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Abstract: The objective of the article is the mathematical description of the car motion in the most possible general form 

using Newton’s second law and the forces that act on it when they are known. In the first section, the forces that act on the 

vehicle are described and the normal (usual) conditions of driving are considered. Secondly the dynamical equation of motion 

baced on Newton’s second law is introduced which is in general a non-linear second order ordinary differential equation. 

Various cases are discussed such as going uphill, downhill, accelerating, decelerating etc. In Section 3, the energy consumption 

of the fuel is discussed and it is stated that it is consisted of two parts this of the “idle” worke and this of the sustainment of the 

motion. Besides it is shown that for a certain space “s” there is one unique speed that minimizes the consumption of fuel. In 

Section 4, the basic “defect” of the equation of motion which is the inclusion in the equation of the unknown driving force F(t) 

it is shown that it can be “circumvented” with energetic considerations leading to an equation having at the right – hand side 

the speed in the denominator and the excess revolutions per minute in the numerator. The resulting equation is such that a 

knowledge of δr(t)=(rpm)(t) – (rpm)0 can, by the numerical solution of the equation, lead to the function of speed and so a 

relation is established detween the velocity (u(t)) and the excess (rpm) which can be cheched as true or false by the aposteriori 

resister of the tachograph (u(t)) and rotation – counter (rpm(t)). Finally, in Section 5, we calculate, using the decelerating 

motion of a car in a flat road (when somebody leaves the throttle) all the kinematical and “energetical” constants that are 

introduced in the previous sections for sixth gear such as Fc, 6, b6, σ6, λ6 which can be used, post – hoc, to examine together 

with δr(t) if the real velocityof a vehicle coincides with the prediction that a computer can make. Besides for a flat road, the 

power of a car can be estimated for instance when it has u=120 km/h at rpm=3000 and in the 6
th

 gear, giving for power -45HP 

which is a very reasonable estimate in order of magnitude. 

Keywords: Motion of a Vehicle, Newton’s Second Law, Ordinary Differential Eqs 

 

1. Introduction 

In the last three decades, there is a considerable effort of 

physicists for understanding the physics of automobiles and 

related topics [5-20]. 

The basic tool is Newton’s Second Law which if it is 

combined with other considerations like the theory of o.d.e.’s 

can probably go far, giving a theory of automobile 

considered as a “material point”. 

A motion of a car is a motion of certain trajectory (for 

instance a closed road) which may be flat, may have turns or 

may pass through hills (uphill or downhill). 

If we impose all the forces that are exert on the car 

(considered as a material point) it is a matter of elementary 

differential geometry of a certain trajectory, to see that all the 

forces not tangentional to the road are used to keep the car in 

the certain trajectory, letting the tangential forces, to 

determine the velocity (speed) of the "material point" [1–4]. 

The tangentional forces are: 

1. The forward force of the engine F(t) 

2. The friction – resistance of the air denoted by – 

R(|u|)��=- (��+ �� |u| + ��|�|� + …)�� , which for small 

velocities (speeds) is equivalent to -����  – bu=-��  –bu 

for u ≥ 0 

3. The component of the weight which is tangentional to 

the road. 

The above considerations are equivalent (for “normal 

motion”) to a trajectory which is found to be at a plane 
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perpendicular to the horizon and a trajectory that at most goes 

up and down if the “original” trajectory passes through hills. 

[The two trajectories, the “original” and the “equivalent” 

predict the same tangentional velocity u(t) ≥ 0, u(t)=
	
	�]. 

Since u(t) ≥ 0 we have only forward motion i.e. reverse 

velocity is excluded from our considerations. 

The above discussion is valid only under “normal 

conditions of driving” by which we mean: 

1. No sliding or spinning of the wheels 

2. The forces exerted on the car by the “environment” (as 

a reaction) are such to keep the vehicle on the trajectory 

of the road 

3. The power of the engine is such that to keep the vehicle 

in constant or accelerating motion without loosing a 

part of it. (For instance in a very abrupt uphill road) 

4. No throttle (gas pedal) and brake can be pushed at the 

same time. 

 

Figure 1. The equivalent trajectory. 

2. Dynamical Equations 

As we have explained in the introduction, for the motion in 

a 3 – D curve there is an equivalence between the original 

trajectory and the equivalent trajectory regarding the 

tangential motion and the upgoing in a hill or downgoing 

afterwards: 

The fundamental general equations that describe the 

motion is: 

m
	�	� =- ��θ(u) – bu + F
�� – mgsin [��
��]             (1) 

u=
	
	� ≥ 0 and F
�� ≥ 0 

Where 

1. �� is the constant friction exerted to the vehicle when it 

moves, 

2. -bu is the air resistance, 

3. F
�� is the engine force and 

4. Mgsin [��
��] is the component of the weight which is 

exerted reversely to the motion if (0 ≤ ��  < 
�� ) or in 

alignment to the motion, if (- �� < �� ≤ 0). 

Note that the function ��(s) is a “known” characteristic of 

the “constant” trajectory and not of the motion which we do 

not know still. (s=the length of the trajectory). Furthermore 

F 
��  is the force of the engine and the function θ(u) is 

θ(u)={
� � � �� � � �}. 

The above equation is too general and therefore it is “useless” 

(!), since it is very difficult to come into conclusions [1 – 4]. 

A simplified version of the above equations for a constant 

inclination of the road and considering F
��  ≥ 0, ���  ≥ 0, F 
�� ≥ 0 is the following: 

m
	�	�  + bu=F 
��=F
�� - ���                      (2) 

where: 

��� � � �� 
������ ��  �!�"���#$ $%&%$�  �� '  mgsin�� 
-���- �. �$$� �� –  mgsin�� 0 �$�- �$1 2�3� �$$�� 4 mg or mgsin�� 7  �� 8 
In all three above cases: ��� > 0. 

For the last case of steep downhill motion we have: 

m
	�	�  + bu=F 
��=F
�� + ���                  (3) 

��� � mgsin�� - �� > 0 (steep downhill) 

Equations (2) and (3) for “arbitrary” F
�� have the solution 

[1 – 4]: 

u
�� � ��%9 :;�
 + %9 :;�

 < % :;�=��  F 
�>� 2�>           (4) 

Where F 
�>� can be either positive, negative or zero. (in eq. (3) 

only positive). 

In eqs (2) and (3) if the gas petal is not used, then F(t) will 

be put to zero (F(t)=0). 

If in addition t he brake is pushed then F(t)=- �?  (�?  ≈ 

constant) giving totally 

F(t)=- �? - ���                                 (5) 

or 

F(t)=- �? + ���                                (6) 

From the general solution (4) one can get for two different 

instants of the motion [��, ��] that 

u
��� % :;�B - u
���% :;�C � < % :;��B�C  F 
t� 2�. 

If in addition F 
t�  7 0 for t in [��, ��] (0 ≤ F(t) ≤ ���) then 

it is easy to prove that u
��� < u
��� given that �� E  ��. On 

the contrary if F 
t� ≥ 0 for t in [��, �� ] it is not easy (if 

impossible) to prove that u
��� > u
���. In the first case we 

have deceleration and in the second probably acceleration. 

The situation is the following: 

Suppose one drives a car in an horizontal level for instance 

without a gravitational force but subject to the forces - �� 

(friction) and – bu (air resistance) [equation (2)] then as soon 

as one leaves the throttle, he will immediately feel the 

deceleration exerted on the wheels and subsequently on the 

car. The opposite situation happens when one pushes the 

throttle more, in which case one feels the acceleration, not 

immediately but after a few seconds (or fractions of seconds). 

But how a car is initiating its motion, up to now we have 

considered only the first gear in eqs (1), (2), (3)?. Actually 
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these equations have to be replaced by other that contain the 

costants ���  b, ���� ���,�  and probably F(t) �  ��
�� 

where the index g (not to be confused with the g of gravity 

which is also used) denotes the gear, for instance g belongs 

{1, 2, 3, 4, 5, 6}. 

In other words a car is not unique but for instance 6 in our 

case, one for each gear. Automatic cars probably need a 

different manipulation which has to take into account the 

mechanism of changing gears automatically. 

The initiation of motion in a gear – car is simple if the car 

is found to be in a steep downhill road since ��� > 0 and F(t) 

≥ 0 (eq. 3). The start – up does not give any problems. 

However, in the case of (eq. 4) the “combined” driving 

force F(t)=F(t) - ���, which may well be negative in which 

case the vehicle can not start the motion. 

u(t)=%9 :;�
 < % :;�=��  F(t’) 2�>, u(t) ≥ 0. 

It is obvious that at t=0 the motion can not be initated 

unless, F(0) > ���. 

For subsequent times, it’s not necessary to have F(t) ≥ ��� 

for t ≥ 0 in order the motion to be retained as shows the 

following diagramm. 

 

Figure 2. The function F(t) with respect to constant ���. 

Defining 

FG � < F
t’� 2�>�B�C � FGI (��, ��) 

F? � < % :;�= F
t’� 2�>�B�C � F?  (��, ��) 

If F(t) ≤ 0 for t in [��, ��] → FG J 0 → F? J 0 

The inverse is not necessarly true. Therefore the sign of F?  

is determined by the sign of FG . 

Suppose that we have three time intervals [0, ��], [��, ��], 

[��, �L ] for which the �I  is positive, negative and positive 

again. (Figure 2) 

If F(0) > ���, the vehicle moves until ��, gets in (positive) 

speed. From �� �� ��  the calculation of the correspoding 

solution for which we have F?  [��, �� ] < 0, FG  [��, �� ] < 0 

which means that the speed will be reduced by a certain 

amount if not again becoming 0, in which case it cannot start 

– up again. (see Figure 2) 

3. Equations of Energy – Balance 

Energy minimization for certain space “s” 

When the engine of a car “works” but the car is not 

moving we have the situation of the “idle” work as we say. 

In this case where there is no gear in the gear – box and the 

engine works, all the energy that is given to the pistons (heat 

excluded) of the machine is used to overcome frictions and 

resistances as the metal parts react one on the surface of the 

other. The energy for this process as well as all the energy 

used for the functions of the car (motion, acceleration, uphill 

going etc) is given by the fuel but in this last case, energy 

must be provided in addition to the idle work. 

From the above considerations we may write: 


	M	� �� � N�                                      (7) 


	M	� �� � N�� + (����                             (8) 

In the first equation 
	M	� �� is the consuption of the energy 

fuel and N�  is a constant power in the “idle” work. In the 

second equation – which is referd to the 1
st
 gear – it is easy to 

identify the term N�� as the “idle work” of the first gear and 

the term u*F as the extra power needed to make the vehicle 

to sustain motion or to accelerate or to go uphill. 

For every gear (g) it can always be written 


	M	� �� � N�� + (����                            (9) 

Where u(t) ≥ 0 and F(t) ≥ 0. 

Where F(t) is the force excerted to the car by the engine. 

(actually the wheels excert a force on the environment and 

the environment excerts a reaction on the car, here denoted 

by F(t)). 

In equation 9, we usually drop the “index” g for simplicity 

and because we are usually interested in kinematic changes, 

that happen to a car, without, a change in the gear – box. 

Usually when Newton’s eq. is given together with the 

“driving force” (F(t)), then the finding of the kinematic 

properties is done through the solution of an o.d.e. (i.v.p). 

(Ordinary differential eq. – initial value problem). In the 

case where the driving force is not known, then the solution 

(s(t), u
t�) cannot be found in full detail. However writing 

the driving – unknown force as a function of the kinematic 

terms, conclusions may be infered for other quantities, like 

energy, momentum, e.t.c. 

The two driving forces of the previons sections are 

F
t�=m
	�	�  + bu + ���, ��� > 0                   (10) 

F
t�=m
	�	�  + bu - ���, ��� > 0                   (11) 

When the car moves the quantity 

O	M	� P � N� + uF                            (12) 

is the rate of consumption of energy due to the idle work and 

the sustainment of motion (uF). 

After the appropriate substitutions we have 

O	M	� P � N� + u(ma + bu ± ���)              (13) 
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In the above formulae we have put in the first formula ��� 

→ ���  and in the second ���  → ���  in order not to write 

double expressions. 

No confusion can be made since the two cases may be 

discriminated by the signs ±. For what is ��� and ��� see the 

energy consumed in a long intervall of the time T, it is 

appropriate to integrate eq. (13) with respect to time. Doing 

so, and considering that the speed is kept more or less 

constant and that the initial acceleration is small for a small 

interval of time and that the vehicle operates in “normal 

conditions of driving” we have 

E(T,u)=N�T + 
�� m�� + b��T ± ���uT            (14) 

At this point, it has to be mentioned that the above eq. 

cannot answer the question in how much time, a vehicle 

moving with velocity (speed) u will consumme the less 

energy and subsequently fuel, since thisfunction of energy is 

an increasing function of time T. Making the substitution T=

�, 

we have 

E(s,u)=N� 
� + 
�� m�� + b�� ± ���s            (15) 

With this formula we can ask the question for 

minimization of the expression with respect to u when s is 

constant (which now has meaning) 

Differentiating 

	M	�=- N� 
�B + mu + bs=0            (16) 

	BM	�B=2N� 
�Q + m > 0 

These equations make sure that there is one unique 

solution (root) of the derivative, which minimizes the 

(consumpted) energy since the second derivative of the 

function E(s,u) is always positive (for u > 0). [Figure 3] 

 

Figure 3. The two components of  
	M	�=0. 

From a physical point of view the situation of the 

minimization of energy consumption for a certain speed is the 

following. For large speed, the engine works at a high rate and 

it consumes a large amount of energy as it passes through a 

space – interval – s. On the other side, if the vehicle moves at a 

small speed it consumes low rate energy but for a large time – 

interval (which corresponds to the space s), and finally a lot of 

energy for the space s. This shows clearly that there exists an 

indermediate value of u (not very large – not very small) for 

which we have a minimization of consumpted energy. 

It is easy to derive that for a vehicle of the case (1) and for 

case (2) we have, for a motion that starts with zero speed and 

easily gets to a constant speed �� > 0. 

R�
s, ��� � N� 
�S  '  ��  m��  �  '  
b��  '  ����sR�
s, ��� � N� 
�S  '  ��  m��  �  '  
b��  U  ����s   (17) 

The differentiation with respect to �� is the same to both 

eqs. and equally well lead to eqs. (16) and the situation of 

figure 3, which is of cource a minimization. 

For the case of “arbitrary” u(t) ≠ �� it is very difficult to 

handle the eqs. and this will not be attempted by us – at least 

presently. 

From the dynamical eqs., for ��=const, we have 

F=��� + b��, for the case                       (18) 

and 

b�� � ��� (F=0), for the second case             (19) 

4. Revolution Counter – Speed Counter – 

Equations 

When a car moves, in constant speed or in acceleration or 

it is going uphill in a certain gear “g” we have for the 

dynamical equation of motion [1 – 4]: 

m
	�	�  + ��u + ���,�=F(t) 

where �� is the constant of resistance, for the gear “g” and ���,� 

is: 

���,�  V ��,� 
WXYZ[X\�]^ ^_`_^���,� '  �-����� 
�. �$$���,� U  �-����� 
�$�- �$1 2�3� �$$� 

Where ���,�  > 0 and the first g denotes the gravity while the g 

after the comma denotes the gear in the gear – box. (for 

instance g=1, 2, 3, …, 6) 

From now on, we will be interested, for simplification, 

only for the horizontal motion and since we are also 

interested only for the dynamical eqs. keeping the gear 

constant we can write: 

m
	�	�  + bu + ��=F(t)                  (20) 

with the engine working in the “idle” work, we can set 

a�
	b	� �� � c�
!.��� � 
	M	� �� � N�          (21) 

By which it is meant that the consumption of energy has a 

constant rate (N�), it is proportional to the frequency of the 

engine [(rpm)=revolutions per minute] with a constant of 

proportionality and is also proportional to the rate of (liquid) 

fuel that enters the cylinders, with constant of proportionality a� . The constants of proportionality c�  and a� , have 
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dimensions of energy and energy per unit volume respectively. 

For the case of moving with a gear g, we have: 

a�
	b	� � � c�
!.�� � 
	M	� �� � N�� + uF         (22) 

Where g stands for gear g and the other symbols have a 

similar meaning to these of (21) and u(t) ≥ 0, F(t) ≥ 0. 

Subtracting eqs. (22 and 21) with our attention to the σ and 

P “componets” we get 

uF=σ [
!.�� - 
!.���]=σdY(t)          (23) 

where we have also used N�� - N� ≈ (σ - c�� 
!.��� 

If it was not so we should have a force F(t) ≠ 0 (of the 

engine) even in the case where dY=0, since a constant term 

should be added in the right hand side of 23). Besides we 

expect N�� >≈ N� and c�� >≈ c� which is in accordance to the 

auxiliary equation written above. 

Combining eqs. (20 & 23) we get 

m
	�	�  + bu + ��=σ 

ef
g��                          (24) 

which is an ordinary differential eqs. (o. d. e.), which if 

solved gives the speed u of the car if dY
t�  is known, 

provided that also the constants b, m, �� & σ are known. (for 

a gear “g”) [1–4] 

Since we don’t know the function dY
t�, we have to invent 

one. Since the rotations (revolutions) of the engine are 

initially low, then they usually grow quickly (as soon as the 

throttle is pushed) and finally saturate at a certain level we 

can suggest: dY
t� � dYh + 
dYi - dYh� (1 - %9j�)                 (25) 

 

Figure 4. The “saturation” function dY(t). 

In figure 4, we have 0 < dYh << dYi where dYh � dY (0) and dYi � dY (+∞) 

“γ” is expressed in �%k9� and is usually large. At time t l 

5 m9� , the engine is considered to have “saturated” the 

revolutions per unit time (no more increase) and almost this 

time is equivalent to the “infinite time”. 

All though eq. (25) is “arbitrary” (but it has the features of 

the revolution counter of a car) its precise form is not 

important for making results as we shall see later. 

We define the quantity �I(t) such that: 

b�I  + ��=σ 
ef
g� �n                             (26) 

which is the equation (24) with the first term missing. (i. e. 

the derivative) 

The solution of the last eq. with respect to dY
t� is: 

�I � 9GSo pGSBoqr?ef
g�  �? � �ref
g� 
GSo pGSBoqr?ef
g�          (27) 

It is easy to check that in the limit 4c�dY
t� << ��� we get 

u(t) l 
ref
g� GS  and in the opposite limit u(t) l 
ref
g� ? �CB. 

From the above information as well as the already known 

(supposed) function dY
t�  we can draw a graph of the 

functions �I(t) and u(t). 

 

Figure 5. The auxiliary curve (1) and the true curve (2). 

Subtracting eqs. (24-26) we get 

m
	�	� =- b(� - �I) - σdY(t) 

� 9 �n��n                     (28) 

where of course �I(t) is a known function if the m, b, ��, σ 

constants are known (if not known they can be found by 

suitable observations). 

Suppose that for a certain (but random) �� > 0 we have 0 < 

u
��� < �I
���. From the right hand side of (28), we get 
	�	�  > 0 

and the solution will be increased for the subsequent 

infinitesimal time. 

This will happen continuously and the solution will elevate 

higher and higher until it will reach a point ��  for which 

u
��� � �I
���. (Figure 5) (Curve 2) 

From eq. (28) for t=�� , we have 
	�	� 
���=0, which is a 

contradiction (line 1) showing definetely that the curve u(t) 

cannot intersect the curve �I(t) at �� horizontally �t 
��� > 0. 

Therefore the only possibility left is the “horizontal 

asymptotic convergence” of the curve u(t) to �I(t). (Curves 1, 

2) 

To see this better, define w=�I  – u and the eqs of motion 

(28), gives 

m
	u	� =- (b + 

vef��n )w + m
	�n	�                 (29) 

Although we don’t know the exact solutions u, �I  (but only 

that their positive – definite) as well as b, m, σ, ��, dYh, dYi, 
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we can prove that 3(t) tends asymptotically to zero (u(t) → �I (t)) based on the positivity of the term (b + 
vef��n ) and the 

vanishing of the function �It  l 0 as t >> m9�. 

Again, eq. (24) has a strange feature the last term becomes 

infinite if the speed u → 0o. 

But then, how the solution is initiated when the solution 

starts from zero speed (�(0) = 0) when for instance it is 

attempted to be solved by a numerical solution? 

The paradox is only apparent! 

If one performs the transformation y=�� (by which if you 

know u, you know 1) then one gets the following o.d.e. [1 – 

4]: 

	w
 	� = �

x (2cdY(�) – 2by - 2��1C
B)                 (30) 

Which can be solved (for instance numerically) even for 

the initial value problem (i. v. p) for which y(0)=0. (�(0)=0) 

5. Estimation of Physical Constants and 

Calculation of Car’s Power 

So far we have dealt with the o.d.es that describe the car 

motion assuming, for simplicity, that the motion takes place 

on the horizontal level, when they are driven by real forces 

F(t) or forces phaenomenal which are for instance related 

mathematically to the mechanical features of the engine (for 

instance dY(t)) [1 – 4]. 

In both cases, there are constants – parameters that enter 

the o.d.e(s) phaenomenologically and must be calculated if 

we want to have an “integrated” picture of the car motion. 

As is the construction of the theory there are four constants 

for every gear where g={1, 2, 3, …, 6} for example ��, ��,�, c�, a� . The mass of the car is excluded since it is 

unique for every gear. 

The calculation of the 4x6 constants is useful, for the 

numerical integration of the eqs. but much more, it is useful 

for the calculation (theoretical) of the power of the engine (in 

HP for instance), which if proved correct at least in order of 

magnitude – is a sign of the correctness of the theory. 

[Here by power of the engine, we mean the consumption 

of fuel energy per unit time at a certain rpm (revolution per 

minute), in a certain gear and subsequently in a certain speed 

in the horizontal level]. 

We are not going to estimate all the 4x6 constants of the 

“model” but only these of the 6
th

 gear (�z, ��,z, cz #�2 az) 

which we will used to calculate the power of the engine in 6
th

 

gear at u=100 
{x

W  (2500 rpm) and u=120 
{x

W  (3000 rpm). 

If a car is moving in a straight road (horizontal level), 

initially with speed ��, but without use of the gas pedal then 

it will decelerate from �� to zero. 

The o.d.e. describing the motion is 

m
	�
	� =- bu - ��, 0 ≤ �(�) ≤ ��                 (31) 

The solution of the above o.d.e written in a “peculiar” 

form is 

% :
;�

=[
�|o }S:

�(�)o }S:
] > 1                            (32) 

It is important to notice that 0 ≤ �(�) is equivalent to 0 ≤ t 

≤ �~ 

% :
;�i=[

�|o }S:
� o }S:

] 

For motion in a “straight” road, eq. (24) admits the 

solution, u=constant for dY=constant. 

For two speeds �� , ��  and relevant differences of rpms dYC, dYB we can write 

b���  +  ���� = σdYCb���  +  ���� = σdYB
                            (33) 

For instance 

�� =120 
{x

W =33,33IIII 
x


_� 

�� =100 
{x

W =27,77IIII 
x


_� 

with relevant differences rpm 

dYC=(3000 – 900) rpm=2100 rpm=35 Hz 

dYB=(2500 – 900) rpm=1600 rpm=26,66IIII Hz 

And (!.�)�=900 rpm → “idle” work. 

Equations (33) can be written as follows 

�>���  + ��>�� = dYC�>���  +  ��>�� = dYB                            (34) 

Where 

�> = �
c 

��> = ��c  

Solving for �>, ��> we get 

� �>
��>� = �

�C �B(�C 9 �B)  � ��dYC  −  ��dYB− ���dYC  +  ���dYB
�       (35IIII) 

From which �> & ��> may be calculated. 

If in the 6
th

 gear, going from �� to speed �� we need ∆t ≃ 

15 sec for a car of mass m ≃ 2000 Kgr, we have from (31) 

and from �> = ?
r, ��> = GS

r  

 ?
x ∆t ≃ ln[�C o }=

:=
�B o }=

:=
]                             (36) 

The solution of equations (35) give 

�>=0,0162 (S. I.), ��>=0,51001 (S. I.) 

From which 
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 GS
?S =  GS=

?=S=31.4821 (S. I.) 

b=14.472 
{�Y

_�  (S. I.) 

σ=
?
?==893,33IIII joule (S. I.) 

(	M
	� )�=σ (rpm)=… ≃ 60 HP (3000 rpm) 

(	M
	� )�=σ(rpm)=… ≃ 50 HP (2500 rpm) 

�� =  GS=
?=S b=31.482 * 14.472 ≃ 45,56 Kp 

Our final goal is to give a procedure by which the 

constants a� (g : gear, g=1, 2, …, 6) can be calculated. 

From the energy – balance equation we have 

(	M
	� (t))� = c� !.�(t) = a�(	b

	� )�. 

It is clear that the constants c� have dimension of energy 

while a� have dimension of energy per unit volume of fuel. 

The constants c�  may be determined by experiments – 

observations like these they took place in the beginning of 

section 5. 

Integrating the energy – equation one gets 

a� = 6� 
��Y�x��

(�b)�                                  (37) 

where: 

1. c�  is a known constant from the kinematic 

measurements, 

2. � is the time that the engine works in the gear g, 

3. (��)�  is the volume of the fuel consumed in time T 

when the gear – box has the -�W gear and 

4. < !.� >�= �
�  < !.�(�)�

�  dt is the mean value of the 

revolution counter measurement. 

For instance if one measures 2500 < ≃ rpm < ≃3000 he 

can estimate rpm ≃ 2700 or 2800 for instance. 

Knowing all the quantities of the right hand side, one can 

easily calculate a� (g=1, 2, …, 6). Similarly to eq. (37) one 

can write for the idle work 

a� = c� 
�(Y�x)|

(�b)|  

where: 

1. (!.�)�=revolutions of the idle work 

2. �=time of working engine in the “idle” work 

3. ��=volume of fuel used by the engine at time T (when 

there is no gear in the gear – box and no gas petal is 

pressed) 

Now, unfortunately the constance a� , c�  can not be 

measured by kinematic mesurements and their calculation 

needs the extension to a theory of the engine. 

One final remark concerns the mass (m) of the car which 

was probably overestimated the m=2000 Kgr. If instead we 

consider m=1500 Kgr which is most likely, then for the same 

“kinematic measurements” we find that σ → 
����
����  

σ=
L
q σ 

From which we get 

(	M
	� )� → 45 HP and (	M

	� )� → 37,5 HP 

Calculations that seem to be more natural in order of 

magnitude for the high speed (120 & 100 
�x

W ) of the car, in 

the 6
th

 gear and the smaller mass of the car. 

*[TOYOTA (YARIS), 2016, 1330cc] 

6. Conclusions 

As we saw in the main text, if one uses Newton’s second 

law and the tangential forces exerted on the car, such as the 

tangential force of the engine (which also determines part of 

the consumpted energy), the friction – air resistance and the 

component of the weight tangential to the velocity, one can 

predict the velocity of the vehicle and compare it to this 

“taken” from the tachograph (speedometer) and the rotation – 

counter (rpm). The true solution will be taken from an o.d.e. 

which has no “analytical” solution but can be solved 

numerically if some parameters such as b, ��, F(t), [and σ, λ 

(for energy considerations)], are known. 

Finally from the motion of a car with constant speed at a 

straight and flat road (which means no acceleration, no uphill 

going) and from the registers of the tachograph and the 

rotation – counter, the parameter ��,z , �z,  cz , az  can be 

evaluated. Where 6 refers to the 6
th

 gear. 

These parameters can be used for the numerical integration 

of the initial o.d.e. to examine consistency. (This is not done 

by us). 

Finally for motion in a flat – straight road the overall 

consumed power can be calculated and it is found to be in 

very reasonable measures in order of magnitude (i.e. 45HP 

for u ≃ 120 
{x

W , rpm ≃3000 rpm in the 6
th

 gear). 
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