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Abstract: The mechanism of experimentally observed high-temperature superconductivity (HTSC) in thin FeSe films on 

SrTiO3-type substrates has been theoretically investigated. Applying the theory of large-radius bipolaronic states developed 

based on the exact Hamiltonian of electron-phonon interaction for arbitrary multilayer structures, the bipolaronic mechanism of 

Cooper pairing of polarons in FeSe monolayers on SrTiO3 substrates is investigated and in three-layer structures SrTiO3–FeSe–

SrTiO3, which are typical "Ginzburg sandwiches". Approach proposed by Ginzburg to enhance the electron-phonon interaction 

and achieve HTSС by separating the regions where electrons are located (forming Cooper pairs or bipolarons) with the regions in 

which excitons are excited (or inertial polarization is induced), made it possible to implement the criteria for the formation of 

bipolaronic states in multilayer structures with high binding energy, due to the possibility of selecting optimal geometric and 

material parameters (layer thicknesses, dielectric permittivity, optical frequencies, effective masses). It is shown that the binding 

energy of bipolarons (Ebp) in these structures is in the range of values for which bipolarons remain stable quasiparticles and can 

exist at temperatures significantly higher than their Bose condensation temperature. The formation of bipolarons with high 

binding energy in the FeSe monolayer on the SrTiO3 substrate provides the emergence of a bipolaronic HTS with a critical 

temperature (Tc) more than an order of magnitude higher than Tc for massive FeSe crystals. At the same time, the binding energy 

of the bipolaron in the FeSe layer with thickness d on the SrTiO3 substrate increases exponentially with decreasing d 

( exp( / )bp SE d R−� , RS is the radius of the polaron) and reaches its maximum value in the limit of the multilayer film FeSe 

( 0d → ). The presented theory allows modeling a multilayer system and determining the range of values of the material and 

geometric parameters of layers forming a multilayer structure with a large number of FeSe layers in which Tc values in the room 

temperature range can be achieved. 
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1. Introduction 

The discovery of high-temperature superconductivity 

(HTSC) in layered iron chalcogenides stimulated the great 

interest of researchers, since the nature of HTSC in these 

materials, as well as a number of their physical properties, 

differ significantly from compounds Y–Ba–Cu–O [1], in 

which the HTSC was first opened with 92?cT К>  [2]. 

Detailed experimental and theoretical studies of systems: 

multilayer film FeSe, applied to the substrate 3SrTiO ; 

intercalated connections based on FeSe; multilayer systems 

based on FeSe, 2TiO , SrO , 3SrTiO  they were aimed at 

developing new models of HTSC, since the existing theories 

proved to be inapplicable to explain the reasons for such a 

high growth cT  ( ~ 80 100?К÷ ) [3, 4] in comparison with cT  

for bulk crystals FeSe, the critical temperature of which did 

not exceed the values in the interval ( )~ 8 10cT К÷ . 

Research of HTSC in the system: multilayer film FeSe on a 
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substrate of a highly polar semiconductor 3SrTiO  on a 

substrate of a highly polar semiconductor cT  in a monolayer 

FeSe up to record temperatures 100?К· . 

In the review [5], a systematic review and analysis of the 

results of theoretical and experimental studies of HTSC in 

structures of the type 3FeSe / SrTiO  and in other compounds 

and possible mechanisms for increasing cT  in these systems, 

representing typical "Ginzburg sandwiches" [6, 7]. 

We will highlight the most relevant models from the work 

[5] that provide the possibility of implementing the exciton 

mechanism of the Ginzburg HTSC: 

1) Magnification model cT  in a monolayer FeSe due to the 

interaction of charge carriers moving in the conduction 

band of the layer FeSe, with elementary excitations in 

the substrate 3SrTiO , by the picture of the exciton 

mechanism of Ginzburg [6-8]. 
2) The exciton mechanism of Allender–Bray–Bardin [9], 

which, as shown in the review [5], was considered when 

explaining high cT  in FeSe monolayers on substrates 

3SrTiO  ( 3BaTiO ), but it turned out to be not quite 

effective. 

3) Phonon mechanism in which the interaction of electrons 

in a metal monolayer FeSe with optical phonons of the 

substrate 3SrTiO  is considered as a variant of the 

implementation of the exciton mechanism in the 

geometry of the "Ginzburg sandwich"; 

4) Nonadiabatic phonon superconductivity due to a 

significant excess of the energy of the optical phonon 

3SrTiO  Fermi energy FE  [10]. In this case, the 

interaction of electrons with high-energy optical 

phonons is considered a possible mechanism for 

increasing cT  in the system 3FeSe / SrTiO . 

Based on the analysis of these mechanisms, it was 

concluded that high growth cT  in a monolayer FeSe on the 

substrate 3SrTiO  in comparison with bulk FeSe is caused by 

an additional pairing mechanism arising from the interaction 

of electrons with optical phonons 3SrTiO , implementing a 

kind of "pseudo-exciton" mating mechanism. 

Thus, in all the selected models, the interaction with the 

optical phonons of the substrate to one degree or another plays 

a decisive role in the formation of high values cT . 

Experiments high-resolution electron energy loss 

spectroscopy (HREELS) have confirmed the presence of a 

strong electron-phonon interaction at the interfaces 

3FeSe / SrTiO  [11]. Experimental evaluation of the 

interaction constant of an electron in a monolayer FeSe with a 

surface optical phonon 92SLO meVω =  of the substrate 

3SrTiO  confirmed the presence of a strong electron-phonon 

bond with 1α ·  (it should be noted that the electron in FeSe 

interacts with the field of surface optical phonons of the 

substrate 3SrTiO , since bulk optical phonons of 3SrTiO  do 

not create fields outside the substrate due to the confinement 

effect). 

Experimental studies of the role of electron-phonon 
interaction in the enhancement of superconductivity in films 

were carried out FeSe on the substrates 3SrTiO , including in 

the structure: monolayer FeSe applied to undoped and doped 

substrates 3SrTiO  [12]. 

In HREELS experiments with two-dimensional energy and 

momentum mapping, surface phonon excitations were 

investigated as in a monolayer and cleaned the surface 

separately (001) 3SrTiO . 

The electronic structure of the monolayer was determined 

by angle-resolved photoemission spectroscopy (ARPES). It is 

established that the electrons of the layer FeSe interact with 

surface optical vibrations 3SrTiO , which leads to the 

formation of dynamic interphase polarons. In the microscopic 

model [13] it is shown that the interaction "polaron-polaron" 

in the layer FeSe can cause the additional attraction between 

electrons, which, in turn, leads to increased superconductivity 

(growth cT ). 

Thus, it is of interest to carry out a consistent theoretical 

description of polaronic and bipolaronic states in a monolayer 

film FeSe in the system 3FeSe / SrTiO , based on the first 

principles and on its basis to estimate the critical temperature 

of Bose-condensation of bipolarons. Since the polaronic and 
bipolaronic states in a multilayer film structure, they are 

formed as a result of the interaction of electrons from the 

conduction band FeSe with surface optical phonons 3SrTiO , 

the resulting bipolaronic states should be considered as 
surface ones (it was mentioned earlier that bulk optical 

vibrations do not create electric fields outside the surface 

3SrTiO  (in a monolayer FeSe). 

It should be noted that the approach proposed by Ginzburg 

[6–8] to enhance the electron-phonon interaction and achieve 
HTSС by separating the regions where electrons are located 

(forming Cooper pairs or bipolarons) with the regions in 

which excitons are excited (or inertial polarization is induced), 

made it possible to implement the criteria for the formation of 

bipolaronic states in multilayer structures with high binding 

energy, due to the possibility of selecting optimal geometric 
and material parameters (layer thicknesses, dielectric 

permittivity, optical frequencies, effective masses) [13]. 

The formation of bipolarons in ionic crystals was first 

investigated by Pekar [14] in the framework of the continuum 

theory of polarons. Ginzburg [15] considered the Bose 
condensate of bipolarons in the study of superfluidity. The 

superfluidity of a charged Bose gas and the bipolaronic 

mechanism of superconductivity were investigated [16, 17]. 

Even though the mechanisms of formation of bipolarons and 

Cooper pairs differ in the methods of description, in essence, 

the basis of both effects is the electron-phonon interaction. 
The criteria for the formation of bipolarons in homogeneous 

polar crystals (media) were investigated [18, 20]. In particular, 

the following criteria for the formation of large-radius 

bipolaronic states in polar crystals were obtained [18]: 

0 / 20, 10,∞ > ≥ε ε α                 (1) 

which have been improved by improving the variational 
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method [20]: 

0 0/ 10, 7.3,∞ > ≥ε ε α                (2) 

where: 0ε , ε∞  – static and high-frequency dielectric 

permittivity, respectively; 

1
2 * 2

0
0

1 1
–  

2 LO

e mα
ε ε ω∞

  
=    

  h h
 

– the Pekar–Fröhlich constant of the electron-phonon 

interaction. 
Note that criteria (1) and conditions (2) are difficult to 

implement for most homogeneous polar semiconductor 

crystals, so the formation of highly stable bipolaronic states 

with high binding energies is problematic. In this paper, based 

on the theory of bipolaronic states of large radius developed 

by us using the exact Hamiltonian of electron-phonon 
interaction for arbitrary multilayer structures, the processes of 

interaction of polarons and the formation of bipolaronic states 

in "Ginzburg sandwiches" are investigated: monolayer FeSe 

on the substrate SrTiO3 and in a monolayer FeSe in a 

three-layer structure SrTiO3/FeSe/SrTiO3. In the systems 

under consideration, the critical temperature of condensation 
of bipolarons and the formation of a superfluid bipolaronic 

condensate have been estimated. 

2. Basic Provisions of the Theory of 

Large-Radius Bipolarons in a 

Three-Layer Structure with a 

Quantum Well 

Considered a three-layer structure 10 | 2 | 30〈 〉  consisting 

of two semi-infinite polar crystals 10〈 〉 , 20〈 〉  and 

non-polar semiconductor quantum layer 2〈 〉  thickness d 

( ~d λ , λ  – the de Broglie wavelength of an electron in a 

layer 2〈 〉 ) located between them and having a dielectric 

constant 2ε . 

The high-frequency and static dielectric permittivity of 

polar crystals are respectively equal: i iε ε∞ ≡ , 0iε  ( 1,?3i = ). 

2.1. The Hamiltonian of the Electron-Phonon Interaction 

The theory is based on the exact Hamiltonian of the 

electron-phonon interaction for arbitrary multilayer systems 
[21-22]. 

About this system with two electrons in the layer (2) 

bordering on a semi-infinite polar crystal 10〈 〉 , 30〈 〉 , the 

interaction Hamiltonian of the electrons in the layer 2〈 〉  

with surface optical phonons of a polar crystal 10〈 〉  and 

30〈 〉  has the form: 

{ηρ

1 13,22 2 13,24 21 1 23,22 2 23,34 21 1, η 1,η

η, 1,2,

1,2

3 13,12 4 13,24 21 3 23,22 12 4 23,34 2, η 2,

( )e cosh sinh (

cosh sinh

ˆ ˆˆ )

ˆ ˆ(

+
− −

=
=

+
−

    = + + + +    

    + + + + +    

∑ en

n n n

n n

is
e ph e e

s

n

e e

H C B K B K F z B K B K F z b b

B K B K F z B K F B K z b b

η η η

η η }η )

,    (3) 

where 

( )
04 sinh

2

=
 
 
 

x y

e
C

d
L L

hη
ηε η

;                                     (4) 

1,3 1,30 1,3 1,3 1,30 1,3

1,2 3,4
2 2

1 21 2 12

2( 2(
;?

)
;

Ω 1

)

1( ) ( )Ω

− −
= =

+ +
B B

F F

ω ε ε ω ε ε
                           (5) 

13,22 3 3

tanh
2 cotanh

2

d

d
K

B

η
ηε ε = − + 

 %
;                              (6) 

2 3

23,22

tanh
2

d

K
B

ηε ε+
=

%
;                                    (7) 

13,24 2 1

tanh
2 cotanh

2

d

d
K

B

η
ηε ε = + 

 %
;                              (8) 
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2 1

23,24

tanh
2 

d

K
B

ηε ε+
=

%
;                                   (9) 

1 3 2 10 1 30 3
12 2 2 2

2 1 2 2 3 10 10 30sinh ? Ω ˆ ( ) ]

− ⋅ −
= −

 − + + + 

F
d B%

ω ω ε ε ε ε ε

η ω ε ε ε ε ε ε
;                      (10) 

1 3 2 10 1 30 3
21 2 2 2

1 3 2 2 1 30 10 30sinh ? Ω ˆ ( ) ]

− ⋅ −
= −

 − + + + 

F
d B%

ω ω ε ε ε ε ε

η ω ε ε ε ε ε ε
;                     (11) 

2 2
1,2 1 1 2

1 1
Ω ;

2 4
= ± −p p p                                   (12) 

( )2 2
1 1 2 2 3 10 3 10

ˆ[ ]
1

{p
B

ω ε ε ε ε ε ε= + + + +
%

( )2 2
3 2 2 1 30 30 1

ˆ ]}[ ;+ + +ω ε ε ε ε ε ε                 (13) 

( )
2 2

21 3
2 2 2 10 30 30 10

ˆ ; = + + + p
B%

ω ω ε ε ε ε ε ε                             (14) 

( )2
2 2 1 3 1 3 2 2;ˆ ˆ coth2 .= + + + =B d% ε ε ε ε ε ε ε ε η                          (15) 

The complete Hamiltonian of the system under consideration with two electrons in the layer 2〈 〉  has the form: 

( )
1 2 1 2 1 2,ˆ ˆ ˆ ˆ .ˆ  − −= + + + + + +S S

e e e e SA ph e ph BH K K V V z z H H V                      (16) 

The following notation is used in formula (14):   
neK  ( 1,2n = ) – operators of kinetic energies of electrons: 

2 2

* *

ˆ ˆ
, 1, 2

2

ˆ

2
⊥

⊥= + =n n

n

e e

e

e e

p p
K n

m m
�

�
                                 (17) 

(designations «�» and « ⊥ » refer respectively to the directions parallel and perpendicular to the z axis; the latter is perpendicular 

to the boundaries of the layer 2〈 〉 , and the origin is in its center). The potential energy of the electrons, due to both the direct 

electron-electron interaction and the interaction of each of the electrons with fast polarization of the layer and the crystals 

bordering it, has the form [23]: 

1 2

1 2 1 2 1 2

2

0
0 2 0

, , ? ( ){e
4

( )
e ez z

e e e e e e

e
V V z z d J

ηρ η ηρ
πε ε

∞
− −

− −≡ = +∫  

1 21 32
1 3

2
ch( ( )) e

e

d
e ed

z z η
η δ δ η

δ δ
 − + ×− 1 2 1 21 2)( cosh( ( sinh) )))]( ( ,e e e ef z z f z zη η+ + +             (18) 

where the following designations are introduced: 

2 1,3
1,3

2 1,3

 
ε ε

δ
ε ε

−
=

+
,                                         (19) 

2
2 1 3

1
2 1 2 3)(( )

f
ε ε ε

ε ε ε ε
−

=
+ +

, 1 3 2
2

2 1 2 3

)(

( )( )
f

ε ε ε
ε ε ε ε

−
=

+ +
;                          (20) 

0 )(J x  – zero-order Bessel function; 
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η, η,

η, 1,2

ˆ ˆˆ Ω  S
ph s s s

s

H b b+

=

= ∑ h                                      (21) 

– energy operator of surface optical phonons; ˆ
n

S
e phH −  ( 1,2=n ) is the interaction Hamiltonian of the electrons in the layer 

2〈 〉  with surface optical phonons of a polar crystal 10〈 〉  and 30〈 〉 , which has the form (3) – (15). 

The potential energy of interaction of each electron with the induced fast polarization of the layer and neighboring crystals (the 
so-called self-action energy) can be written as: 

2

1 32
0 2 1 30

)
e

( {
4nSA e d

e d
V z η

η δ δ
πε ε δ δ

∞

= +
−∫

2
1 2e ( ch(2 sh(2 )})

n n

d
e ef z f zη η η+ .             (22) 

The potential energy of electrons in a rectangular well with infinite barriers is equal to 

1,2

0, ;
2 2

|

,

( )

, .
2 2

=

 − < <= 
∞ ≤ − ≥


n

n

n n

e

B e n

e e

d d
z

V z
d d

z z

                                (23) 

2.2. Effective Hamiltonian of the System 

We assume that the thickness of the d layer 〈2〉 is so small that the energy of dimensional quantization is much greater than 

the energy of phonons and electron-phonon interaction. In this approximation, the motion of an electron along the z-axis can be 

considered as fast and the wave functions can be chosen in the form describing the ground dimensional quantized state: 

1 2

1 2

2
( , cos cos)

e e

e e

z z
z z

d d d

π π
ψ

    =              
.                               (24) 

After averaging the Hamiltonian (16)–(23) on the wave function (24), we exclude the variables 
1ez , 

2ez  and we get a 

quasi-two-dimensional problem with a Hamiltonian 

1 2 1 2 1 21
ˆ ˆ( )) ( , | ( , , ), | ()e e e e e eH z z H z z z zρ ψ ρ ψ= .                            (25) 

Let's place the origin of the coordinate system XOY  to the center of mass of the electronic system (the radius vectors of the 

electrons are respectively denoted 
1

ρe , 
2

ρe ). 

We perform over the Hamiltonian 1
ˆ )(H ρ  unitary transformation 

1
2 1 1 1

ˆ ) ˆ ˆ ˆ(H U H Uρ −= ,                                       (26) 

where the conversion operator 1Û  has the form 

1 1 2 ,η ,η

η, 1,2

ˆ ˆˆ ( )exp η,ρ ,ρ s s

s

U f b b+

=

  =  
  
∑ ;                                 (27) 

here: 
1 2

(η,ρ ),ρe ef  – variational amplitudes of displacement of phonon mode operators. 

When averaging the resulting Hamiltonian 2Ĥ  by phonon vacuum 0Φ  we obtain an effective Hamiltonian that does not 

contain phonon variables: 

1 23 0 2 0
ˆ ˆ( )ρ ,ρ Φ | |Φe eH H= .                                    (28) 

Let's choose the variational amplitudes of the displacement in the formula (27) in a form similar to: 
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1,2)(η,ρ |
ne nf = =

( ) ( ) 1 2
ηρ ηρ

2 2 2 2 2 2

e e

Ω 1 ( )1

e ei i
n

s s s

C F

R R

η η λ
η β η

 + = + 
+ +  h

,                       (29) 

where λ  and β  are variational parameters, [20, 23, 24] 

1/2

*2 Ω
s

s

R
m

 
=   
 

h
, 1,2=s . 

When 0λ =  function 1 2 )(η,ρ ,ρf  it takes the form of the Haken amplitude [25], taking into account the specific nature of 

the system under consideration. Factors ( ) 1,2|n nF η =  have the form: 

2
1 13,22 2 21 13,24

1 2 2
2

1

(

sinh
2

)

Ω
4 16

d
B K B F K

F
d d

ηπ
η

η η π

   +    =
 

+  
 

h

;                             (30) 

3 12 4
2

13,22 13 13,24

2 2 2
2

2

sinh
2

( )

Ω
4 16

d
B K B F K

F
d

F

d

ηπ
η

η η π

   +    =
 

+  
 

h

;                           (31) 

The second term in formula (29) was introduced according 

to the theory of bulk bipolaronic and exciton states in polar 

crystals to more accurately describe the distribution of slow 

polarization induced by the field of a two-charge system [20, 

23, 24]: two electrons in a bipolaron [20, 24] or an electron 

and a hole in an exciton [26, 27]. It should be noted that the 

variational parameter λ  describes the magnitude of the 

induced polarization charge arising in a two-electron system 

in addition to the polaron charge, which is localized near the 

center of mass, the variational parameter β  takes into 

account the size of the region in which the induced polar 

charges are distributed. As a result, we obtain the effective 

Hamiltonian of the system: 

2

0

1,2

( ) ∆ ( )ˆ
2 n

n

eff e eff p p
en

H E d W W E d
m ⊥=

= − + + +∑
h

.                         (32) 

Term 

2 2

0 2
||

( ) = +
n

SA

e

E d V
m d

hπ
                                       (33) 

includes the energy of the main level of dimensional quantization and the energy of self-action: 

2 2

1 3 12 2 2
0 2 1 30

e sinh?

4 e ( )

x

SA x

e dx x
V f

d x x

πδ δ
πε ε δ δ π

∞   = + 
− +  

∫ . 

The term represents the effective potential of electron-electron interaction and includes energy 
1 2e eV −  after averaging the 

Hamiltonian (16) on the wave function (24) and the electron-phonon interaction energy describing the interaction of each of the 

electrons with the induced polarization of the other: 

1 2

2

, 0
0 0

, ) ( , )
16

(

∞
 = + × 
 ∫eff e e

e x
W d V d J

d d

ρρ ρ
πε

( ) ( ) ( ) ( )2 2
1 11 11 2 12 12{ 2 2 }F x a a F x a a dx− + − ,           (34) 

where: 
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1
2 2

1 2
( ) 1 s

s

R x
a x

d

−
 

= +  
 

, 1,2s = .                                    (35) 

Term pW  in the right part (32) 

1 2

2

η. 1,2

ρ ,ρ , ) ( )( ( )p e e n

n

W d C Fη η
=

= ×∑ 1 22(2 1){ (ηρ )}cos
ns s ea a− .                    (36) 

is determined by the second term in the formula (29): 

2 2 2 2
2 (1 )s sa Rλ β η −= + .                                     (37) 

It describes the potential energy of the interaction of an electron with a polarization charge induced by the joint action of both 

electrons, which is located in the region of the center of mass of a two-electron system. pW  makes an additional contribution to 

the attraction of electrons and the formation of a bipolaron. 

The coordinate-independent part of the potential energy ( )?pE d  in formula (32) has the form: 

2

η, 1,2,

1,2

( ) ( ) ( )p n

n

s

E d C Fη η
=

=

×= ∑ 2 2 2 2 2
1 1 1 22 4 2( )s s s s sa a a R aη− + +                      (38) 

and takes into account the polar energy, as well as the 

interaction of each of the electrons with the polarization 
created by it and the energy of the elastically deformed lattice. 

2.3. Investigation of the Effective Potential of 

Electron-Electron Interaction 

It is of interest to investigate the profile of the effective 

potential of electron-electron interaction ( , )effW dρ , defined 

by formulas (30), (31), for two actual cases: 
a) in a monolayer FeSe, applied to a massive polar 

substrate 3SrTiO  (one interface 3FeSe / SrTiO ), in 

which HTSC was observed experimentally; 

b) in a monolayer FeSe, separating the crystal layers

3SrTiO  (two interfaces 3FeSe / SrTiO ). 

Both cases under consideration are typical structures – 

"Ginzburg sandwiches", in which two electrons from the 

conduction band of a monolayer film FeSe interact with the 

surface optical phonons of the substrate 3SrTiO  (case а)) and 

monolayer film FeSe, separating polar crystals 3SrTiO  (case b)). 

As it was shown, due to boundary conditions, bulk 

longitudinal optical oscillations in 3SrTiO  do not create 

electric fields in neighboring media (confinement effect), in 

this case – in a monolayer FeSe, in which free electrons will 

interact only with surface optical phonons 3SrTiO  [21, 22, 

24]. We will assume that the FeSe monolayer is a 

quasi-two-dimensional quantum well with infinite walls. 

For case a), the effective potential of the electron-electron 

interaction can be obtained from formulas (34), (35) in the 

limit 0d → : 

2
2

0 1

)
2

(
)( 1

D
eff

e
W ρ

πε ε ρ
= +

+

2 2

0 2
0 1 10 0

1 1 1
 

2 ? 1 1 1s s

e x x
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R R x

ρ
πε ε ε

∞
     −−      + + +    

∫ ,                 (39) 

where: 

1

2

*2 Ω
S

e S

R
m

 
=   
 

h
; 10

1
1

1
 Ω

1
S

εω
ε

+
=

+
;                                (40) 

ΩS  – the frequency of the longitudinal surface optical phonon. 

Carrying out the integration, we get: 

2
2

0 1 10

2 1
)

2
(

1 1

D
eff

e
W ρ

πε ρ ε ε
 

= − − + + 

2

0 0
0 1 10

1 1

2 1 1S S S

e
I L

R R R

ρ ρ
ε ε ε

       − −      + +        
.            (41) 

Here 0 ( )I x , 0 ( )L x  – modified zero-order Bessel and Struve functions, respectively. 

Then the effective Hamiltonian of the system has the form: 
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1 2

1 2

2 2
2 2

* *
∆ ∆ )

2 2

ˆ (D D
eff eff

e e

H W
m m

ρ ρ ρ= − − +h h
.                               (42) 

Figure 1 shows graphs of the dependence )(effW ρ  for case a): vacuum-monolayer film 3FeSe SrTiO−  for three different 

values of the effective mass of the electron в FeSe. 

For case b), the effective potential of the electron-electron interaction is obtained from formulas (34), (35), taking into account 

the symmetry of the structure 3SrTiO  – multilayer film FeSe – 3SrTiO : 

2

0 1 10

2
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2
(

1
eff

e
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πε ρ ε ε
 

= − − 
 
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1 100
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e
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ε εε
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       

,                  (43) 

where 

1/2

*2 Ω
S

e S

R
m

 
=   
 

h
; 10 1

1
1

Ω  
2

S

ε εω
ε
+

= . 

Note that in the case of a symmetric structure 

3 3SrTiO FeSe SrTiO− −  the electrons in the 2  layer will 

interact with only one surface optical mode of each of the 

crystals 3SrTiO  (
1 2

Ω Ω ΩS S S= ≡ ; 
1 2S Sα α= ). 

The dependency graph )(effW ρ  for the case 

3 3SrTiO ?FeSe SrTiO− −  and various values of the effective 

mass of the electron are shown in Figure 2. 

In a study a modification of case b) is discussed when 

there is more than one interface between 3SrTiO  and FeSe, 

and two interfaces ( 3SrTiO / FeSe  и 3FeSe / SrTiO ) [28]. 

This creates an indirect phonon attraction of electrons twice 

as strong as in the case of a single interface, which, in turn, 

will lead to an increase in cT  about twice. Effective 

potential in this actual case (case b)) can be obtained from 

formula (43) by doubling the effective potential energy of the 

interaction of electrons. 

Thus, for the case c) the effective potential: 

2
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2 1
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1 1

D
eff

e
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πε ρ ε ε
 

= − − + + 

2
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1 1

1 1S S S

e
I L
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ρ ρ
ε ε ε

       − −      + +        
.                (44) 

The dependency graph )(effW ρ  for case b) and various values of the effective mass of the electron are shown in Figure 3. 

As can be seen from Figures 1–3, within SRρ �  и SRρ �  potential )(effW ρ  interactions between electrons have a 

repulsive character, but the range of values ~ SnRρ  ( ~ 1 5n ÷ ) 
2 )(D

effW ρ  changes the nature of behavior from repulsion to 

attraction. 

 

Figure 1. Graphs of the dependence of the effective potential energy for the case 3 / /SrTiO FeSe vacuum . Curve 1 corresponds to *
0=m m , where 0m  – free 

electron mass, curve 2 – *
02=m m , curve 3 – *

05=m m . 
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Analysis of a similar expression for a massive crystal 

obtained based on the Haken method in the study [25]: 

2 2
3

0

1 1
( ) 1 e

 
V

r

RD
eff

e e
W r

r rε ε ε

−

∞

   = − − −  
   

,     (45) 

shows that under no parameter values ε∞ , 0ε  potential 

3D
effW , as a function of r, it does not change the nature of its 

behavior and is repulsive. 

In the general case, when the polar crystals are different, 

and the layer 2  between them has a finite thickness, the 

calculation of the potential profile
2 )(D

effW ρ  should be 

performed according to formulas (34)–(35). 
The appearance of a tendency to weaken the repulsion of 

electrons in the FeSe monolayer and the appearance of 

attraction between them at distances of the order of their 

polaron radius ( ~ SRρ ) occurs due to interaction with the 

optical phonons of the substrate 3SrTiO  and it is an important 

condition for the formation of bipolarons. 

In the effective Hamiltonian (28), the term 
1 2
, , )(p e eW dρ ρ  

(formulas (36), (37) describe the potential energy of 

interaction of electrons in a monolayer of FeSe with an 

additional polarization charge induced by the joint action of 

both electrons and located in the region of the center of mass 

of a two-electron system. 
We estimate the density of the total surface charge for case 

a), which can be calculated by the formula: 
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,                (46) 

where: pV  – polarization field potential, 0z  – the distance 

to the plane in which the electrons are located (monolayer 

FeSe); 1λ , 2λ , 1β , 2β  – variational parameters. 

Considering 1 2 1 2 1λ λ β β= = = = , 0 0z =  and by 

integrating into (38 a), we obtain an explicit expression for 

( )σ ρ : 
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;             (47) 

here: 0 ( )K x , 1( )K x  – McDonald functions. 

Integrating the expression (47) by ρ  gives the value of the 

effective electric charge *e  induced by electrons: 

* 10 1

1 10

(

( 1)(

)

1)

e
e

ε ε
ε ε

−
=

+ +
.            (48) 

As 10 1 1ε ε >� , then from formula (37) for an effective 

charge we obtain: *
1/ ( 1).e e ε≈ +  

3. The Binding Energy of the Bipolaron 

The energy of the ground state of the bipolaron is found by 

the variational method. 
We will choose the trial wave function of the electron pair 

in the form: 

1/2 2( ) 2(3 ) e γρψ ρ π γ ρ− −= ,          (49) 

where γ  – variation parameter. 

The variational function of the ground state energy has the 

form: 

 

Figure 2. Graphs of the dependence of the effective potential energy for the 

case 3 3/ /SrTiO FeSe SrTiO . Curve 1 corresponds to *
0=m m , where 0m  

– free electron mass, curve 2 – *
02=m m , curve 3 – *

05=m m . 

1 2( , , ) ( ) , , ,( )ˆ ( )effE H dγ β λ ψ ρ ρ ρ ρ ψ ρ= .   (50) 

Substituting (41)–(43), (49) into (50) and performing 
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integration, we obtain an explicit expression for the 
variational functional of the bipolaronic state energy in the 

cases under consideration: 

а) For contact: 3vacuum / FeSe / SrTiO  

2 2 2

*
0 1 1 10

1 1 1
( )

3 1 1 16

e
E
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γ γγ
πε ε ε ε

  
= + − − ×  + + +  

h
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

.  (51) 

b) For a symmetric structure: 3 3SrTiO / FeSe / SrTiO  
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6 4 2 26 4 2 2(64 240 8 1) 4 1S S S SR R R Rγ γ γ γ + − + − 


.  (52) 

c) For the structure: 3 3SrTiO / FeSe / SrTiO  with two 

interfaces [28] 

2 2

*
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6
E

m

γγ = +h
 

2
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2 1 1 1
(4 1)
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S
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6 6 4 4 2 2 2 2(64 240 8 1) 4 1S S S SR R R Rγ γ γ γ + − + −


.  (53) 

The binding energy of a bipolaron is determined by the 

expression: 

2b b pW E E= − ,              (54) 

where bE  – the minimum value of the functional ( , , )E γ β λ  

(i. e. the energy of the bipolar system); pE  – the energy of a 

single polaron. 

By 0d →  и we get the expression: 

1,2

Ω
2

p s s

s

E
π α

=

= − ∑ h .          (55) 

Based on the variational calculation of the binding energy 

bW  of the bipolaron in the FeSe layer on the substrate 

3SrTiO  according to the formula (51), it is obtained: 

*
0em m= ; 10,8= −bE meV . 

*
02em m= ; 17,6= −bE meV . 

*
05em m= ; 31,3= −bE meV . 

In a three-layer structure 3 3SrTiO FeSe SrTiO− −  the 

calculation is made according to the formula (52): 

*
0em m= ; 13,2= −bE meV . 

*
02em m= ; 20,6= −bE meV . 

*
05em m= ; 35,7= −bE meV . 

 

Figure 3. Graphs of the dependence of the effective potential energy with two 

separate interfaces 3 /SrTiO FeSe  and 3FeSe / SrTiO . Curve 1 

corresponds to *
0=m m , where 0m  – free electron mass, curve 2 – 

*
02=m m , curve 3 – *

05=m m . 

In a three-layer structure 3 3SrTiO FeSe SrTiO− −  with 

two interfaces [28], the calculation is performed according to 

the formula (53): 

*
0em m= ; 27,3= −bE meV . 

*
02em m= ; 41,2= −bE meV . 

*
05em m= ; 68,8= −bE meV . 

From the above results for structures: monolayer FeSe film 

on a substrate 3SrTiO  and 3 3SrTiO / FeSe / SrTiO  structure 

it follows that the binding energy of the bipolaron is in the 
range (150÷900) K. The interaction of electrons in the FeSe 

conduction band with their induced polarizations and an 

additional positive polarization charge in the substrate 
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3SrTiO , located in the center of mass of a two-electron system 

(formula (48)), plays an important role in the polarization 

potential well in the formation of bipolarons in a monolayer 

film FeSe. 

The pairing of the formed polarons is facilitated by the 
weakening of repulsion between them, due to the interaction 

of electrons with an additional polarizing charge, which turns 

into attraction, as is the case in structures 3FeSe / SrTiO  and 

3 3SrTiO / FeSe / SrTiO . As follows from expressions (34), 

(35), the binding energy of the bipolaron increases with 

decreasing thickness of the FeSe film and reaches a maximum 

value in the limit 0d →  (monolayer FeSe film on a substrate 

3SrTiO ), in this case, the constant of the electron-phonon 

interaction Sα  the structures under study 3FeSe / SrTiO ; 

3 3SrTiO / FeSe / SrTiO  lies in the area of intermediate and 

strong coupling: ~ (1 5)α ÷ . 

Note that when considering the Coulomb interaction of 
electrons with the surface optical phonons of the substrate, the 

screening effects that lower the binding energy of the 

bipolaron was not taken into account. At the same time, taking 

into account the exchange effects during the formation of 

bipolarons [18, 29], increases their binding energy [18, 29]. 

4. Assessment of Critical Temperature in 

Structures FeSe/SrTiO3; 

SrTiO3/FeSe/SrTiO3 

Let us estimate cT  based on the bipolar mechanism of 

superconductivity in a monolayer FeSe, deposited on a polar 

semiconductor substrate 3SrTiO . 

A bipolaronic model of superconductivity due to the 

superfluidity of a charged Bose gas was considered [16]. 
Using the formula for the Bose condensation temperature 

under the bipolaronic superconductivity mechanism [30], we 

estimate cT  for case a): multi-layer film FeSe on a polar 

substrate 3SrTiO : 

2

0

3,31 S
c

bp

n
T

m k
≈

h
,                 (56) 

where: Sn  – concentration of bipolarons; 2bp pm m=  – 

effective mass of the bipolaron, pm  – the effective mass of 

the polaron. 

For numerical estimates, we use the following parameter 

values: 0(1 5)pm m= ÷ , 0m  – free electron mass; 

13 14 2(10 10 ?)Sn сm−≈ ÷  [10]. 

As a result, for the critical temperature of the transition to 

the superconducting state, we obtain the interval: 

(100 300)?cT К≈ ÷ . 

Considering that the binding energy of bipolarons lies in the 

interval: (150 900)?bpE К≈ ÷ , it can be assumed that the 

bipolaron remains a stable quasi-particle during the formation 

of a superconducting Bose condensate. 
Since the binding energy of a bipolaron in the case of a 

three-layer structure 3 3SrTiO / FeSe / SrTiO  (in case c)) 

increases in comparison with case a): 3FeSe / SrTiO  

approximately by (15 20)%÷  and more than twice (in the 

case of b)), the above estimates  cT  it is qualitatively 

preserved. 

Evaluation of the maximum value cT  in the model with 

the Einstein spectrum of optical phonons for the structures 

under consideration, in the case of a strong electron-phonon 

coupling according to [31], the formula gives in the limit: 

0 0,13 Ω≈ h
max

ck T .              (57) 

Considering that Ω ΩS=h h  – the energy of the surface 

optical phonon 3SrTiO , we get the critical temperature: 

140≈max
cT К , 

what correlates with the assessment cT , performed according 

to the formula (57). 

Note that an increase in the thickness of the FeSe film leads 
to an exponential decrease in the binding energy of the 

bipolaron in comparison with the FeSe monolayer 

( ~ exp( )/b SE d R− ) and accordingly to an exponential 

decrease cT  ( ~ exp( )/c ST d R− ), where 

1/2
0 )/ (2 )(S SLOR m ω= h  – the radius of the surface polaron. 

The binding energy and the critical temperature cT  reach a 

maximum in the limit of the monolayer film FeSe ( 0d → ). 

5. Conclusion 

The binding energy of bipolarons is in the range of values

 (150 900)?bpE К≈ ÷ , so bipolarons in the studied "Ginzburg 

sandwiches": 3FeSe / SrTiO  and 3 3SrTiO / FeSe / SrTiO  are 

stable quasiparticles and can exist in the structures under 

consideration at temperatures that can significantly exceed 

their Bose condensation temperature. 

Calculations show that the binding energy of the bipolaron 

in the FeSe layer on the substrate 3SrTiO  strongly depends 

on the thickness of the layer ( ~ )exp( / Sd R−  and reaches a 

maximum in the limit of the monolayer film ( 0d → ). 

High values cT  the structures studied are determined by 

the high binding energy of bipolarons due to the presence of a 

highly polar semiconductor substrate 3SrTiO , which 

unequivocally confirms Ginzburg's prediction [6] about the 

important role of contact media in achieving high cT . 

The interaction of electrons in a monolayer FeSe film with 

optical phonons of the substrate 3SrTiO  for *
05em m= ; 

35,7?bE meV= −  was experimentally investigated [12-13]. It 

is established that the electric field associated with 

high-energy Fuchs–Kliewer surface phonons 3SrTiO  [32], 
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penetrates the monolayer FeSe and leads to the formation of 
polarons in it. It is theoretically shown that the dynamic 

polaron-polaron interaction in the FeSe layer leads to an 

increase in superconductivity. 

The presented theory makes it possible to simulate the 

system and determine the range of values of the material and 

geometric parameters of the layers forming multilayer 

structures which can be achieved cT  in the area of room 

temperatures. 

These can be multilayer structures of the type of composite 

superlattices, the layers of which are, along with the FeSe layers, 

also layers SrO, 2TiO , BaO, and others [28]. 

In conclusion, we note that in multilayer periodic structures, 

which are composite superlattices with polar semiconductor 

layers (type BaO, 3SrTiO  and others) and metal layers (type 

FeSe, 2CuO  and others), an important role in the formation 

of bipolarons and growth cT  spatially extended surface 

phonons can play – new elementary excitations that were 
predicted theoretically [33, 34] and discovered experimentally 

[35-37]. 
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