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Abstract: We study the dynamics of the processes in the small-world networks with a power-law degree distribution where 

every node is considered to be in one of the two available statuses. We present an algorithm for generation of such network and 

determine analytically a temporal dependence of the network nodes degrees and using the maximum entropy principle we define 

a degree distribution of the network. We discuss the results of the Ising discrete model for small-world networks and in the 

framework of the continuous approach using the principle of least action, we derive an equation of motion for the order 

parameter in these networks in the form of a fractional differential equation. The obtained equation enables the description of the 

problem of a spontaneous symmetry breaking in the system and determination of the spatio-temporal dependencies of the order 

parameter in varies stable phases of the system. In the cases of one and two component order parameters with taken into account 

major and secondary order parameters we obtain analytical solutions of the equation of motion for the order parameters and 

determine solutions for various regimes of the system functioning. We apply the obtained results to the description of the 

processes in the brain and discuss the problems of emergence of mind. 
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1. Introduction 

The macroscopic data of the functional imaging such as a 

functional magnetic resonance imaging and 

electroencephalography demonstrate a collective activity of 

many brain neurons. These investigations suggest that 

cognition and perception are the products of the collective 

activity of the neurons inside a large-scale brain network [1, 2]. 

A human brain consists of ~10�� neurons, each of them is 

connected with the other neurons by ~10�  links. The 

question is how these neurons acting in a coordinated manner 

form a coherent state, the time evolution of which we call 

thinking [2, 3]. 

Recently Eguiluz et al. [4] have presented a method of 

construction of functional brain networks proceeding from the 

results of the functional magnetic resonance imaging 

measurements in a human. In these experiments, a magnetic 

resonance activity of certain parts of the brain (so-called 

voxels) is measured at each discrete time step. By ��	
� we 

denote a voxel’s activity at the instant of time 
 . It was 

proposed to consider that two voxels are functionally linked if 

the value of their temporal correlation exceeds a certain 

positive value �
 	independent of the value of their anatomical 

connection. The correlation coefficient between any pairs of 

voxels �� and �� is calculated as 

�	�, �� �
〈��	����	��〉�〈��	��〉〈��	��〉

�	��	����	��	���
          (1) 

where �����	
� � 〈��
�	
�〉 ! 〈��	
�〉� , brackets 〈… 〉 

represents temporal averages and ��	
�  is the blood 

oxygenation level dependent on a signal of the voxel �	in case 

of the brain scanning data. The elements of the correlation 

matrix determine the value of correlations among various 

parts of the cerebral cortex. Using highly correlated nodes 

Eguiluz et al. have constructed a network and determined that 

the degree distribution of the obtained network has the form 

#	$�~$�% , where & ' 2  [4]. It has been also shown that 

these networks possess a small-world structure, a community 

structure and are fractals [5, 6]. 

The brain must surely functionate in a critical state as the 
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states of the system near the critical regime are extremely 

sensitive to small actions. The size of the minimum area 

having sufficient features of a macroscopic system is called a 

correlation length. The correlation length of the system near 

the critical point is large enough. In this case the system is 

characterized by the fact that the number of the elements of the 

system in the area with the size about a correlation length 

tends to the infinity. So the behaviour of the degrees of 

freedom is interconnected and the behaviour of the system is 

defined by the fact of the coordinated behaviour of the degrees 

of freedom as well as by their nature. 

The scale-invariant small-world network in the simplest 

case can be generated by the following algorithm being a 

generalization of the algorithm of the small-world network 

first proposed by Watts and Strogatz [7]. 

We proceed from a closed system of )  nodes with the 

periodic boundary conditions where each node is connected 

with the neighbors by * links. A new edge is added to this 

system at each instant of time, one of the ends of this edge 

being connected with one of the nodes of the regular lattice 

with the probability 1/)  while the other end of the edge 

being connected with that in accordance with the preferential 

attachment principle $�	
�/∑ $�	
�� . Thus the change of the 

node degree $�	
�  (without taking into account the 

contribution of the initial regular graph edges) is determined 

by two contributions and represented by the equation 

-.�	��
-� = /

0 + 2 .�	��
∑ .�	��� .                  (2) 

Taking into account that at the instant 
  a full network 

connectivity is ∑ $�� = 2
 and that the change in the total 

degree of the network at one time step is ∆$ = ∑ �$�	
� −�$�	
 − 1� = 2 we obtain 2 = 1. Then (2) takes the form 

-.�	��
-� = �

0 + .�	��
∑ .�	��� .                    (3) 

The solution of this equation has the form 

$�	
� = 2
/) + 4
�/�,                  (4) 

where 4  is the constant of the integration which can be 

determined from the condition ∑ $�	
� = 2
� . The degree 

distribution of similar networks is conveniently derived using 

the maximum entropy principle in the presence of constraints 〈$〉 = $� and 〈$�〉 = 5�, which leads to 

#6�	$� = 7�� 81 − �
9 	1 − :�	$ − $���;

<
=><

.     (5) 

Here : is a measure of complexity of the system. The value : = 1 corresponds to the degree distribution in the form of 

the Gaussian distribution. At : ≠ 1	and for large enough $ 

the network is characterized by the power-law degree 

distribution [8]. The presented algorithm shows that order and 

disorder are inherent in small-world systems. 

Discuss the problem of transition from the large world to 

the small one in networks. Rather, a smooth crossover is 

realized as the number of shortcuts grows. The small world 

within the limit of the infinite number of nodes ) is supposed 

to be obtained if # = )6/) is finite where )6 is a number of 

shortcuts. If # = 0 we have a large world, that is a lattice [9]. 

It intuitively makes sense that in case of small enough, but 

finite #  the obtained small-world network could be 

considered as a lattice with a weak disorder. Then knowing the 

number of the components of the order parameter we could 

determine its transformational properties [10]. 

The analysis of the one-dimensional homogeneous Ising 

model with ) → ∞ vertices demonstrates the absence of a 

phase transition in the system at finite temperatures [11]. The 

phase transition emerges in the Katz model where apart from 

the short-range interactions there present weak interactions 

among all pairs of spins [9]. The one-dimensional Ising model 

has been studied in a series of works. It has been shown that a 

phase transition emerges at finite temperatures B
	#� for any 

finite # [11]. 

In two-dimensional and three-dimensional lattices the Ising 

model shows a phase transition at finite temperatures [11]. 

Investigation of the role of the weak disorder in such systems 

demonstrates emergence of a phase transition with a change of 

the universality class [12]. Such results were obtained in a 

series of the investigations of the Ising model on small-world 

networks. Due to fluctuation of the correlations among the 

nodes the order parameter becomes a function weakly 

changing in space. In this case a spin interaction in the 

functional of free energy density can be represented as 

�
�∑ C�C��,� → �

�DEF� GC�	�� + �HC	�� �I. 
Representation of a free energy in this way is typical for the 

Ginsburg-Landau theory, where the free energy according to 

transformation properties of the order parameter includes an 

integer basis of invariants. 

Further, we introduce a free energy functional for 

small-world systems and using the principle of least action we 

derive an equation of motion for the order parameter 

representing spatial-temporal structures near the critical point. 

2. Equation of Motion for the Order 

Parameter 

To derive an equation of motion for the order parameter in 

the system with long-range space interactions and a temporal 

memory we determine the free energy functional JKLM	in the 

form: JKLM = J�KLM + JNKLM, where 

J�KLM = DOE�E
DOE�′E
′ Q�� -R	S,��
-� T�	�, 
, �U, 
U� -R�SV,�V 

-�V + �
�
-R	S,��

-S T�	�, 
, �U, 
′� -R�SV,�V 
-SV W,             (6) 

JNKLM = DOE�E
DOE�′E
′X�L	�, 
�, L	�U, 
′� Y�L	�, 
�, L	�U, 
U� .                        (7) 

Here � is a spatial coordinate, 
 is time and the functions T�	�, 
, �U, 
′�  and T�	�, 
, �U, 
′�	 describe the influence of 
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long-range space interactions and temporal memory on the 

dynamics of the order parameter. Integration is performed 

over the region Z in the two-dimensional space Z� to which 
	�, 
�  belong [8]. The dynamic equation follows from the 

stationary principle [JKL, \M = 0 

D E
UT	
, 
U� -R�S,�V 
-�V + D E�′$	�, �′� -R�SV,� 

-SV
]
�

]
� +

D EL	�U, 
U�X�L	�, 
�, L	�′, 
U� -^8R	S,��,R�SV,�V ;
-R	SV,�V� = 0]

�    (8) 

with separated spatial and temporal kernels, where [JKL, \M 
is the Gateaux derivative. Considering the power-like kernels 

T	
, 
U� , $	�, �′�  and X�L	�, 
�, L	�′, 
U� , we obtain a 

fractional differential equation for the order parameter as 

T� _�̀�a L	�, 
� + $� _Sb�a L	�, 
� + _R	S,��c�a d�L	�, 
� = 0, (9) 

where _�̀�a  is the Caputo fractional derivative [12] and 1 < [ ≤ 2 , 1 < g ≤ 2 , 0 < 5 ≤ 1 . The term 

_R	�,S�c�a d�L	�, 
�  consists of the non-integer powers of the 

order parameter. Note that choice of the fractional derivative 

depends on the type of the initial conditions and the processes, 

and other than Caputo derivative can appear. It is necessary to 

underline that the (9) is a generalization of the 

Ginzburg-Landau equation. 

Further, we will discuss the solution of (9) in cases of 

one-component and two-component order parameters when 

the fractional derivatives in (9) are comfortable fractional 

derivatives [13]. Besides, we will also analyze the effects of 

secondary order parameters. 

3. The Effects Induced by the Major 

One-Component Order Parameter 

First, we take into account nonlinear equation (9) in the 

following form 

h 8-iR
-�i , -jiR

-�ji , -kR
-�k , -jkR

-�jk , … ; = 0.        (10) 

Then, the following transformation applied: L	�, 
� = \	l�. 

In order to use comfortable derivative we put 

l = ��k
9 − m�i

n .                    (11) 

Using these transformations (10) we reduce the fractional 

differential equation to an integer nonlinear differential 

equation 

o	\	l�, \U	l�, \UU	l�, … � = 0.        (12) 

According to (9) we consider the nonlinear fractional 

Klein–Gordon equation for the order parameter 

-jiR	�,��
-�ji − -jkR	�,��

-�jk = −pL	�, 
� − qLr	�, 
�,    (13) 

where 
 > 0 and 0 < t ≤ 1, 0 < u ≤ 1. First we define the 

stationary solution of the equation 

-jkR	�,��
-�jk = pL	�, 
� + qLr	�, 
�.      (14) 

We consider the case when u = 1. In this case the equation 

-jR	�,��
-�j = pL	�, 
� + qLr	�, 
�        (15) 

is the Euler equation of the free energy functional 

v	�� = pL� + w
� L� + & 8xRx�;

�
.        (16) 

The homogeneous solutions L� = L�� = 0  and L� =L�� = −p/q  correspond to disordered and homogeneously 

ordered phases respectively. 

After multiplying by L�U  we obtain the first integral of (15) 

&	L′�� = y + pL� + w
� L�.           (17) 

This equation admits separation of variables and the final 

solution of equation (17) has the form 

L = L�z* 8&L�� w
�;.               (18) 

Now we determine the spatial distribution of the order 

parameter, which is described by fractional equation (14), and 

at α → 1 coincides with solution (18). Perform substitution of 

the variables L	�, 
� = \	l� and l = |�9/β and using (11) 

and (12) we obtain 

|�\~UU = p\	l� + q\r	l�.           (19) 

Equation (19) with an accuracy of the notations coincides 

with (15) and consequently its solution is as follows 

L = L�z* 8& w
� L� ��k

9 ;.              (20) 

The spatio-temporal distribution of the order parameter can 

be obtained through the transformation 

L	�, 
� = \	l� and l = ��k
9 − m�i

n .       (21) 

Using (11) and (12) equation (13) can be represented in the 

form 

	|� + ���\~UU = p\	l� + q\r	l�.         (22) 

Equations (19) and (22) with an accuracy of the notations 

coincide and consequently fractional differential equation (13) 

has a solution in the form 

L	�, 
� = ��z* �& w
� �� 8��

k
9 − m�i

n ;�.       (23) 

4. The Effects Induced by the Major 

Two-Component Order Parameter 

According to (9) we consider the nonlinear fractional 

Sine-Gordon equation for the two-component order parameter 
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-ji�	�,��
-�ji − -jk�	�,��

-�jk = z�* C.         (24) 

First we determine a spatial distribution of the order 

parameter which is described by the equation 

�xj�	��
x�j = z�* C.               (25) 

This equation is the Euler equation for the free energy 

functional in the form 

v	�� = 	C′�� + 4�z C.           (26) 

After multiply by C′ we obtain the first integral of this 

equation 

	C′�� = 2	4�z C + y�.            (27) 

This equation admits separation of variables and its solution 

has the form 

C	�� = 2p�	4�, ��.             (28) 

Now determine the spatial distribution of the order 

parameter which is described by the fractional equation 

− -jk�	�,��
-�jk = z�* C.              (29) 

The substitution C	�, 
� = \	l�  and l = |�9/u  leads 

fractional equation (24) to the ordinary differential equation 

−|� -j�		~�
-	~j = z�* C	l�.            (30) 

Equations (25) and (30) with an accuracy of the notations 

coincide and consequently the solution of (29) has the form 

C	�� = 2p� 84′ ��k
9 , �;.          (31) 

Equation (24) is solved through substitution (11) and (12) 

and has the form 

C	�, 
� = 2p� 8с� 8��k
9 − m�i

n ; , �;.      (32) 

5. The Effects Induced by Secondary 

Order Parameters 

Discuss the effects of secondary order parameters on the 

properties of the system. Consider the case of the 

one-component order parameter. If the transformational 

property of the secondary order parameter does not coincide 

with that of the major order parameter then the free energy 

functional describing the interaction between the major and 

secondary order parameters is represented by the expression 

C��� = 4L��� + �
� ��.                (33) 

The equilibrium value of the secondary order parameter is 

determined from the equilibrium condition. Then we 

determine �� = 0 and �� = −4L�/�. Substitution in the free 

energy functional leads to the renormalization pU = p −4�/	2��. So the spatial distribution of the secondary order 

parameter with an accuracy of the notations coincides with 

(18). Hence various phases with C	�, 
� ≠ 0 , �� = 0  and C	�, 
� ≠ 0, �� = −4L�/� are possible. 

In case of the two-component order parameter the free 

energy functional, describing the interaction between the 

major and secondary order parameters is represented by the 

expression 

C��� = $� z�* �
� + �

� ��,               (34) 

and from the equilibrium condition we determine 

� = − .
� z�* �

� ,                    (35) 

and consequently 

C��� = − .
�� z�*� 8��; = .

�� 	4�z C − 1�.    (36) 

So the spatial distribution for the major order parameter 

with an accuracy of the notations has the form of (24) while 

the spatial distribution of the secondary order parameter is 

determined by relation (32). 

6. Discussion 

The main consequence of the Ginzburg-Landau theory is 

the possibility of enumeration of the phases manifested by the 

system. The brain consists of a great number of neurons (they 

may be considered as binary elements) interacting through 

synapses. In physics such system is known as ferromagnetic 

Ising model where Ising spins act as neurons and the binding 

energies (exchange integrals) correspond to the magnitude of 

synaptic bindings. 

For free energy functional (16) we have homogeneous 

phases with L� = L�� = 0  and L� = L�� = −p/q  and a 

helicoidal phase with L = L�sn	&qL��/2� . There exist a 

disordered phase with L� = L�� = 0 , an ordered magnetic 

phase with L� = L�� = −p/q  and an ordered helicoidal 

phase with L = L�sn	&qL��/2�  for the magnetic phase 

transition. The helicoidal phase is represented in the form of 

the alternating domain walls with opposite magnetic moments 

so that an average magnetization is equal to zero. With the 

change of the control parameter the distance between the 

soliton walls changes. The origin of magnetism is a 

consequence of the fact that an electron with the charge �, 

mass ��, and spin 1/2 has a magnetic moment ±�/	2��4�. 
The Kadanov model or the method of the renormalization 

group and �-expansion give us the details of the emergence of 

the coherent magnetically ordered phase when approaching 

the critical point [15]. In ferroelectrics a spontaneous 

polarization is an order parameter and the free energy 

functional leads to the emergence of a sequence of phase 

transitions high-symmetry – incommensurate – commensurate 

phase. Ordering of the dipole moments of the atomic complex 

gives rise to a ferroelectric phase. Interaction of the major 

order parameter with the secondary ones causes the 

emergence of additional phases and effects, for example, the 
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phase with L � L�sn	&qL��/2� and � = 0 , and the phase 

with L = L�sn	&qL��/2� and �� = 4L�. 

By Haken's theory of self-organization the Ising model of 

ferromagnetics (or ferroelectrics) and the brain model belong 

to the same class of universality [16]. Hence it is interesting to 

discuss how physical properties of the brain, in particular 

mind can be explained from the point of view of physics. 

The complexes possessing a dipole momentum emerge in 

the ferroelectrics. Their ordering causes a spontaneous 

polarization. Ordering of magnetic moments of electrons in 

magnets gives rise to a spontaneous magnetization. In book [3] 

developing the ideas of Alfred North Whitehead, Abner 

Shimony wrote about a possible presence of proto-mentality 

of elementary particles. In much the same way we can suppose 

that ratiomorphic behaviour inherent in living is explained by 

the presence of proto-mentality of particles. Then functioning 

of the brain can generate an ordering of proto-mentality of 

particles, ensuring the work of the body and as a secondary 

effect induces consciousness. 

7. Conclusion 

The network generated using the algorithm presented in this 

paper is a system with weak disorder. The regular substructure 

of this system possesses the symmetry of the discrete 

subgroup of the Galilean group [10]. To describe a concrete 

process in such system, it is necessary to construct the Rapp 

diagram, which allows determining the number of 

components of the order parameter [2, 10]. Thus, it is possible 

to define the integer basis of invariants of an irreducible 

representation on which depends the free energy functional 

[10]. The fractional differential equation of motion for the 

order parameter takes into account the effects of spatial and 

temporal memory. For multi-component order parameter, we 

have a system of coupled equations. In the present article, we 

obtained analytical solutions of fractional differential 

equations for the order parameter. 

Both in one-component and two-component cases the brain 

functionates in the phases with a high response to an external 

perturbation and with a spatio-temporal distribution described 

by elliptic functions (32) and (36) respectively. 

Thus a series of phases with an inhomogeneous 

spatio-temporal distribution of the order parameter depending 

on fractional degrees of time and a spatial coordinate emerge 

in small-world networks with a power-law degree distribution. 

Prior to the creation of the microscopic theory of 

superconductivity of Bardeen – Cooper – Schrieffer, the 

phenomenological theory of superconductivity of Landau and 

Ginzburg was developed [16]. The theory of Landau and 

Ginzburg allowed to describe the features of measurable 

quantities near the change in the regimes of system 

functioning and create a theory of second-type 

superconductors. However, it was only after the creation of the 

microscopic theory of Bardeen – Cooper – Schrieffer 

superconductivity that the physical meaning of the order 

parameter was determined [16]. In our opinion, a similar 

situation takes place in the theory of brain functioning. The 

proposed approach can describe the properties of the system 

near the change of functioning regimes the brain and further, 

taking into account the ideas of Alfred North Whitehead, 

Abner Shimony, to determine the physical meaning of the 

order parameter. 
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