunk 

this erroneous methodology using the authors own measured 

values. We point out here that the Forchheimer model is even 

older than the Kozeny/Carman model by about 30 years [5]. 

Importantly, equation (5) contains the measured values for 

both ɛ0 and dp, both of which are very difficult to measure 

accurately when using UHPLC columns which contain the 

so-called sub 2 µm particles. In addition, these two 

parameters are not independent variables in the pressure flow 

relationship, as dictated by the Laws of Nature. Accordingly, 

using specific permeability K, as a means to communicate 

one’s measured data, a practitioner is using the underlying 

variables of D, L, q, ∆P, η,　ɛ0 and dp, which represents only 

6 independently determined variables, since the latter two are 

dependent variables. To make matters even worse, when 

using this methodology to report their empirical results, these 

authors never reconcile their values for the latter two 

parameters, a prerequisite dictated by the Laws of Nature, 

and accordingly, their respective values are many times self-

contradictory. Furthermore, since the viscosity term, η, is 

linearly related to pressure gradient, ∆P/L, via the fluid flux 

term (first power), µs, and the fluid density term　ρf, is 

quadratically related to the pressure gradient via the fluid 

flux term (second power), reporting one’s empirical results 

using the hydraulic gradient, j, is significantly more accurate, 

especially at higher values of fluid flux. 

However, identifying these built-in errors as a result of 

choosing to ignore kinetic contributions in the pressure flow 

relationship, is just a first step, since it will only establish that 

the authors values are wrong and that, consequently, any 

conclusions or extrapolations based upon their erroneous 

values for Kc will be without merit. Accordingly, a second 

step is needed to correct for this invalid methodology which 

will correct for these mistakes, not only, with respect to 

identifying the unique value for Kc, but also, with respect to 

the measurement uncertainty relative to both these two latter 

terms. Fortunately, such a methodology was published for the 

first time in 2019, which we will take advantage of in this 

paper. 

The Ergun Fluid Flow Model 

Published circa 1950 by Ergun et al, this fluid flow model 

contains both a viscous and a kinetic term in its rendition of 

the pressure flow relationship [6]. Accordingly, it is a far 

more accurate methodology to capture the pressure flow 

relationship over the entire fluid flow regime from laminar to 

fully turbulent, than either Darcy’s law or the 

Kozeny/Carman equation. Thus, we may write the Ergun 

equation as follows: 

∆�
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Where A and B are dimensionless coefficients. 

Additionally, based upon the teaching of the Ergun fluid 

flow model, we may also write: 

,-. =
'(��*+

�("#��)
                                   (7) 

Where, Rem = the modified Reynolds number. 

Despite the appropriate configuration of the Ergun 

equation and its merits to our application herein, however, it 

has been adequately documented in the literature that the 

values of 150 and 1.75 assigned by Ergun in 1952 for the 

values of A and B, respectively [7], are not accurate, and 

must be modified to accurately reflect the true relationship 

between the variables identified in equation (6) [8]. We will 

follow this approach herein and take advantage of modifying 

the Ergun equation values of A and B to present our QFFM 

analysis in a format recognizable to those not yet familiar 

with the teaching of the QFFM. 

The Quinn Fluid Flow Model (QFFM) 

This newly minted flow model was first published in 2019 

under the label of “Quinn’s Law of Fluid Dynamics in Closed 

Conduits” [9]. Since a detailed discussion of this 

development is beyond the scope of this paper, we will 

simply include some additional references herein to further 

assist the reader in understanding its impact and we will use 

it to correct for mistakes made by the authors under these 

circumstances [10-12]. For our needs here in this paper, we 

will simply adopt the teaching of the QFFM in the form of 

the Q-Modified-Ergun equation which defines the values of 

the Ergun coefficients of A and B based upon empirical 

evidence from the published papers. Thus, we may write 

from the QFFM, a definition for both Ergun coefficients as a 

function of the Forchheimer coefficients as follows: 

A =
0123*+���

���
�

�("#��)
�

                                   (8) 

B =
5123*+�����

�

("#��)
                                    (9) 

Thus, we can see from equations (8) and (9) that our 

methodology includes specific terms for fluid density, ρf, and 

the acceleration due to gravity, g, which differentiates our 

methodology from that of the proponents of this variable 

Kozeny constant “mythology”. 

A Note of Clarification 

We want to clarify what the QFFM teaches relative to the 

Ergun parameters of A and B. The QFFM is a flow model 

which is based upon first principles as well as empirical 

evidence. Therefore, it is a theoretical equation, which has 

been, nevertheless, validated over the entire fluid flow 

regime by using classical empirical studies both for packed 

and empty conduits. Accordingly, it teaches values for the 
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Forchheimer coefficients equivalent which are based upon 

theoretical underpinnings as well as those which are 

empirically derived. Thus, we may write from the QFFM, a 

definition for both Ergun coefficients as a function of 

theoretical underpinnings as follows: 

A �
6789

:
                                   (10) 

B �
;

6<��
�                                    (11) 

The QFFM defines the term λ as a wall effect 

normalization coefficient which, in the case of UHPLC 

columns, is always unity (λ=1), because there are no wall 

effects as a result of the very large D/dp ratios in these packed 

conduits. This feature of the QFFM differentiates it from all 

other fluid flow models extant. Thus, it is abundantly clear 

from equations (10) and (11) that the value of A has always 

the constant value of 268.19 (approx.) and that the value of B 

is variable, being a function of the values of both λ and ɛ0, 

the wall-effect normalization coefficient and external 

porosity of the packed conduit, respectively. 

Finally, we point out that the values for both Ergun 

parameters, A and B, taught by the QFFM, are identical whether 

they are based upon the empirical Forchheimer coefficients 

[equations (8) and (9)] or the theoretical coefficients [equations 

(10) and (11)], allowing for measurement error in the former 

category. In other words, when properly adopted, all three fluid 

flow models, i.e., Forchheimer, Modified Ergun and QFFM, 

reinforce one another. 

3. Evaluating Third Party Published 

Works 

Example 1. Gritti et al 2014 

In a paper published in the Journal of Chromatography A, 

the authors report on the performance of 4 UHPLC columns, 

i.e., the so-called sub-2 µm particle chromatographic 

columns [13]. The authors assert that each of the four 

columns have a different value for Kc, the Kozeny constant. 

In Table 1 of the paper, the authors report their 

experimentally derived values which also includes their 

back-calculated values [using their eq (20)] of 158, 164, 140 

and 182, for the Kozeny constant for each of the 4 columns, 

respectively. 

We have applied the Forchheimer model, as described 

above, to the authors measured data and include an analysis 

summary in our Tables below which contains all the 

measured data reported and a comparison of all fluid flow 

models mentioned above, i.e., Forchheimer, Kozeny/Carman, 

Q-Modified Ergun and QFFM. 

Analysis Summary Gritti et al. 

Table 1. The raw measured data in Gritti et al. 

Sample 

ID 
π g D L q η ρf ∆P K 

Forchheimer Kozeny QFFM 
  

Q-M-Ergun 

j meas aFor bFor j For Kc λ ɛ0 dp A B 

Measured 
                 

    

3193 3.14 981 0.21 10 0.008 0.006 0.90 300 4.E-05 33,979 153,500 80.15 33,979 268 1.00 0.41 2.E-04 268 2.23 

3086 3.14 981 0.30 10 0.014 0.006 0.90 300 4.E-05 33,979 166,000 90.10 33,979 268 1.00 0.41 2.E-04 268 2.35 

-3 3.14 981 0.21 50 0.001 0.006 0.90 300 4.E-05 6,796 172,500 95.70 6,796 268 1.00 0.40 2.E-04 268 2.42 

-1 3.14 981 0.30 50 0.003 0.006 0.90 300 4.E-05 6,796 174,000 96.90 6,796 268 1.00 0.40 2.E-04 268 2.43 

Table 2. Flow Models for the reported data in Gritti et al. based upon the values for Kc. 

Sample 

ID 
π g D L q η ρf ∆P K 

Forchheimer Kozeny QFFM 
  

Q-M-Ergun 

j meas aFor bFor j For Kc λ ɛ0 dp A B 

Reported 
                 

    

3193 3.14 981 0.21 10 0.008 0.006 0.90 300 4.E-05 33,979 153,488 137.00 33,979 158 1.00 0.39 2.E-04 158 2.67 

3086 3.14 981 0.30 10 0.014 0.006 0.90 300 4.E-05 33,979 165,988 149.00 33,979 164 1.00 0.38 2.E-04 164 2.79 

-3 3.14 981 0.21 50 0.001 0.006 0.90 300 4.E-05 6,796 172,500 198.00 6,796 140 1.00 0.37 2.E-04 140 3.16 

-1 3.14 981 0.30 50 0.003 0.006 0.90 300 4.E-05 6,796 174,000 134.00 6,796 182 1.00 0.39 2.E-04 182 2.65 

Table 3. The QFFM corrected data in Gritti et al. 

Sample 

ID 
π g D L q η ρf ∆P K 

Forchheimer Kozeny QFFM 
  

Q-M-Ergun 

j meas aFor bFor j For Kc λ ɛ0 dp A B 

QFFM 
                 

    

3193 3.14 981 0.21 10 0.008 0.006 0.90 300 4.E-05 33,979 153,500 80.15 33,979 268 1.00 0.41 2.E-04 268 2.23 

3086 3.14 981 0.30 10 0.014 0.006 0.90 300 4.E-05 33,979 166,000 90.10 33,979 268 1.00 0.41 2.E-04 268 2.35 

-3 3.14 981 0.21 50 0.001 0.006 0.90 300 4.E-05 6,796 172,500 95.70 6,796 268 1.00 0.40 2.E-04 268 2.42 

-1 3.14 981 0.30 50 0.003 0.006 0.90 300 4.E-05 6,796 174,000 96.90 6,796 268 1.00 0.40 2.E-04 268 2.43 

 

As shown in Table 1, we have determined both 

Forchheimer coefficients, aFor and bFor for each of the 4 

columns measured by the authors. Note that the values 

identified for the bFor coefficient are, 80.15, 90.1, 95.7 and 

96.9 for each of the 4 columns, respectively. Note also, the 

measured values for all 8 independent variables are displayed 

for each column reported.  

In order to establish the methodology used by the 

authors to back-calculate their respective values for Kc 

based upon their equation (20) outlined in their paper, we 
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have included our Table 2. As shown in Table 2, the 

values for the Forchheimer coefficients corresponding to 

the authors reported values for Kc for each of the 4 

columns, are entirely different from the values shown in 

our Table 1 representing the measured data and having the 

same values for hydraulic gradient j. Note, in particular, 

that the values identified for the bFor coefficient are, 137, 

146, 198 and 134 for each of the 4 columns, respectively. 

These values are significantly larger than those provided 

by the measured data, Therefore, this proves conclusively 

that the author’s measured data does not support their 

reported values for Kc. 

In order to further explain and correct the errors contained 

in the authors methodology, we include our Table 3. As 

shown in Table 3, applying the QFFM to the authors 

measured data validates the measured values for both of the 

Forchheimer coefficients exactly. Furthermore, note that the 

back-calculated value for KC, using the authors equation (20) 

establishes the unique value of 268 for all 4 columns. Note 

also, that the QFFM establishes different values for the 

underlying variables of ɛ0 and dp. In fact, the QFFM 

demonstrates that the author’s values for these two measured 

parameters are about 10% too low.  

In order to underline the significance of the authors 

erroneous methodology, we will now compare it to the 

corrected QFFM methodology, extrapolated to higher fluid 

flux values. We show this comparison for Col# 3193 in 

Figure 2 below. 

 

Figure 2. Extrapolated data for Column # 3193. 

As shown in Figure 2, the authors methodology becomes 

more and more discrepant as the value of the fluid flux 

increases. In other words, the authors measurements were 

confined to very low values of the fluid flux where the 

hydraulic gradient is dominated by viscous contributions and 

where the contribution of the kinetic term is very small. 

However, had they made measurements at higher values of 

the fluid flux, where the kinetic term contribution is 

significant, their conclusions on the performance of the 

packed columns would be entirely different, as dictated by 

their own measurements and, consequently, the Laws of 

Nature. 

Example 2. Cabooter et al 2008 

In a paper published in the Journal of Chromatography A, 

the authors report on the performance of 6 UHPLC columns, 

i.e., the so-called sub-2µm particle chromatographic columns 

[14]. The authors assert that each of the six columns have a 

different value for Kc, the Kozeny constant. In their Table 2 of 

the paper, the authors report their experimentally derived 

values which also includes their back-calculated values [using 

their eq (6)] of 165, 151, 187 and 190, 123 and 117 for the 

Kozeny constant for each of the columns, respectively. In 

addition, in their Table 4 of the paper the authors report their 

back-calculated values [using their eq (6)] of 245, 239, 196 

and 201, 179 and 179 for the Kozeny constant for each of the 

columns, respectively, but his time they use a different value 

for the particle size, dp. Astonishingly, however, they use the 

same values for the external porosity, ɛ0, in their back-

calculation for both values for the particle diameter, dp, which 

clearly establishes their underlying (erroneous) concept of 

treating these two variables as independent variables in the 

pressure flow relationship. In other words, they report 2 

different values for dp corresponding to the same values for ɛ0 

and measured pressure gradient, ∆P/L, which unambiguously 

violates the Conservation Laws of Nature. 

We have applied the Forchheimer model, as described 

above, to the authors measured data and include an analysis 

summary in our Tables below which contains all the 

measured data reported and a comparison of all fluid flow 

models mentioned above, i.e., Forchheimer, Kozeny/Carman, 

(Q-Modified Ergun) and QFFM. 

Analysis Summary Cabooter et al. 
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Table 4. The raw measured data in Cabooter et al. 

Sample ID Constants Measured 
      

Forchheimer 
 

Kozeny QFFM 
   

Q-M-Ergun 

 
π g D L q η ρf ∆P K j meas aFor bFor j For Kc λ δ ɛ0 dp A B 

Measured-2 
                  

    

1-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 1.E+07 3.44E-11 3,968 349,159 68 3,968 268 1.00 12 0.44 2.E-04 268 1.87 

2-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 3.02E-11 4,528 398,449 82 4,528 268 1.00 13 0.43 2.E-04 268 2.03 

3-Zorbax 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.59E-11 5,275 464,173 95 5,275 268 1.00 13 0.42 2.E-04 268 2.12 

4-Zorbax 3.14 981 0.46 5 0.0004 0.008 0.71 4.E+06 2.65E-11 1,074 453,322 92 1,074 268 1.00 13 0.42 2.E-04 268 2.10 

5-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.61E-11 5,228 460,066 80 5,228 268 1.00 12 0.44 2.E-04 268 1.90 

6-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.44E-11 5,602 492,927 91 5,602 268 1.00 13 0.43 2.E-04 268 2.02 

Table 5. The reported data in Cabooter et al. based upon the reported values for Kc shown in their Table 2. 

Sample ID Constants Measured 
      

Forchheimer 
 

Kozeny QFFM 
   

Q-M-Ergun 

 
π g D L q η ρf ∆P K j meas aFor bFor j For Kc λ δ ɛ0 dp A B 

Reported-2 
                  

    

1-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 1.E+07 3.44E-11 3,968 349,158 152 3,968 165 1.00 17 0.39 2.E-04 165 2.71 

2-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 3.02E-11 4,528 398,449 213 4,528 151 1.00 20 0.37 2.E-04 151 3.16 

3-Zorbax 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.59E-11 5,275 464,172 172 5,275 187 1.00 18 0.38 2.E-04 187 2.80 

4-Zorbax 3.14 981 0.46 5 0.0004 0.008 0.71 4.E+06 2.65E-11 1,074 453,322 162 1,074 190 1.00 17 0.39 2.E-04 190 2.73 

5-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.61E-11 5,228 460,065 290 5,228 123 1.00 22 0.36 2.E-04 123 3.46 

6-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.44E-11 5,602 492,926 351 5,602 117 1.00 24 0.35 2.E-04 117 3.78 

Table 6. The QFFM corrected data in Cabooter et al from their Table 2. 

Sample ID Constants Measured 
      

Forchheimer 
 

Kozeny QFFM 
   

Q-M-Ergun 

 
π g D L q η ρf ∆P K j meas aFor bFor j For Kc λ δ ɛ0 dp A B 

QFFM-2 
                  

    

1-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 1.E+07 3.44E-11 3,968 349,159 68 3,968 268 1.00 12 0.44 2.E-04 268 1.87 

2-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 3.02E-11 4,528 398,449 82 4,528 268 1.00 13 0.43 2.E-04 268 2.03 

3-Zorbax 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.59E-11 5,275 464,173 95 5,275 268 1.00 13 0.42 2.E-04 268 2.13 

4-Zorbax 3.14 981 0.46 5 0.0004 0.008 0.71 4.E+06 2.65E-11 1,074 453,322 92 1,074 268 1.00 13 0.42 2.E-04 268 2.10 

5-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.61E-11 5,228 460,066 80 5,228 268 1.00 12 0.44 2.E-04 268 1.90 

6-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.44E-11 5,602 492,927 91 5,602 268 1.00 13 0.43 2.E-04 268 2.02 

Table 7. The reported data in Cabooter at al based upon the reported values for Kc shown in their Table 4. 

Sample ID Constants Measured 
      

Forchheimer 
 

Kozeny QFFM 
   

Q-M-Ergun 

 
π g D L q η ρf ∆P K j meas aFor bFor j For Kc λ δ ɛ0 dp A B 

Reported-4 
                  

    

1-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 1.E+07 3.44E-11 3,968 349,159 125 3,968 245 1.00 17 0.39 2.E-04 245 2.72 

2-Hypersil 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 3.02E-11 4,528 398,449 170 4,528 239 1.00 20 0.37 2.E-04 239 3.17 

3-Zorbax 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.59E-11 5,275 464,172 168 5,275 196 1.00 18 0.38 2.E-04 196 2.80 

4-Zorbax 3.14 981 0.46 5 0.0004 0.008 0.71 4.E+06 2.65E-11 1,074 453,322 157 1,074 201 1.00 17 0.39 2.E-04 201 2.72 

5-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.61E-11 5,228 460,065 242 5,228 179 1.00 22 0.36 2.E-04 179 3.47 

6-Acquity 3.14 981 0.21 5 0.0004 0.008 0.71 2.E+07 2.44E-11 5,602 492,926 285 5,602 179 1.00 24 0.35 2.E-04 179 3.79 

 

As shown in our Table 4, we have determined both 

Forchheimer coefficients, aFor and bFor for each of the 6 

columns measured by the authors and reported in their Table 2. 

In order to establish the methodology used by the authors 

to back-calculate their respective values for Kc based upon 

their equation (6) and reported in their Table 2, we have 

included our Table 5. As shown in our Table 5, the values for 

the Forchheimer coefficients corresponding to the authors 

reported values for Kc in their Table 2 for each of the 6 

columns, are entirely different from the values shown in our 

Table 4 representing the measured data and having the same 

values for hydraulic gradient j. Note that the values for the 

bFor coefficient are significantly higher than those 

representing their measured data. Therefore, this proves 

conclusively that the author’s measured data does not support 

their reported values for Kc in their Table 2. 

Similarly, we use the QFFM in our Table 6 to, once again, 

identify the corrected value for Kc which the measured data 

supports. As shown in our Table 6, applying the QFFM to the 

authors measured data validates the measured values for both 

the Forchheimer coefficients exactly. Furthermore, note that 

the back-calculated value for KC, using the authors equation 

(6) establishes the unique value of 268 for all 6 columns. 

Note also, that the QFFM establishes different values for the 

underlying variables of ɛ0 and dp. In fact, the QFFM 

demonstrates that the author’s values for particle size is about 

5% too large and the values for the external porosity are 

about 15% too low. 

Finally, in order to establish the methodology used by the 

authors to back-calculate their respective values for Kc based 

upon their equation (6) and reported in their Table 4, we have 

included our Table 7. As shown in our Table 7, the values for 

the Forchheimer coefficients corresponding to the authors 

reported values for Kc for each of the 6 columns in their 
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Table 4, are entirely different from the values shown in our 

Table 4 representing the measured data and having the same 

values for hydraulic gradient j. Therefore, this proves 

conclusively that the author’s measured data does not support 

their reported values for Kc reported in their Table 4. 

In order to underline the significance of the authors 

erroneous methodology, we will now compare it to the 

corrected QFFM methodology, extrapolated to higher fluid 

flux values. We show this comparison for Col #1 Hypersil 

Gold C18 in Figure 3 below. 

 

Figure 3. Extrapolated data for Column # Hypersil Gold C18. 

As shown in Figure 3, the authors methodology becomes 

more and more discrepant as the value of the fluid flux 

increases. In other words, the authors measurements were 

confined to very low values of the fluid flux where the 

hydraulic gradient is dominated by viscous contributions and 

where the contribution of the kinetic term is very small. 

However, had they made measurements at higher values of 

the fluid flux, where the kinetic term contribution is 

significant, their conclusions on the performance of the 

packed columns would be entirely different, as dictated by 

their own measurements and, consequently, the Laws of 

Nature. 

Finally, since the authors methodology has been shown 

herein to be invalid because it violates the Laws of Nature, 

on the one hand, and, on the other hand, demonstrates that 

their measurement technique used to identify the values of ɛo 

and dp, was not sufficiently accurate, their proclamations 

regarding the relationship between reduced velocity, ν, and 

reduced plate height, h, both based upon these erroneous 

values, are null and void. The implications of this are 

significant but beyond the scope of this paper. We will further 

address this topic in a follow-on paper. 

4. Conclusions 

We have demonstrated in this paper that in order to 

validate the true value of the Kozeny constant, Kc, a 

practitioner must take measurements at both low and high 

values of the fluid flux parameter, µs, where the viscosity η, 

(low values of µs) and density ρf, (high values of µs) of the 

fluid, and g, the acceleration due to gravity, are properly 

accounted for as dictated by the Laws of Nature and, 

consequently, the Navier-Stokes equation. Furthermore, we 

have shown that the errors in the authors methodology may 

be catalogued and explained as follows: 

1. They used an invalid approximation for Kc which was 

too low by ignoring the kinetic term in their measured 

pressure/flow relationship. Rather, they based their 

calculated value for Kc on their inaccurately measured 

values of ɛo and dp. This results in an underestimation of 

the viscous contributions to measured pressure drop 

and, by default, an overestimation of the kinetic 

contributions, even when the flow is laminar. In 

addition, because they treated the value of Kc as a 

variable across all the columns in the study, their 

miscalculations result in, not only, values for the 

viscous and kinetic contributions which are wrong, but 

also, values which are inherently inconsistent with 

respect to both contributions across the columns in the 

study. 

2. Their measurement technique used to independently 

determine the values for ɛ0 and dp was not sufficiently 

accurate to identify the true values of these parameters 

in their experiments. For instance, the technique of 

Inverse Size Exclusion Chromatography (ISEC), which 

the authors used to determine the value of the external 

porosity is not capable of differentiating, with sufficient 

accuracy for use in the pressure flow relationship, the 

free space between the particles and the free space 

within the particles. This is, in part, due to the 

extraordinarily sensitive nature of the relationship 

between pressure drop and external porosity in a packed 

conduit which is amongst the most pronounced 

relationship found in all of physics. 
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3. Their methodology, erroneously, considers the 

parameters of external porosity, ɛo, and particle 

diameter, dp, as independent variables in the pressure 

flow relationship. Accordingly, the authors did not 

reconcile their reported values for these two terms 

which is also a prerequisite dictated by the Laws of 

nature. 

4. They ignored the Laws of Nature, a.k.a, (a) the 

Conservation Laws, (b) the Continuity Equation, (c) 

The Navier-Stokes equation, all of which dictate that, 

the values for ɛ0 and dp are not independent variables in 

the pressure flow relationship and, accordingly, must be 

reconciled as dependent variables, something the 

authors did not do. 

5. The authors in the Gritti et al paper asserted as a 

footnote in Table 1 of their paper that they “measured” 

the permeability. This is a blatant misrepresentation. 

You cannot “measure” permeability, you can only 

“calculate” it. This is because permeability is a man-

made entity, i.e., it is a mathematical construct, which 

has no basis in the Laws of Nature, unless it has been 

grounded (validated) by experiment, which the authors 

failed to do. Note that in our summary tables, herein, 

permeability, K, is designated as a calculated entity, not 

a measured one. 
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