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Abstract: This Quantitative Structure-Activity Relationship (QSAR) study was conducted using a series of twenty (20) 
chalcone derivatives with inhibitory activities against Plasmodium falciparum 3D7. The molecules were optimized at the 
B3LYP/LanL2DZ computational level, to obtain the molecular descriptors. This work was performed using the Linear 
Multiple Regression (LMR) method, the NonLinear Regression (NLMR) and the Artificial Neural Network (ANN) method. 
These tools allowed us to obtain three (3) quantitative models from the quantum descriptors that are, the overall softness (S), 
the bond lengths l(c=o) and l(c=c), and the polarizability (α). These models have good statistical performance. Among them, 
the ANN has a significantly better predictive ability R2

 =0.997; RMCE = 0.035; F= 3571.499. The external validation tests 
verify all the criteria of Tropsha et al. and Roy et al. Also, the applicability domain of this model determined from the levers 
shows that a prediction of the pIC50 of new chalcone derivatives is acceptable when its lever value is lower than 1.07. For the 
ANN method, the Ch19 molecule is certainly outside the applicability domain, but it is not an influential point for the model, 
because this derivative belongs to the validation set, and therefore was not used in the model development. The behavior of 
this molecule could be explained by its structural diversity. 
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1. Introduction 

Malaria is a potentially fatal disease caused by parasites of 
the genus Plasmodium transmitted to humans by the bites of 
female mosquitoes of the species Anopheles, known as 
"malaria vectors". There are five species of parasites that 
cause malaria in humans, two of which, Plasmodium 
falciparum and Plasmodium vivax, are the most dangerous 
[1]. According to the latest World Malaria Report, published 
in December 2020, there were 229 million cases of malaria in 
2019, up from 228 million in 2018. There were an estimated 
409.000 deaths from the disease in 2019, compared to 

411,000 deaths in 2018 [2]. Resistance of malaria parasites 
belonging to the antimalarial species P. falciparum is a 
recurrent problem. This resistance is undermining malaria 
control efforts and reversing progress in child survival. The 
design of antimalarial drugs that are free of Plasmodium 
falciparum (pf) resistance remains an unmet challenge for the 
scientific community. In this context, Kumar et al [3] have 
shown in their study that a series of chalcone derivatives 
show inhibition on the Plasmodium falciparum strain 3D7. 
Chalcones, compounds belonging to the flavonoid family, 
have proven their efficacy in the therapeutic and medicinal 
field. The presence of the double bond and the carbonyl 
group in chalcones gives them several biological activities 
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[4]. Chalcones and derivatives present biological activities 
such as anticancer [5, 6], anti-inflammatory [7, 8], 
antimalarial [9, 10], antioxidant [11, 12], antimicrobial [13, 
14], antihyperglycemic [15], antifungal [16], anti-HIV [17]. 
In our study, the IC50 inhibitory activity of chalcone 
derivatives against the p. falciparum 3D7 strain was used. 
Quantitative Structure-Activity Relationship (QSAR) study, 
is the method that correlates the molecular structure with a 
well-determined effect such as biological activity or chemical 
reactivity. It is increasingly used to reduce the excessive 
number of experiments, sometimes long, dangerous and 

costly in terms of time and money [18, 19]. It is in this 
perspective that the present manuscript was written in order 
to be able to set up a model to fight against the infection 
caused by malaria. All this contributes to the reduction of 
drug production costs [20, 21] and contributes to the 
protection of the environment. In general, the QSAR model 
is a function of one fifth (1/5) of the initial database. The 
overall objective of this work is to develop reliable models to 
explain and predict the antimalarial activity IC50 (median 
inhibitory concentration in µM) of a series of twenty (20) 
chalcone derivatives (Figure 1). 

 
Figure 1. Molecular structure, code and inhibitory concentration (IC50) of twenty-five (20) chalcone derivatives. 

2. Materials and Methods 

2.1. Computational Level of Theory 

In order to predict the antimalarial activity of chalcone 
derivatives quantum chemical calculations were performed 
using Gaussian 09 software [22]. DFT methods are generally 
known to generate a variety of molecular properties [23, 24, 
25] in QSAR studies. These increase the predictability of 
QSAR models while reducing the computational time and 
cost implication in new drug design [26, 27]. The 
B3LYP/LanL2DZ level of theory was used to determine the 
molecular descriptors. The twenty (20) molecules used in this 
study have Inhibitory Concentration (IC) ranging from 1.8 to 
169.9 µM. The median inhibitory concentration (IC50) is a 

measure of the effectiveness of a given compound in 
inhibiting a specific biological or biochemical function. 
Biological data are usually expressed as the opposite of the 
decimal-based logarithm of activity (− log��(�)) to obtain 
better mathematical values when structures are biologically 
active [28, 29]. The antibacterial activity will be expressed 
by the antibacterial potential pIC defined by equation (1): 


���� = − log��(���� ∗ 10��)	               (1) 

Where IC50, the inhibitory concentration in µM. 
The modeling was done using two methods. The first 

method is multilinear regression which is implemented in 
Excel [30] and XLSTAT [31] spreadsheets. The second 
method is artificial neurons which is included in the JMP Pro 
software [32]. 
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2.2. Used Molecular Descriptors 

In order to develop our QSAR model, some theoretical 
descriptors were determined. In particular, the global 
softness, the bond length (l(c=o)), the bond length (l(c=c)), 
the polarizability (α). 

Overall softness is the ability of an atom or molecule to 
retain an acquired charge. The lower the global softness of a 
system, the more it resists electron transfer and therefore the 
more stable it is. Its expression is given by the relation: 

S = �
�	                                       (2) 

With: 

	� = ����
� =	 �� (E���� − E ���)                  (3) 

The geometric descriptors used are the bond length l(c=o) 
and l(c=c) in Armstrong (A°) (Figure 2). These descriptors 
are illustrated in the figure below around the chalcone core. 

 

Figure 2. Geometric descriptors of the chalcone derivatives used: the bond 

lengths (l(c=o) and l(c=c)) in Armstrong (A°). 

The polarizability designates a phenomenon caused by the 
moment of the electric charges of the atom. A molecule 
placed in an electric field E undergoes a deformation and 
acquires an induced dipole electric moment proportional to 
the field E, the polarizabilities are expressed in Å3. They 
have the dimension of a volume. The atomic polarizability 
increases with the size of the atoms [33]. 

! = "�#$                                     (4) 

Where: 
α: Polarizability coefficient. "�:	Dielectric constant. # =	Induced dipole electric moment. 
The calculation of the partial correlation coefficient 

between each pair of the set of descriptors is less than 0.7 (aij 
< 0.7), which means that these different descriptors are 
independent of each other [34, 35]. Table 1 shows the values 
of the partial correlation coefficients aij of these descriptors. 

Table 1. Correlation matrix between the different physico-chemical 

descriptors. 

Variables S l(c=o) l(c=c) α 

S 1.0000    
l(c=o) -0.4277 1.0000   
l(c=c) 0.1802 0.5273 1.0000  
α -0.0387 0.2905 0.0179 1.0000 

2.3. Estimation of the Predictive Capacity of a QSAR Model 

The quality of a model is determined based on different 
statistical criteria of analysis including the coefficient of 

determination R2, standard deviation RMCE, cross-validation 
correlation coefficients &'(�  and Fischer's F. R

2, S and F 
relate to the fit of calculated and experimental values. They 
describe the predictive ability within the limits of the model, 
and allow us to estimate the accuracy of the calculated values 
on the test set [36, 37]. As for the cross-validation coefficient &'(� , it provides information on the predictive power of the 
model. This predictive power is called "internal" because it is 
calculated from the structures used to build the model. The 
correlation coefficient R

2
 gives an evaluation of the 

dispersion of the theoretical values around the experimental 
values. The quality of the modeling is better when the points 
are close to the fitting line [38]. The fit of the points to this 
line can be evaluated by the coefficient of determination. 

)� = 1 − ∑+,-,/01�,2-,34/567
∑+,-,/01�,8-,/0167                         (5) 

Where: 9:,;<=: Experimental value of antimalarial activity 92:,>?;@: Theoretical value of antimalarial activity 98:,;<= : Average value of the experimental values of 
antimalarial activity. 

The closer the R² value is to 1, the more the theoretical and 
experimental values are correlated 

The standard deviation RMCE is another statistical 
indicator used. It allows to evaluate the reliability and the 
precision of a model: 

RMCE = D∑+,-,/01�,-,34/567E�F��                       (6) 

The Fisher F test is also used to measure the level of 
statistical significance of the model, i.e. the quality of the 
choice of descriptors making up the model. 

F = ∑+,-,34/5�,-,/0167
∑+,-,/01�,-,34/567 ∗

E�F��
F                     (7) 

The coefficient of determination of the cross-validation QIJ� , allows to evaluate the accuracy of the prediction on the 
test set. It is calculated using the following relation: 

&KL� = ∑+,-,34/5�,8-,/0167�∑+,-,34/5�,-,/0167
∑+,-,34/5�,8-,/0167 	          (8) 

Criterion of acceptance of a model 

The performance of a mathematical model, for Eriksson et al 
[39], is characterized by a value of &KL� 	> 	0.5 for a satisfactory 
model, when for the excellent model &KL� 	> 	0.9. According to 
these authors, given a set of tests, a model will perform well if 
the acceptance criterion )� −	&KL� < 	0.3 is met. 

LOO (Leave-One-Out) cross-validation is a procedure that 
consists of excluding a molecule from the training set once, 
building a new model without this molecule and finally 
predicting the value of the dependent variable S:=T;U . The 
cross-validation correlation coefficient &KL�  (8) is calculated 
between the predicted values and the experimental values of 
the training set when each molecule has been removed once. 
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The model is considered to perform well if both acceptance 
criteria R² > 0.6 and &KL�  > 0,5 [40] are met with special care 
to the standard deviation σ which should be as small as 
possible [41]. 

According to Tropsha et al [42-44], for the external 
validation set, the predictive power of a model can be 
obtained from five criteria. These criteria are: 

1) )V;W>� > 0.7, 
2) &'L	V;W>� > 0.6, 
3) |)V;W>� − )��| ≤ 0.3, 

4)  
\]^_`a7 �]b7\
]^_`a7 < 0.1 and 0.85 ≤ d ≤ 1.15,  

5) 
\ef/g37 �ehb7\
ef/g37 < 0,1 and 0.85 ≤ d′ ≤ 1.15 

Furthermore, Roy and Roy [45], further refined the 
predictive ability of a QSAR model. They developed 
quantities jk� 	and	∆jk� , called metric values. jk�  determines 
the closeness between the observed activity and the 
prediction. The metric values jk� 	and	∆jk�  are calculated from 
the observed and predicted activities. Currently, these two 
different variants jk� 	and	∆jk� , can be calculated for the test 
set (internal validation) or for the test set (external 
validation). A QSAR model is acceptable to these authors, if 
both of these criteria are met. 

jk�888 = (jk
� + j′k� )2 	> 0.5 

∆jk� = |jk� − j′k� | < 0.2 

Où jk� = j� ∗ r1 − s(j� − j��)t 	uv	jhk� = j� ∗
w1 − D+j� − jh��6x  

2.4. Statistical Analyses 

Linear and Non-Linear Multiple Regressions (LMR and NLMR) 

The statistical technique of Linear Multiple Regression 
(LMR) is used to study the relationship between a dependent 
variable (Property) and several independent variables 
(Descriptors). This statistical method minimizes the 
differences between the actual and predicted values. It was 
also used to select the descriptors used as input parameters in 
the multiple nonlinear regression (NLMR). As for the 
multiple non-linear regression (NLMR) analysis, it also 
allows to improve the structure-property relationship in order 
to quantitatively evaluate the property. It is the most common 
tool for studying multidimensional data. It is based on the 
following pre-programmed functions of XLSTAT: 

9 = y + (z{� + |{� + }{~ + u{�) + (�{�� + �{�� + ℎ{~� + �{��)                                    (9) 

Where a, b, c, d,... represent the parameters and et, x1, x2, 
x3, x4,... represent the variables. 

Artificial Neural Network (ANN) 

Artificial neurons are an inspiration of the human biological 
neuron. To this end, they are made up of cells or neurons 
linked together by connections that allow them to send and 
receive signals from other cells. These neurons are 
mathematical models made up of several neurons, arranged in 
different layers. Generally, the network consists of three layers; 
an input layer, a hidden layer and an output layer, connected 
through a complex network [46, 47]. The most commonly used 
networks are the Multi-Layer Perceptrons (MLP) whose 
neurons are generally arranged on layers [48]. In this work, the 
artificial neural network was obtained using the 4-3-1 
multilayer perceptron network, i.e., the network consists of 
five (4) neurons in the input layer, three (3) neurons in the 
hidden layer and one (1) neuron in the output layer. The output 
layer consists of a sigmoid function. The architecture of the 
applied ANN models is presented in (Figure 3). 

 

Figure 3. Schematic of the structure of a multilayer perceptron. 

2.5. Applicability Domain (AD) 

The applicability domain of a QSAR model is the 
physicochemical, structural, or biological space, in which the 
model equation is applicable to make predictions for new 
compounds [49]. It corresponds to the region of chemical space 
including the compounds in the training set and similar 
compounds, which are close in the same space [50]. Indeed, the 
model, which is built on the basis of a limited number of 
compounds, by relevant descriptors, chosen among many others, 
cannot be a universal tool to predict the activity of any other 
molecule with confidence. It appears necessary, even mandatory, 
to determine the AD of any QSAR model. This is recommended 
by the Organization for Economic Cooperation and Development 
(OECD) in the development of a QSAR model [51]. There are 
several methods for determining the domain of applicability of a 
model [50]. Among them, the approach used in this work is the 
leverage approach. This method is based on the variation of the 
standardized residuals of the dependent variable with the distance 
between the values of the descriptors and their mean, called 

leverage [52]. The ℎ::  are the diagonal elements of a matrix H 
called hat matrix. H is the projection matrix of the experimental 

values of the explained variable S;<=  into the space of the 

predicted values of the explained variable S=T;U such that: 

S=T;U = �S;<=                       (10) 

H is defined by the expression (21): 

� = �(�>�)���>                           (11) 

The applicability domain is delimited by a threshold value of 
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the lever noted h*. In general, it is set at 3 =��E , where n is the 

number of compounds in the training set, and p is the number of 
descriptors in the model [53, 54]. For standardized residuals, the 
two limit values generally used are ±3σ, σ being the standard 
deviation of the experimental values of the quantity to be 
explained [55]: this is the "three-sigma rule" [56]. 

3. Results and Discussion 

This QSAR study was conducted using a series of 

twenty (20) chalcone derivatives. These compounds were 
synthesized and tested on Plasmodium falciparum 3D7. 
The molecules were divided into two groups, fourteen (14) 
were used for the learning set and six (6) for the validation 
set. The objective of this part of the work is to model the 
antimalarial activity of chalcone derivatives from the 
descriptors. The values of the descriptors as well as those 
of the experimental biological activities of the molecules 
are listed in Table 2. 

Table 2. Physicochemical descriptors and experimental pIC50 of the learning and validation sets. 

MOLECULES S l(c=O) l(c=c) α IC50 pIC50 

Training Set 

Ch1 0.49610 1.26518 1.36033 206.06567 88.00000 4.05552 

Ch2 0.61033 1.26277 1.36622 191.16400 169.90000 3.76981 

Ch3 0.52656 1.26394 1.36064 204.86367 97.90000 4.00922 

Ch5 0.49537 1.26510 1.36033 231.01400 75.00000 4.12494 

Ch6 0.48363 1.26300 1.36126 196.45933 65.00000 4.18709 

Ch7 0.48344 1.26303 1.36120 203.60867 50.00000 4.30103 

Ch8 0.57505 1.26183 1.36241 207.88367 78.00000 4.10791 

Ch11 0.50317 1.26131 1.36370 158.27400 48.50000 4.31426 

Ch12 0.51986 1.26473 1.36526 239.17900 4.00000 5.39794 

Ch13 0.51726 1.26671 1.36796 240.87567 8.00000 5.09691 

Ch15 0.50382 1.26652 1.36410 248.05200 11.50000 4.93930 

Ch16 0.50726 1.26644 1.36279 277.51567 7.80000 5.10791 

Ch17 0.51916 1.26479 1.36521 254.10067 2.00000 5.69897 

Ch19 0.56023 1.25706 1.35747 258.57933 12.20000 4.91364 

Validation Set 

Ch4 0.48107 1.26485 1.36048 192.02100 30.00000 4.52288 

Ch9 0.52103 1.26471 1.36405 209.34833 28.80000 4.54061 

Ch10 0.52716 1.26588 1.36498 225.55667 6.00000 5.22185 

Ch14 0.50594 1.26371 1.36162 237.98133 4.60000 5.33724 

Ch18 0.51960 1.26478 1.36527 246.32200 1.80000 5.74473 

Ch20 0.58774 1.27158 1.36403 314.78300 18.00000 4.74473 

3.1. Multilinear Regression (LMR) 

The equation of the QSAR model is presented below. The statistical indicators are given in Table 3. 


����;<= = −10.16787 ∗ S − 179.04454 ∗ l(C = O) + 170.45944 ∗ l(C = C) + 0.01726 ∗ α 

The negative sign of the coefficient of overall softness and 
C=O bond length reflects that antimalarial activity will be 
improved for low values of both descriptors. In contrast, the 
positive sign of the coefficient of the polarizability α and the 
C=C bond length indicates that high values of these 
descriptors improve antimalarial activity. 

Table 3. Statistical analysis report of IC50 inhibitory potential of chalcone 

derivatives in RML model. 

Number of observations N 14 
Coefficient of determination R2 0.901 
Standard deviation RMCE 0.216 
Test de Fischer F 109.104 
Cross-validation correlation coefficient &'(�  0.901 
Confidence level α > 95% 

The value of the coefficient of determination )� which is 
0.901, shows that the estimated values of pIC50 contain 
90.1% of the experimental values. The value of Fisher's test 

(F = 109.104) is relatively high compared to the critical 
value, from Fisher's table Fcr = 3.06 [57]. This value 109.104 
of Fisher's test, higher than the critical value, shows that the 
error committed is less than what the model explains [57]. 
The standard deviation (RMCE = 0.216) expresses the small 
variation of the predicted values from the experimental mean. 
For this model, the cross-validation correlation coefficient Q��� 	is equal to Q��� = 0.9009. This value, greater than 0.9, 
reflects a model said to be excellent according to Erikson et 
al [39]. This model is acceptable because it agrees with the 
acceptance criterion of these authors R� − Q��� =0.901- 
0.901= 0.000 < 0.3. All these statistical indicators show that 
the model developed explains the antimalarial activity in a 
statistically significant and satisfactory way. 

The regression plot of the LMR model showing the 
theoretical antimalarial activity versus the experimental 
activity is shown in Figure 4. 
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Figure 4. Regression line of the LMR model. 

The analysis of the regression curve of the RML model 
shows that all points are around the regression line. This 
result indicates that there is a small difference (RMCE 

=0.2157) between the values of pIC50exp and pIC50th, thus 
a good similarity in these values. This similarity is illustrated 
in figure 5. 

 

Figure 5. Similarity curve of the experimental and predicted values of the RML model. 

External Validation Criteria 

Verification of Tropsha's criteria 

The external validation of the model was performed with the chalcone derivatives (Ch4, Ch9, Ch10, Ch14, Ch18, Ch20) 
respectively. The Tropsha criteria checks for the external validation sets are presented in Table 4. 

Table 4. Tropsha criteria checks for the external validation set of the RML model. 

Statistical parameters Tropsha criteria [42-44]  )� > 0.7 0.90 &'(�  > 0.6 0.90 |)� − )��| ≤ 0.3 0.082 
\e7�eb7\
e7   < 0.1 0.091 

d 0.85 ≤ d ≤ 1.15 0.999 
\e7�eb�7\
e7   < 0.1 0.114 

d′ 0.85 ≤ d′ ≤ 1.15 1.000 

All values meet Tropsha's criteria, so the model is acceptable for predicting antimalarial activity. 
Verification of Roy's criteria 

The statistical indicators of Roy, Paul and Roy [58], were calculated for this model. 

Table 5. Roy criteria checks of the external validation set of the RML model. 

Indicators ���   �′��   ���8888 = +��� ��h�� 6
�   ∆��� = |��� − �′�� |  

Values 0.714 0.681 0.697 0.033 
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The analysis of this table shows that, the jk�  is greater than 0.5 and the ∆jk�  is less than 0.2. Therefore, it can be stated that 
the model is robust and has good predictive power. 

3.2. Non-Linear Multiple Regression (NLMR) 

The equation of the QSAR model is presented below. The statistical indicators are given in Table 6. 


����;<= 	= 	−25522 + 107.90365 ∗ � + 21842 ∗ �(| = �) + 17168 ∗ �(| = |) + 0.02069 ∗ ! − 108.05366 ∗ �� − 8720 ∗�(| = �)� − 6234 ∗ �(| = |)� − 7.96211 ∗ 10�� ∗ !�  
Table 6. Statistical analysis report of the IC50 inhibitory potential of chalcone derivatives. 

Statistical indicators of multilinear regression Model NLMR 

Number of observations N 14 
Coefficient of determination R2 0.9621 
Standard deviation RMCE 0.1886 
Test de Fischer F 304.7514 
Cross-validation correlation coefficient &'(�  0.9621 
Confidence level α > 95% 
R2 - &'(�  0.0000 

 

The value of the coefficient of determination )� which is 
0.9621, shows that the estimated values of pIC50 contain 
96.21% of the experimental values. The value of Fisher's test 
(F = 304.7514) is relatively high compared to the critical 
value, from Fisher's table Fcr = 3.06 [57]. This value 
304.7514 of Fisher's test, higher than the critical value, 
shows that the error committed is less than what the model 
explains [57]. The standard deviation (RMCE = 0.1886) 
expresses the small variation of the predicted values from the 
experimental mean. For this model, the cross-validation 
correlation coefficient &KL�  is equal to &KL� = 0.9621 . This 

value, higher than 0.9, reflects a so-called excellent model 
according to Erikson et al [39]. This model is acceptable 
because it agrees with the acceptance criterion of these 
authors )� − &KL� =0.9621- 0.9621= 0.000 < 0.3. All these 
statistical indicators show that the model developed explains 
the antimalarial activity in a statistically significant and 
satisfactory manner. 

The regression plot of the NLMR model showing the 
theoretical antimalarial activity versus the experimental 
activity is shown in Figure 6. 

 

Figure 6. Regression line of the NLMR model. 

The analysis of the regression curve of the NLMR model 
shows that all points are around the regression line. This 
result indicates that there is a small difference (RMCE 

=0.1886) between the values of pIC50exp and pIC50th, thus 
a good similarity in these values. This similarity is illustrated 
in figure 7. 

 
Figure 7. Similarity curve of the experimental and predicted values of the NLMR model. 
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External Validation Criteria 

Verification of the Tropsha criteria 

The external validation of the model was performed with the chalcone derivatives (Ch4, Ch9, Ch10, Ch14, Ch18, Ch20) 
respectively. The Tropsha criteria checks for the external validation sets are presented in Table 7. 

Table 7. Tropsha criteria checks for the external validation set of the NLMR model. 

Statistical parameters Tropsha's criteria [42-44]  )� > 0.7 1 &'(�  > 0.6 1 |)� − )��| ≤ 0.3 0.000 
\e7�eb7\
e7   < 0.1 0.000 

d 0.85 ≤ d ≤ 1.15 1 
\e7�eb�7\
e7   < 0.1 0.000 

d′ 0.85 ≤ d′ ≤ 1.15 1.000 

All values meet the Tropsha criteria, so the model is acceptable for predicting antimalarial activity. 
Verification of the Roy criteria 

The statistical indicators of Roy [58], have been calculated for this model. The different values are listed in Table 8. 

Table 8. Roy criteria checks of the external validation set of the NLMR model. 

Indicators ���  �′��  ���8888 = +��� ��h�� 6
�   ∆��� = |��� − �′�� |  

Values 1 1 1 0 

The analysis of this table shows that, the jk�  is greater than 0.5 and the ∆jk�  is less than 0.2. Therefore, it can be stated that 
the model is robust and has good predictive power. 

3.3. Applicability of the LMR and NLMR Models 

The graph of the standardized residuals as a function of the ℎ::  levers in Figure 8, allows us to visualize the applicability 
domain of the LMR and NLMR models. 

 

Figure 8. Standardized residuals of antimalarial activity plotted against the levers of the LMR and NLMR models. 

For the 14 compounds in the training set and the 4 
descriptors in the model, the threshold value of the levers h* 
is 1.07. The extreme values of the standardized residuals are 
±2 according to the "three sigma rule" [56]. These different 
values delimit the domain of applicability [59] of the model 
as shown on the graph in figure 6. The derivative Ch20, from 

the validation set, has a leverage value hii = 2.827, higher 
than the threshold value h*. However, this derivative has a 
very low standardized residual, i.e. -0, "0687" greater than -2. 
Thus, Ch20 is certainly outside the applicability domain, but 
it is not an influential point for the model. There is no need to 
remove Ch20 from the set of molecules, as this derivative 
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belongs to the validation set, so was not used in the 
development of the models. The behavior of this molecule 
could be explained by its structural diversity. Indeed, the 
Ch20 derivative has two double bonds symmetrical to the 
oxo group. 

3.4. Artificial Neural Network (ANN) 

The values of the descriptors as well as those of the 
experimental biological activities of the molecules used for 
the development of the ANN model are listed in Table 9. 

Table 9. Physico-chemical descriptors and experimental pIC50 of the learning and validation sets of the RNA model. 

MOLECULES S l(c=o) l(c=c) α pIC50 

Training Set 
Ch1 0.49610 1.26518 1.36033 206.06567 4.05552 
Ch2 0.61033 1.26277 1.36622 191.16400 3.76981 
Ch3 0.52656 1.26394 1.36064 204.86367 4.00922 
Ch5 0.49537 1.26510 1.36033 231.01400 4.12494 
Ch7 0.48344 1.26303 1.36120 203.60867 4.30103 
Ch11 0.50317 1.26131 1.36370 158.27400 4.31426 
Ch13 0.51726 1.26671 1.36796 240.87567 5.09691 
Ch15 0.50382 1.26652 1.36410 248.05200 4.93930 
Ch16 0.50726 1.26644 1.36279 277.51567 5.10791 
Ch17 0.51916 1.26479 1.36521 254.10067 5.69897 
Ch4 0.48107 1.26485 1.36048 192.02100 4.52288 
Ch10 0.52716 1.26588 1.36498 225.55667 5.22185 
Ch14 0.50594 1.26371 1.36162 237.98133 5.33724 
Ch20 0.58774 1.27158 1.36403 314.78300 4.74473 
Validation Set 
Ch6 0.48363 1.26300 1.36126 196.45933 4.18709 
Ch8 0.57505 1.26183 1.36241 207.88367 4.10791 
Ch12 0.51986 1.26473 1.36526 239.17900 5.39794 
Ch19 0.56023 1.25706 1.35747 258.57933 4.91364 
Ch9 0.52103 1.26471 1.36405 209.34833 4.54061 
Ch18 0.51960 1.26478 1.36527 246.32200 5.74473 

The equation of the QSAR model is presented below. The statistical indicators are given in Table 10. 


����=T;U = −2.12706476174042 ∗ �� + 	1.47111601937638 ∗ �� − 2.48057666904236 ∗ �~ 	+ 	4.42784050891397 

with: 

�� = �y��(0,5	 ∗ 	 (21.4228987189848 ∗ �	 − 4.2278442473982 ∗ �(| = �) + 	74.1349469461423 ∗ �(| = |) +	0.00792918776536016 ∗ !(�y) 	− 108.405359647331))  
�� = �y��(0,5	 ∗ 	 (−19.4866213931623 ∗ �	 + 	1187.38157127176 ∗ �(| = �) − 1051.49797587843 ∗ �(| = |) 	+	0.0201126355264715 ∗ !(�y) − 61.5851767967757)  
�~ = �y��	(0,5	 ∗ 	 (−39.0004676014179 ∗ �	 + 	872.946233132494 ∗ �(| = �) − 763,600349581977 ∗ �(| = |) 	+	−0.0342102058320001 ∗ !(�y) 	+ 	−35.2800958226289))  

Table 10. Statistical analysis report of IC50 inhibitory potential of chalcone derivatives. 

Statistical indicators of the neural network Training set 

Number of observations N 14 
Coefficient of determination R2 0.997 
Test de Fischer F 3571.499 
Standard deviation RMCE 0.035 
Cross-validation correlation coefficient &'(�  0.997 
R2 - &'(�  0.000 
Confidence level α > 95% 

 

The value of the coefficient of determination )� which is 
0.997, shows that the estimated values of pIC50 contain 
99.70% of the experimental values. The value of Fisher's 
test (F = 3571.499) is very high compared to the critical 
value, from Fisher's table Fcr = 3.06 [57]. This value 
3571.499 of Fisher's test, higher than the critical value, 
shows that the error committed is less than what the model 
explains [57]. The standard deviation (RMCE = 0.035) 

expresses the small variation of the predicted values from 
the experimental mean. For this model, the cross-validation 
correlation coefficient &KL� 	 is equal to &KL� = 0.997 . This 
value, higher than 0.9, reflects a so-called excellent model 
according to Erikson et al [39]. This model is acceptable 
because it agrees with the acceptance criterion of these 
authors )� − &KL� =0.997- 0.997= 0.000 < 0.3 All these 
statistical indicators show that the model developed 
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explains the antimalarial activity in a statistically 
significant and satisfactory manner. 

The regression plot of the RNA model showing the 

theoretical antimalarial activity versus the experimental 
activity is shown in Figure 9. 

 

Figure 9. Regression line of the ANN model. 

The analysis of the regression curve of the RNA model 
shows that all points are around the regression line. This 
result indicates that there is a small difference (RMCE 

=0.035) between the values of pIC50
exp and pIC50

th, thus a 
good similarity in these values. This similarity is illustrated 
in Figure 10. 

 

Figure 10. Similarity curve of experimental and predicted values of the ANN model. 

The similarity curve shows that the experimental and predicted pIC50 values overlap perfectly. 
External Validation Criteria 

Verification of the Tropsha criteria 

External validation of the model was performed with the chalcone derivatives (Ch6, Ch8, Ch12, Ch19, Ch9, Ch18) 
respectively. The Tropsha criteria checks for the external validation sets are presented in Table 11. 

Table 11. Tropsha criteria checks for the external validation set of the ANN model. 

Statistical parameters Tropsha's criteria [42-44]  )� > 0.7 0.975 &'(�  > 0.6 0.954 |)� − )��| ≤ 0.3 0.0293 
\e7�eb7\
e7   < 0.1 0.0301 

d 0.85 ≤ d ≤ 1.15 0.990 
\e7�eb�7\
e7   < 0.1 0.0159 

d′ 0.85 ≤ d′ ≤ 1.15 1.009 

All values meet Tropsha's criteria, so the model is acceptable for predicting antimalarial activity. 
Verification of Roy's criteria 
The statistical indicators of Roy, Paul and Roy [58], were calculated for this model. The different values are shown in Table 12. 
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Table 12. Roy criteria checks of the external validation set of the RNA model. 

Indicators ���   �′��   ���8888 = +��� ��h�� 6
�   ∆��� = |��� − �′�� |  

Values 0.83 0.88 0.85 0.05 

The analysis of this table shows that, the jk�  is greater than 0.5 and the ∆jk�  is less than 0.2. Therefore, it can be stated that 
the model is robust and has good predictive power. 

3.5. Domain of Applicability of ANN Models 

The graph of standardized residuals as a function of the levers ℎ::  in Figure 11, allows us to visualize the domain of 
applicability of the model. 

 

Figure 11. Plot of standardized residuals of antimalarial activity as a function of the levers of the ANN model. 

For the 14 compounds of the training set and the 4 
descriptors of the model, the threshold value of the levers 
h* is 1.07. The extreme values of the standardized residuals 
are ±2 according to the "three sigma rule" [56]. These 
different values delimit the applicability domain [59] of the 
model as shown on the graph in figure 6. The derivative 
Ch19, from the validation set, has a leverage value hii = 
6.783, higher than the threshold value h*. However, this 
derivative has a very low standardized residual, i.e. 0. "882" 
less than 2. Thus, Ch19 is certainly outside the applicability 
domain, but it is not an influential point for the model. 
There is no need to remove Ch19 from the set of molecules, 
as this derivative belongs to the validation set, so was not 
used in the development of the model. The behavior of this 
molecule could be explained by its structural diversity. 
Indeed, the Ch19 derivative has two conjugated double 
bonds. 

4. Conclusion 

This work found mathematical relationships between the 
inhibitory concentration IC50 of Plasmodium falciparum 
3D7 and the physicochemical descriptors of chalcone 
derivatives. Overall softness (S), bond lengths l(c=o) and 
l(c=c), and polarizability (α) are the descriptors that best 
explain the antimalarial activity of chalcone derivatives. 

Statistical tools such as multilinear regression (LMR), 
nonlinear multiple regression (NLMR) as well as the 
artificial neural network (ANN) method were used. The 
statistical indicators of the 3 models (LMR, NLMR, ANN) 
show that they are acceptable, robust and have good 
predictive power. In this study, the artificial neuron method 
(ANN) (R2 =0.997; RMCE = 0.035; F= 3571.499 was found 
to be the best statistical tool for predicting the antimalarial 
activity of chalcone derivatives. Moreover, the applicability 
range of this model determined from the levers shows that a 
prediction of the pIC50 of new chalcone derivatives is 
acceptable when its lever value is less than 1.07. Otherwise 
the biological activity of this compound could not be 
predicted with reliability. In a future work, the obtained 
models will be used for the prediction of new chalcone 
derivatives. 
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