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Abstract: To better understand some of the local metallurgical mechanisms, it is necessary to have information about the 
scale of the stress gradient in the vicinity of a grain boundary or around a precipitate. This measurement is accessible by 
Kossel microdiffraction. Diffraction consists of the emission of Kossel cones, which are then intercepted by a screen. This 
leads to an image that can be used to trace the deformation field. The simulation technique is best suited to this purpose. The 
present work falls within this framework and aims on the one hand to geometrically model the phenomenon and on the other 
hand to develop an application in Java language for digital simulations of the Kossel cliché. The methodology adopted is to 
take into account all the parameters on which the phenomenon depends to establish the geometric model which has been 
programmed in the JAVA language with a view to making a simulation application comprising 14 interacting classes. The 
result obtained after an example of simulation is rather satisfactory and promising. However, a comparison will have to be 
made for the complete validation of the model. This will be the subject of another publication later. 
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1. Introduction 

The enhancement of materials used in microelectronics, 
for example the crystals used in telephone chips, is of great 
importance today. It requires the evaluation of the physico-
chemical behaviour of these materials, in real time, under 
stress. To this end, several exploratory methods have been 
developed. One of these methods is Kossel diffraction, which 
consists of sending an X-ray onto a crystal and using the 

Liquid Crystal Display (LCD) camera to recover the Kossel 
image resulting from the intersection of the diffraction cones 
with the observation plan. The objective is to go back to the 

deformation field by analyzing the Kossel image. The 
difficulty of exploiting this image has given rise to other 
approaches to solving the problem, including "image 
simulation", which seems to be the most obvious. Indeed, it 
will allow us to proceed by comparison or by recalibration. 
Several researchers have developed tools to help with the 
indexing of Kossel images. The first works consisted in 
simulating stereographic projection images. These include 
Lonsdale in 1947 [1], Hanneman et al. in 1962 [2] who 
prepared standard projections for crystallography and current 
radiation after calculation of Bragg angles. This led to the 
possibility of computer simulation of the images by Frazer 
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[3] and Morris [4] in 1966. Tixier and Waché [5] then 
indexed the lines of an experimental Kossel image for an iron 
crystal by comparison with a calculated projection. This 
technique is advantageous in that it is not necessary to know 
the center of the projection. Another example is the 
KOPSKO program developed by Langer et al [6]. The mesh 
parameters and material orientation must be entered by the 
user and a Kossel image is simulated based on classical 
diffraction relations and reference frame changes. Therefore, 
Weber has developed a program called KOQUA [7] that 
allows the simulation of Kossel images of all crystal 
structures. By comparing the experimental image with the 
simulated one, he can determine the lattice parameters to the 
nearest 0.005 Å by gradually varying the values within the 
program until an optimal match between the two images is 
obtained. In 2006, Pesci et al [8] implemented a software 
program allowing the determination of the orientation of 
Kossel plates and the estimation of deformations by 
comparing an experimental plate with its simulated 
equivalent. Finally, more recently, Denis BOUSCAUD [9] 
presented a methodology to perform the analysis of 
experimental images by using and improving a software that 
uses a semi-automatic procedure for the absolute 
determination of six components of tensor deformations. The 
operator has to manually position points on the image to 
determine the reflection position. By comparing two images, 
it is possible to deduce the relative state of deformation from 
an automatic correlation of the line profiles. J.-M. André et al 

[10] shown that by combining the reciprocity theorem, the 
Fermi golden rule and the concept of density of photonic 

modes, it is possible to predict the behaviour of the Kossel 
diffraction in such a system. Similarly Meiyi Wu, Karine Le 

Guen, Jean-Michel André, Philippe Jonnard, Ian Vickridge, et al 

[11], has shown that by combining Kossel diffraction with 
particle induced X-ray emission, we have developed a new 
methodology to analyze nano-scale thin films. 

These different works, although they allowed the 
simulation of the Kossel image, did not take into account all 
the parameters and are a little outdated, given the permanent 
evolution of the technology. The work presented here is part 
of the same dynamic and aims to implement a graphic 
interface and the processing tools necessary for a slightly 
more optimal simulation of a Kossel image. 

2. Materials and Methods 

2.1. Materials 

The Kossel microdiffraction technique is a radio 
crystallographic method in which X-rays, emitted when an 
incident beam of electrons interacts with the material 
(crystal), are diffracted by the crystal lattice and emerge from 
the material forming a cone (see figure 1a). The intersection 
of the cones with a film plan gives diffraction lines. The set 
of diffraction lines forms the Kossel pattern (Figure 1b). The 
determination of the state of stress is based on the 
measurement of the lattice distances of the diffraction plans. 
The accuracy of this measurement depends essentially on the 
accuracy of the reading of the position of the lines on the 
image. 

 

Figure 1. Kossel microdiffraction technique. (a) Principle of emission from Kossel diffraction cones [9]. (b) Kossel analysis of a grain on a copper deposit [12, 

13]. 

The experimental set-up for the acquisition of Kossel 
diffraction images, installed in the TECSEN (Thermodynamics, 
Electrical Properties, Stresses and Structures at Nanoscale) 
laboratory, is shown in Figure 2. It is essentially made up of an 
electron microscope and microanalysis (all scales), a lifetime 
and wavelength measurement and mapping system, a Focused 
Ion Beam (silicon micromachining), a system for measuring 
mechanical stresses in thin films, an all-temperature micro-
calorimetry system, a heat treatment furnace and an X-ray 
diffraction system. 

 

Figure 2. TECSEN test and measurement device. 
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2.2. Methods 

2.2.1. Data 

In order to model and simulate the Kossel diffraction 
pattern, the model input parameters from the experimental 
pattern were used: 

1) Crystal orientation in the sample frame characterized by 
the crystal orientation directions: �, �, �, �, �, �, �, 	, 
 

�� � �� � 	� � 
�                                (1) 

2) Tensor of elastic constants 
�  in the base of the 
(100)(010)(001) crystal (experimental data) 
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3) Stress tensor in measurement basis (���)(���)(�	
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2.2.2. Calculations 

From the above input data, we calculate: 
1) the base changing matrix with normalized vectors: 

��
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2) the transpose base changing matrix: 
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3) Angot's basis changing matrix [14]: 
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4) Stress tensor in the crystal base (100)(010)(001): 
 �### = (2)��( !####)                            (7) 

5) Deformation tensor in the base of the crystal (100)(010)(001): 
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6) Inverse metric tensor of the deformed crystal 
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7) The interreticular distance is given by: 
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8) The angle at the top of the cone (hkl) is given by: 

L = M� − arcsin	( T�CDEF)                     (11) 
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2.2.3. Geometric Modelling 

The mathematical model of the experimental setup is as 
follows: 

 
Figure 3. Model of the experimental set-up (crystal related). 

In order to simplify the equations that would be implied by 
the geometrical model of the experimental set-up, 
geometrical transformations are necessary. The first step was 
to write the equations of the cone and the plan in the 
reference frame related to the crystal. 

Always, for any point M(x,y,z) of a cone of revolution of 
half angle at vertex α: 

U2VVVVVVW. �VW = 	L                                (12) 

cos�L� � Z[VVVVVVVW.$VVW\Z[VVVVVVVW\.‖$VVW‖                          (13) 

By squaring the relation (13) and replacing the different 
terms with their expressions: 

U2VVVVVVW � ^_W4 `aW4 bIVW  
�VW � cdefg. coshdefg. defh@idg   

The equation of the cone becomes: 

@id��L��^� 4 `� 4 b�� � �^defg. cosh 4 `defg. defh 4 b@idg��	                                     (14) 

Furthermore, as the normal vector fVW	�g�, h�� and a point j�<, k, @� of the plan which are the parameters given by the user 
are known, the plan equation is: 

�^ > <�defg�. @idh� 4 �` > k�defg�. defh� 4 �b > @�@idg� � 0	                                       (15) 

As these equations are a bit complex, we thought of 
performing a double rotation in order to simplify them. For 
the cone, it will be done in such a way as to make the axis b 
coincide with the axis of the cone. Successively, a rotation of 
angle –h  of the axis ^  around the axis b  translating the 
passage from the reference frame �^, `, b�  to the reference 
frame �^′, `′, b′�  and a rotation of angle >g  of the axis b 
around the axis `′ translating the passage from the reference 
frame �^′, `′, b� to the reference frame �n′, o′, p′� allowed to 
obtain a more simplified equation for the cone. 

Let 2� and 2� be the matrices of these different rotations. 
We have: 

2� � q @idh defh 0>defh @idh 00 0 1r                     (16) 

2� � q@idg 0 >defg0 1 0defg 0 @idg r                     (17) 

Assuming s � 2�. 2� , the formulas for the change of 
reference frame are written: 

t^̀bu � s�� qn′o′p′r                             (18) 

The development of (18) gives: 
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v^ � nw@idg. @idh > owdefh 4 pw@idh. defg` � nw@idg. defh > ow@idh 4 pwdefh. defgb � >nwdefg 4 pw@idh. defg     (19) 

Substituting equations (19) into equation (14) and knowing 
that 1 4 x<f�L � �yz{²|, the cone equation is simply written: 

nw� 4 ow� � pw�x<f�L                       (20) 

In the same way, we obtain the new equation of the plan: 

<′nw 4 k′ow 4 @wpw � }w                      (21) 

with: 

~�
�<w � defg�. @id	h�. @idg. @idh 4 defg�. def	h�. @idg. defh > 	@idg�defgkw � >defg�. @id	h�. defh 4 defg�. def	h�. @idh@w � defg�. @id	h�. defg. @idh 4 defg�. def	h�. defg. defh 4 	@idg�@idg}w � defg�. @id	h�. < 4 defg�. def	h�. k > 	@idg�. @

                                   (22) 

 
Figure 4. Cone Observation. 

For the system formed by equations (20) and (21) cannot 
be solved analytically, it was felt that the conic could be 
obtained from the points of intersection of each of the cone 
generatrices with the plan. The graphical representation of 
these points provides the shape of the conic. It should be 
noted that in general the section of a cone with a plane gives 
conics. 

The radius of the directrix of the cone has the expression: 

s � b′x<fL                                  (23) 

The coordinates of a point M on the cone are then: 

c^w � bwx<fL. @id=`w � bwx<fL. def=bw � b′ 	                        (24) 

The position vector of point M is written: 

U2VVVVVVW � b′�W                                   (25) 

with �W c^w � x<fL. @id=`w � x<fL. def=bw � 1 	                        (26) 

Putting bw � x, t a parameter, the parametric equations of 
the generators are: 

c^w � x. x<fL. @id=`w � x. x<fL. def=bw � x 	                          (27) 

Carrying equation (27) into equation (21), we derive the 
set of values of t, which determine, as a function of the 

values of δ, the number of generatrices and consequently the 
number of points of intersection of the cone with the plane: 

x� � CwA��A�|.yz{�'���A�|.{���'yw                   (28) 

By injecting (28) into (27), we obtain the general equations 
of the coordinates of the intersection points. 

v^w � x� . x<fL. @id=`w � x� . x<fL. def=bw � x�                          (29) 

The observation screen is the plan. Knowing a normal 
vector f�VVVVWto the plan, we need to choose two other vectors f�VVVVW, f"VVVVW such that the coordinate system is direct orthonormal. 
These two vectors are generated by the application. It is then 
necessary to determine the new coordinates of the points of 
intersection in this new reference frame. By setting 2", the 
matrix of passage from the reference frame �f�VVVVW, f�VVVVW, f"VVVVW� to the 

reference frame �X′VVVW, Y′VVVW, Z′VVVW�, we have: 

�n′VVVWo′VVVWp′VVVW� � 2"�� �f�VVVVWf�VVVVWf"VVVVW�	                         (30) 

By carrying (30) in (28), we obtain the new coordinates of 
the points of intersection of the plan with the cone. 

3. Results and Analysis 

An application was implemented to carry out the 
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simulations [15, 16]. It was entirely developed in Java, which 
is a language dedicated to object-oriented programming. The 

application program consists of 14 classes. It follows the 
following structure: 

 
Figure 5. Structure of the application. 

Figure 6a is a brief presentation of the home window of the software. 

 
Figure 6. Simulation interface of the Kossel diffraction pattern (a). Deformation-free simulation interface (b). 

It has two buttons to select the type of simulation: with or 
without deformation. 

Figure 6b is the simulation interface without deformation. 
For data entry and validation, the deformation-free 

simulation interface has two main groups of input fields: 
1. ''DefinitionPlan", which allows the observation plan to 

be modelled; 
2. ''RadioCristallography" which models the crystal mesh, 

its orientation and allows the choice of the cubic system. 
The simulation interface with deformation (Figure 7a) is 

almost the same as before except that it has another group of 
input fields "Tensor Components (MPa)" which allows 
stresses to be taken into account. 

In addition to the usual menus and submenus, the 
application has an "Operation" menu for performing 
simulation operations. 
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Figure 7. Simulation. Example of simulation with deformation (a). Example of simulation without deformation (b). 

The figure 7b shows an example of simulation of a Kossel 
diffraction pattern which, compared to the one of figure 1b 
prove that the models presented here seems to answer to be 
satisfactory. 

4. Conclusion 

This study’s goals were to implement and realize a Kossel 
diffraction pattern simulation application. Simulation is a very 
important step in the exploitation of Kossel images. In this 
respect, the work presented here has led to the implementation 
of an application. It already makes it possible to simulate a 
Kossel image with or without deformation. Nevertheless, it 
remains a first attempt and still has many shortcomings. It is thus 
called upon to evolve and to take into account the other crystal 
systems, the improvement of the graphic interface, the 
optimisation of codes, the improvement of the display function 
of the Kossel images, the indexing of the conics of the Kossel 
image etc. It should be noted, however, that this is a significant 
step forward in the optimal use of the Kossel image. 

Nomenclature 

�VW Unit vector on the cone axis �W Director vector of a generatrix for fixed fVW Normal vector x A parameter L Half angle at the apex of the cone j A point in the observation plan 
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