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Abstract: We have solved the non-relativistic Schrödinger equation with Scarf II plus Rosen-Morse II potential analytically 

for arbitrary l-state by using the newly improved ansaltz for the wave function and adopting the modified approximation 

scheme to evaluate the centrifugal term. The bound state energy spectrum and the un-normalized wave function expressed in 

terms of Jacobi polynomial are also obtained. With this method, we have obtained a negative energy spectrum for the system. 
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1. Introduction 

The exact and analytical solutions of the non-relativistic 

and relativistic equations are of great importance in physics. 

The studies of these equations for some special potentials of 

interest have been successful over the years [1-10]. In non-

relativistic quantum mechanics, it is well known that the 

exact solutions of Schrödinger equation are possible only for 

a few set of quantum systems. 

However, when arbitrary angular momentum quantum 

number l is present, one can only solve the Schrödinger 

equation approximately using suitable approximation 

schemes [11]. Some of such approximations include 

conventional approximation scheme proposed by Greene and 

Aldrich [12], improved approximation scheme by Jia et 

al.[13], elegant approximation scheme [14] etc. These 

approximations are used to deal with the centrifugal term or 

potential barrier arising from the problem. 

In solving non-relativistic or relativistic wave equation 

whether for central or noncentral potential, various methods 

are used. These methods include asymptotic iteration method 

(AIM) [15], supersymmetric quantum mechanics (SUSYQM) 

[16], shifted 
N

1
 expression [17], factorization method [18, 

19], Nikiforov-Uvarov (NU) [20] and others [21, 22]. Also in 

recent times, much attention has been paid to factorization 

method. This method gives accurate analytical solutions for 

many differential equations that are important in applications 

to many problems in physics, such as the equation of Hermit, 

Lequerre, Legendre, Bessel and Jacobi. 

However, the factorization method gives a complete 

analytical solution of Schrödinger equation for Woods-

Saxon, Poschl-Teller and harmonics potentials. Recently, 

factorization method has been used to find the exact solutions 

of Schrödinger equation for inverted Woods-Saxon and 

Manning-Rosen potential [23]. Satisfied by the factorization 

method through comparisons with other methods, we are 

tempted to solve the time-independent Schrödinger equation 

for Scarf II plus Rosen-Morse II potential. The main aim of 

this paper is to obtain approximate solutions of the 

Schrödinger equation with Scarf II plus Rosen-Morse II 

potential using an ansaltz to the wave function together with 

an approximation scheme to evaluate the centrifugal term. 

2. Scarf II Plus Rosen-Morse Potential 

The potential for this system is given as 

( ) ( ) ( ) ( ) ( )rVrrhVrhVrV αααα tanhtanhsecsec 21

2

0 ++=      (1) 

where r is the radius of the nuclei, α is a parameter, and 

0 1 3
V , V , V  are potential depths of the nuclear. This potential 

plays important role in many different fields of physics such 

as chemical and molecular physics. It could be used to 

describe nucleon-nucleon interactions, meson-meson 

interaction and also in various branches of nuclear physics 

and quantum chemistry. 
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3. Factorization Method 

In spherical coordinate the Schrödinger equation with 

potential of Eq. (1) can be written as follows [24] 
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The total wave function in Eq. (2) can be defined as 

( ) ),(),,( ϕθϕθψ YrRr =                    (3) 

and by decomposing the spherical wave function in Eq. (2) 

using Eq. (3) we obtain the following equations:  
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where )1( += llλ  and 
2m are the separation constants. 

( ) ( ) ( )ϕθϕθ ΦΘ=,lmY  are the solutions of Eqs. (5) and (6). 

( )ϕθ ,lmY  are the spherical harmonics and their solutions are 

well known [25]. Equation (4) is the radial part of 

Schrödinger equation which is subject for discussion in the 

preceding section.  

4. Solutions of the Radial Schrödinger 

Equation and Energy Eigenvalues 

The radial part of the Schrödinger equation from Eq.(4) 
is obtained as 
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Equation (7) in its present form has no analytical solution 

for 0≠l , to to solve it an approximation has to be made for 

the centrifugal term 
2

1

r
. We write the centrifugal term in 

Eq.(7) as [12] 

( ),cos
1 22

2
rech

r
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Substituting Eq.(8). Into Eq. (7), we have 
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Now using the common ansaltz, ( ) ( )
r

rU
rR = , Eq.(9) could 

be transformed into 
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Where the last term provides a centrifugal potential, which 

together with third, fourth and fifth terms comprise the 

effective potential. By using a new variable ( )rs αtanh= , 

we can rewrite Eq. (10) as 
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where the following dimensionless quantities have been 

defined as 
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Equation (12) is the well known associated Jacobi 

differential equation. In order to solve Eq. (11) explicitly, we 

invoke the new ansaltz for the wave function of the form [23] 

( ) ( ) ( )[ ]swInsPsU += 1                  (13) 

Where P(s) is the associated Jacobi polynomial satisfying 

Eq.(11). Now substituting Eq.(13) into Eq.(11) and after a 

little algebraic, we obtain 
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Comparing Eq. (14) with the standard associated Jacobi 

differential equation [26, 27] 
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Equation (16) is obtained by comparing Eq.(14) with 

Eq.(15) and integrating Eq.(16) and solving by partial 

fraction, we have 
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Integrating the second term on the left hand side of 

Eq.(16), we have 

( ) ( ) ( ) ( ) 44
44.0

1111
βαβα +−− +−=++ sswInw        (18) 

Taylor expanding the first and second terms on the left 

hand side of Eq.(18) to first order, we have 
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( ) ( ) ( ) 44 1144.01
βαβα +−

+−=− ssww              (19) 

Solving Eq.(19) explicitly, we obtain 

( ) ( ) ( ) 88 111
βαβα +−

+−±= ssisw               (20) 

In obtaining Eq.(20) from Eq.(19), we have assumed that 

( ) ( ) .111 88 >>+−
+− βαβα

ss Based on this assertion we see that 

the wave function of Eq.(20) is controlled by the imaginary 

part of the wave function. Thus, we write 

( ) ( ) ( ) 88 11
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+−= sscsw n
                  (21) 

Where nc is the normalization constant. Equation (14) 

obtained from the new ansaltz of Eq.(13) can be considered 

as the associated Jacobi differential equation. The associated 

Jacobi polynomial with variable s  from Eq.(15) can be 

written as  
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Where ( )βα ,,lnB  is the normalization constant and ln,  

are non-negative integers defined in the interval 

∞<≤≤ n10 . 

The wave function can be obtained from Eq.(13) as 
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Thus, the final form of the radial wave function can be 

written in terms of the Jacobi polynomials resulting 
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By Taylor expanding the terms in the logarithm to first 

order, we get 
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Using the transformation ( ),tanh rs α=  Eq.(25) becomes  
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Where 
nA  is the new normalization constant. Further 

comparison of Eq.(14) with Eq.(15) gives the energy 

spectrum for the Scarf II plus Rosen-Morse II potential as 
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5. Conclusion 

In this paper, we have obtained the energy spectrum and 

wave function of Scarf II plus Rosen-Morse II potential for 

0≠l  analytically using an ansaltz for the wave function. 

The un-normalized wave function obtained is expressed in 

terms of Jacobi polynomial. In obtaining our result, we have 

invoked an approximation scheme to deal with the 

centrifugal term 2

1

r
. The results will have many applications 

in nuclear physics especially in chemical and molecular 

physics and the recently reported result of neutron-proton 

pairs in heavy nuclei using perturbation theory [28] where it 

could be used in describing nuclei interactions. This method 

can be applied to the investigation of other physical systems. 
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