
 

American Journal of Physics and Applications 
2019; 7(2): 61-67 

http://www.sciencepublishinggroup.com/j/ajpa 

doi: 10.11648/j.ajpa.20190702.15 

ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online)  

 

Genodynamics: A New Biophysical Approach to Modeling 
Adaptation in Human Populations 

Tshela Elizabeth Mason
1
, James Lindesay

1, 2
, Georgia Mae Dunston

1, 2, *
 

1The National Human Genome Center, Howard University, Washington, USA 

2Computational Physics Laboratory, Department of Physics and Astronomy, Howard University, Washington, USA 

Email address: 

 
*Corresponding author 

To cite this article: 
Tshela E. Mason, James Lindesay, Georgia M. Dunston. Genodynamics: A New Biophysical Approach to Modeling Adaptation in Human 

Populations. American Journal of Physics and Applications. Vol. 7, No. 2, 2019, pp. 61-67. doi: 10.11648/j.ajpa.20190702.15 

Received: March 3, 2019; Accepted: May 9, 2019; Published: June 13, 2019 

 

Abstract: Using genodynamics, the Howard University biophysics research and interdisciplinary development group 

transforms genomic sequence data into genomic energy measures to explore the science of genome variation in population 

diversity and human biology. Genodynamics utilizes the statistical distribution of single nucleotide polymorphism (SNP) data 

from the Haplotype Map project to mathematically model whole genome-environment interactions in human adaptation to 

environmental stressors/stimuli by functionally parameterizing the interplay between the biophysical and environmental factors 

in a quantifiable manner. Our double-blind computer program flagged smooth mathematical function relationships between 

allelic energies of two SNPs in intron one of the egl-9 family hypoxia inducible factor 1 (EGLN1) and the environmental 

parameter averaged ancestral annual ultraviolet radiation exposure. EGLN1 is a gene on chromosome 1 known to play an 

essential role in the regulation of the hypoxia inducible factor pathway. We have demonstrated that our genodynamics 

approach can quantify, through adaptive forces, the effects that environmental stressors/stimuli have had on patterns of 

common variation in the human genome and by doing so offer an alternative means of investigating the implications of SNP 

information dynamics on natural selection in human populations. 

Keywords: Population Diversity, Modeling Whole Genome Adaptation, SNP Information Dynamics, Genodynamics, 

Natural Selection in Human Populations 

 

1. Introduction 

Modeling population diversity is fundamental to gaining a 

better understanding of the biology of whole genome 

variation. Modern humans have settled in disparate regions 

of the globe with environments ranging from high altitude 

plateaus to the frigid temperatures of the Arctic. Within these 

diverse environments, human populations have not only 

survived but thrived; this has been achieved through 

adaptation at the genome level. Genomic adaptation can 

occur through selective pressures (e.g., high altitude, ultra-

violet radiation (UVR) exposure, etc.…) in the environment 

acting on ancestral genome sequence variation present in the 

population. For example, high altitude populations such as 

the Tibetans, Andeans, and Ethiopians have signatures of 

positive selection on genes in the hypoxia pathway [1]. 

Likewise, in populations living at lower latitudes, there are 

signatures of positive selection in the pigmentation pathway 

due to high UVR exposure than those living in higher 

latitudes [2]. Additionally, pathogens have imposed selective 

pressures on human populations as indicated by more than 

300 immune and immune-related genes reported to have 

signatures of recent positive selection correlated with specific 

groups of microbes such as viruses, protozoa, and parasitic 

worms [3-5].  

Genome-wide association studies (GWAS), whole genome 

sequencing, and genome-wide SNP data have generated a 

plethora of resources, such as the database of short genetic 

variations (dbSNP), the Haplotype Map (HapMap), and the 

GWAS Catalog, all of which have contributed to a new era in 

population genetics. The 21
st
 century era of ‘genomic mining’ 

offers unprecedented opportunities to investigate 

evolutionary forces that have shaped genome variation in 
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natural populations. Genome-wide systems of common 

variation allow population geneticists to investigate how 

selection has influenced the architecture of the human 

genome in modern humans. As useful as these datasets are 

for research on natural selection, a major challenge in this 

research is the difficulty of correlating indigenous population 

allelic frequencies in the context of local environmental 

stressors [6]. To address this challenge, we have used our 

genodynamics method to derive biophysical metrics that 

allow us to mathematically model whole genome-

environment interactions [7]. This method explores the 

biophysical underpinnings of common variants (e.g., SNPs) 

to better understand the functional aspects of natural 

variation in the genome. Using principles of thermodynamics 

and statistical physics to derive such biophysical metrics, we 

have discovered environmentally induced adaptive forces 

that reflect the functionality of SNP data in indigenous 

populations. In this paper, adaptive forces are used to gain a 

better understanding of the complex interplay between SNP 

data and molecular mechanisms underlying whole genome 

adaptation to environmental stressors. 

2. Materials and Methods 

2.1. SNP Data Set 

We confined our analysis to phase III data from the 

International Haplotype Map Project [8] since this dataset 

represents the broadest set to populations with fairly uniform 

genotyping. The populations included in this dataset are: 

African Americans in the Southwest USA (ASW), Utah 

residents with ancestry from Northern and Western Europe 

(CEU), Han Chinese in Beijing China (CHB), Chinese in 

Metropolitan Denver Colorado USA (CHD), Gujarati Indians 

in Houston Texas USA (GIH), Japanese in Tokyo Japan 

(JPT), Luhya in Webuye Kenya (LWK), Mexican Americans 

in Los Angeles California USA (MXL), Massai in Kinyawa 

Kenya (MKK), Toscani in Italia (TSI), and Yoruba in Ibadan 

Nigeria (YRI). Only those SNPs that met the following 

criteria were included: (i) associated with one of the 

environmental parameters of interest in the GWAS Catalog 

[9] or in the published literature, and (ii) with selection 

signatures listed in the database of recent positive selection 

across human populations [10]. The ASW, CEU, CHD and 

MXL populations were excluded from our analysis because 

these populations do not reside in their indigenous 

environments. 

2.2. Environmental Parameter – UV Exposure 

For our analysis, the averaged ancestral annual UVB 

radiation exposure will be expressed in units of Joule per 

square meter (UV radiance) as estimated from [11]. In these 

units, estimates of annual UV radiance for the CHB 

population averaged 2180 (ranging from 1500 to 2600); for 

the JPT population averaged 2400 (ranging from 2300 to 

2500); for the LWK population averaged 5764 (ranging from 

5450 to 6500); for the MKK population averaged 5624 

(ranging from 5000 to 6125); for the TSI population 

averaged 1507 (ranging from 950 to 2500), and for the YRI 

population averaged 5129 (ranging from 3500 to 6300). 

2.3. Environmental Parameter - Altitude 

The altitude values utilized in this study are averaged 

estimates of elevations of populated regions for ancestral 

homelands in units of meters (m) using data from [12]. The 

CHB population’s averaged altitude was 22m (ranging from 

3m to 48m). The JPT population’s averaged altitude was 

107m (ranging from 5m to 287m). The LWK population’s 

averaged altitude was 1711m (ranging from 1203m to 

2486m). The MKK population’s averaged altitude was 

1507m (ranging from 712m to 2383m). The TSI population’s 

averaged altitude was 74m (ranging from 1.3m to 143m). 

The YRI population’s averaged altitude was 211m (ranging 

from 12m to 337m).  

2.4. Environmental Parameter - Malarial Susceptibility 

We have chosen to present data based upon the 

Plasmodium falciparum parasite rate (PfPR) which is 

commonly used as an index of malaria transmission intensity 

by the World Health Organization [13]. We presume that all 

the examined populations had higher malarial exposure in the 

past than at present. Specifically, the TSI population likely 

had significantly higher malarial exposure in the past than to 

date, since relatively recent developments have significantly 

reduced the prevalence of the insects (e.g., concentrated 

insecticide programs) and treatment of the disease. In units of 

parasite reproductive rate, estimated of PfPR for the CHB 

population averaged 0.01 (ranging from 0 to 0.05); for the 

JPT populations averaged 0.0002 (ranging from 0 to 0.001); 

for the LWK population averaged 12 (ranging from 2 to 35); 

for the MKK population averaged 8 (ranging from 1 to 25); 

for the TSI population averaged 0.8 (ranging from 0 to 5), 

and for the YRI population averaged 70 (ranging from 20 to 

95). 

2.5. Information Dynamics of the Human Genome 

Quantifiable biophysical dynamics requires the 

introduction of universal dimensional units that give a 

measure to the relative pliability and elasticity of information 

differences between various populations or regions of the 

genome of the same population, analogous to the additive 

energy units in the physical sciences. However, in contrast to 

the fundamental particles of micro-physics, fundamental life 

units (e.g., individual genomes) cannot maintain in the 

absence of the environments that support them, which 

motivates the development of genomic free energy variables 

as the least complicated description of genomic dynamics, 

rather than environmentally independent energetic measures. 

The genomic free energy Fgenome has been developed as a 

state variable in a manner that optimizes the population’s 

survivability under the complete set of environmental stimuli 

and stressors, establishing the homeostatic balance between 

conservation and variation of alleles and traits in the dynamic 
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of the population distribution. 

Motivated by the thermodynamics of physical systems in 

equilibrium, a dimensional environmental potential, TE is an 

intensive state variable that is independent of the size of the 

population will parametrize the intrinsic, pervasive agitation 

of the population due to stochastic environmental stimuli 

(analogous to how temperature parameterize agitation of 

fundamental physical units in a thermal bath) for populations 

in homeostasis. Similarly, dimensional allelic and haplotype 

potentials, µa
(S)

 and µh
(H)

, will quantify the genomic free 

energy change in a population from the addition of a single 

individual of all a or haplotype h. For a given haploblock 

(H), the differential genomic free energy is mathematically  

modeled in our 2014 BRIDG publication on the 

“Development of genodynamic metrics for exploring the 

biophysics of DNA polymorphisms” [14].  

2.6. Distributed Genodynamics 

Formulation of the information dynamics of the human 

genome in terms of genomic free energies directly resulted in 

well-defined forms for the SNP potentials for SNPs that are 

not in linkage disequilibrium, and for block potentials for 

correlated SNPs that are in linkage disequilibrium. In many 

cases (including GWAS data), associations with biological 

expression have been made with individual SNPs that happen 

to be in linkage disequilibrium within a block. Thus, there is 

utility in developing a meaningful mechanism for distributing 

the uniquely defined block potentials amongst their 

constituent correlated SNPs. Since the SNP haploblock 

structure has an emergent form that differs between 

populations, meaningfully defined distributed potentials will 

reflect the biology underlying the participation of individual 

SNPs in the informatic architecture of its correlation with 

other SNPs in the haploblock. We will require that distributed 

SNP potentials µS
(H)

 within a haploblock (H) must satisfy the 

following conditions: 

(1) If the SNP is occupied by an allele that is fixed in the 

given population, then its distributed SNP potential is 

the fixing potential µfixed; 

(2) The sum of the distributed SNP potentials should be 

the same as the block potential µ(H)
, i.e. µ(H)

, i.e. 

< ���� > =  ∑ �

�������



� ; (1) 

(3) The block potential should be linearly distributed 

amongst the constituent SNPs in accordance with 

occurrences of the SNP alleles. 

The first bullet ensures that if the SNP is not variant within 

the population, its genomic energy is equivalent to that of a 

SNP that is not in linkage disequilibrium, and the second 

bullet requires that the distributed potentials should 

reconstruct the block potential in an additive way. The third 

bullet represents a simple mechanism for relating the 

distributed potentials to the degree of variation in the SNP. 

For details of the mathematical formulations see Lindesay et 

al, “Use of Genome Information-Based Potentials to 

Characterize Human Adaptation” [7].  

It should be noted that all distributed potentials are only 

defined at the population level and cannot be ascribed to 

individuals. Only the emergent haplotype potentials can be 

ascribed to individuals within the population. However, since 

distributed potentials are defined for the population as a 

whole, they can be quite useful for parameterizing the 

environmental influences upon that population. Distributed 

potentials are particularly useful for describing the 

adaptation of the population to stressors with known 

biological correspondence to particular alleles or SNPs. The 

description of genomic variants using distributed potentials 

inherently includes any presently unknown whole genome 

response to specific stressors.  

2.7. Measurement of Adaptive Forces on the Human 

Genome 

The development of genomic free energy measures, that 

are quantified by Genomic Energy Units (GEUs), for 

individual alleles and genomic regions 

allows environmentally induced adaptive forces to be 

characterized using gradients of those additive measures 

down the slope of environmental parameters. A single human 

Genomic Energy Unit �� ≡ 1 ����  is defined to be the 

universal allelic genomic free energy necessary to induce 

maximal variation (2) 

within a single non-linked bi-allelic SNP location ���� =
�

�
 = ����, quantifying a dimensional free energy unit shared 

amongst all humans. (3) 

For a given allele a that can be biophysically associated 

with a definable environmental parameter λ (such as UV 

light, etc.), we defined the environmentally induced adaptive 

force on that allele by �� ≡
���

��
, with analogously defined 

adaptive forces on potentials characterizing SNPs, 

haploblocks, haplotypes, (4) 

genes, and even perhaps whole chromosomes. Such an 

expression is only meaningful if there is a functional 

relationship between expression of the biology of the 

genomic unit and a particular environmental parameter λ. In 

such cases, as defined positive adaptive forces drive the 

conservation of the given genomic unit down the slope of the 

genomic potential. The distribution of the genomic variants 

for a population in homeostasis with an environment 

optimizes the survivability and sustenance of that population. 

Under variation of a specific environmental parameter, 

increased survivability might drive the genomic unit towards 

more diversity, or more conservation, depending on the 

nature of the environmental influence upon the homeostatic 

population. We define homeostasis as any changes occurring 

in the population distribution requiring many generations to 

become significant. Quantifying such forces inherently 

involves comparisons between differing environments.  

 In many (if not most) cases, the biology of a given 

genomic variant associated with a redundant multiplicity of 

pathways and biological functions that are sensitive to 

several environmental stressors or stimuli. In such cases, the 

allelic potentials would lie on a multi-dimensional contour 

parameterizing a landscape of environmental parameters, and 
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the adaptive force would be a ‘vector’ valued function whose 

components reflect changes along any environmental 

parameter. Searches on a single environmental parameter will 

likely flag only those correlations with genomic variants that 

have a dominant association with that parameter. Our method 

examines whether the genomic potentials for the SNPs and 

alleles can be fitted to simple, functional forms (curves) 

singly dependent on a given environmental parameter. If the 

root-mean-square (RMS) deviation of the data points for the 

curves, as compared to the maximum variation of the data, 

falls within 5%, the SNP and/or alleles are flagged by our 

computer program and adaptive forces are calculated for the 

curves. Red points represent SNPs in linkage disequilibrium, 

while blue points represent those not in linkage 

disequilibrium. The thickness of the curves in the plots 

represents the degree of correlation of the data with the 

fitting curve, with bolder curves indicating stronger 

correlations.  

3. Results and Discussion 

A total of one hundred thirty-six SNPs met the criteria for 

inclusion in our study. Most of the SNPs (116) were 

associated with altitude, while five SNPs were associated 

with UV, and fifteen SNPs were associated with malarial 

susceptibility. Of the one hundred thirty-six SNPs 

interrogated, two rs7542797 and rs2486729 on chromosome 

1, were flagged for UVR exposure dependencies. Both SNPs 

are in the egl-9 family hypoxia inducible factor 1 (EGLN1) 

gene on chromosome 1.  

3.1. rs7542797, rs2486729, and UVR 

The potentials displayed in Figure 1 represent the block 

potentials and distributed allelic potentials of A and C for the 

SNP rs7542797 as a function of UVR exposure. The adaptive 

force on the SNP is about -0.0001 GEUs per unit of UVR 

exposure, while allele A, the ancestral allele, is about -0.0004 

GEUs per unit of annual UVR exposure towards higher 

exposure, and the C allele did not meet our criterion for 

flagging on this environmental dependency. Additionally, for 

the populations with the lowest UVR exposures, rs7542797 

is in linkage disequilibrium (LD) with rs2486729 whereas the 

populations with the highest UVR exposures rs7542797 is 

not in LD; suggesting that populations with higher UVR 

exposure benefit more by not being linked to rs2486729 

contrary to the populations with the lowest UVR exposures, 

where having rs7542797 and rs2486729 in LD is 

advantageous.  

 

Figure 1. Genomic potentials of polymorphisms rs7542797 on chromosome 1. The horizontal axis labeled by the environmental parameter λ is UV in 

units of UV radiance. The vertical axis gives the SNP (µ_rs7542797) and allelic (µ_A, µ_C) potentials in genomic energy units (GEUs). 

The SNP rs2486729 whose genomic potentials are 

displayed in Figure 2 was flagged for UVR exposure 

dependency. The adaptive force on the SNP potential is about 

-0.00005 GEUs per unit of annual UVR exposure, with 

increased genomic conservation for populations with lower 

UVR exposure whereas for the YRI and MKK populations, 

increased variation is favored while the LWK population 

exhibits the highest degree of genomic conservation 

indicative of the importance of this SNP with regard to this 

environmental dependency for the LWK population. The 

adaptive force on allele T is about -0.003 GEUs per unit of 

annual UVR exposure with significant GEU cost for the 

maintenance of the T allele in environments with elevated 

UVR exposure attesting to the significance of this allele. As 

with rs7542797, the C allele did not meet our criterion for 

flagging with this environmental dependency.  

 

Figure 2. Genomic potentials of polymorphisms rs2486729 on chromosome 1. The horizontal axis labeled by the environmental parameter λ is UV in 

units of UV radiance. The vertical axis gives the SNP (µ_rs2486729) and allelic (µ_T, µ_C) potentials in genomic energy units (GEUs). 
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3.2. The HIF Pathway, EGLN1, and UVR 

Our program found a functional correlation between two 

SNPs in intron 1 of the egl-9 family hypoxia inducible factor 

1 (EGLN1) gene and the environmental parameter UV 

exposure. Though EGLN1’s involvement in high altitude 

adaptation is more well, several studies have shown that the 

variation present in this gene has strong signatures of positive 

selection with regard to altitude in both Tibetan and Andean 

populations [15-19]. However, our study did not corroborate 

this finding which could be due to the lack of Tibetan and 

Andean genotype data for which we have plans to rectify in 

future studies. Furthermore, with regard to the other two 

environmental parameters, altitude and malarial 

susceptibility, there was no significant flagging for either. 

The lack of functional correlations between the chosen 

variants and the environmental parameters of interest could 

be due to how the environmental parameter is quantified. 

Particularly, regarding malarial susceptibility, it is possible 

that PfPR is not a suitable measurement for correlating this 

environmental parameter with the variants of interest and 

perhaps some other means of measuring malarial 

susceptibility (i.e., the incidence of malaria in a population) 

might result in better correlations with the chosen variants. 

Whereas, with altitude, the lack of functional correlations 

with the variants of interest may be due to a “threshold” 

effect whereby a certain level, in this case elevation, must be 

surpassed for there to be significant flagging. This effect 

could be remedied by the inclusion of populations residing at 

ultra-high elevations (greater than 3500m). 

The protein encoded by EGLN1, egl nine homolog 1 

(egln1), is a propyl hydroxylase (PHD) that hydroxylates one 

of the subunits in the hypoxia inducible factor (HIF) 

complex, specifically HIF-1α. When oxygen levels are low, 

HIF-1α hydroxylation by egln1 does not occur, resulting in 

the stabilization of the HIF complex and allowing for the 

activation of a wide variety of hypoxia responsive genes [20]. 

Studies conducted by Ivan et al. [21] and Jaakkola et al. [22], 

demonstrated that the enzymatic activity of egln1 

necessitates the interaction of HIF-1α with the von-Hippel-

Landau protein, a critical member of the E3 ubiquitin ligase 

complex that polyubiquitylates the HIF complex leading to 

catabolism by the proteasomes [20]. In addition, their 2001 

publications, Ivan et al. [21] and Jaakkola et al. [22] found 

that the hydroxylase activity of egln1 was dramatically 

suppressed in response to hypoxia, suggesting a direct 

mechanism for cellular oxygen sensing. Moreover, it is worth 

noting that HIF-1α contains several evolutionary conserved 

proline residues, one of which is the target of egln1 [23, 21] 

further validating its importance.  

The epidermis has a mildly hypoxic microenvironment 

where high levels of HIF-1a have been detected in the basal 

keratinocytes of both the mouse and humans [24]. In 

knockdown experiments of HIF-1α conducted by Rezvani et 

al. [25] in human keratinocytes, there was an inhibition of 

growth and the formation of a reconstructed epidermis was 

impaired. Also, data from studies led by Rosenberger [26] 

and Bedgoni [27] and Giatromanolaki [28] indicate that HIF 

activity us essential for normal skin function and its 

dysregulation has been related to such skin disorders as 

psoriasis, melanoma, and other cancers of the skin; 

illustrating the necessity of a fully functioning HIFpathway. 

Additionally, it has been shown that HIF-1a proteins are 

responsive to a number of non-hypoxic stimuli in a reaction 

oxygen species (ROS)-dependent manner [29]. Particularly, 

Rezvani et al. [30] demonstrated that ultraviolet B (UVB) 

irradiation has a biphasic effect on HIF-1α that is directly 

related to the ROS generation in the cytoplasm and 

mitochondria of keratinocytes. The early phase of this effect 

involves the downregulation of HIF-1α by ROS derived from 

the nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase activity in the cytoplasm while the late phase of this 

effect results in the accumulation of HIF-1α due to the 

production of ROS in the mitochondria [30]. Notably, ROS 

has been shown to play a significant role in the induction of 

HIF-1α through mitogen-activated protein kinase (MAPK) 

signaling in non-hypoxic conditions [31-33]. The activation 

of MAPK results from a signal from the mitochondria in 

response to the ROS generated from exposure to UVB 

irradiation [30]. When keratinocytes are exposed to UVR, 

UVB has been shown to stimulate Jun nuclear kinase and p38 

thereby leading to the phosphorylation and accumulation of 

HIF-1α by the inhibition of PHDs, specifically egln1 [34-

35]. Given the essential role egln1 plays in the regulation of 

HIF-1a, one’s ability to modulate, at the genomic level, the 

HIF pathway effectively could provide an adaptive advantage 

in an environment where UVB radiation is high. 

4. Conclusion 

We have established dimensional metrics that describe the 

statistical information dynamics of SNP variants in the 

human genome. Specifically, we have been able to quantify 

and display the adaptive force exerted on the genome in 

response to an environmental stressor/stimulus to optimize 

the survival of a population. Thus, the utility of this method 

is that it offers a novel way of addressing whole genome 

regulation of adaptation through the discovery of 

relationships between the environment and common variants 

in molecular systems. 

In summary, we have developed genomic energy measures 

for the human genome that relate the distribution of alleles in 

SNPs and SNP haplotypes within a stable population to state 

variables associated with the environment within which that 

population resides. The state variables defined by common 

variations utilize the entropy of the statistical distribution of 

alleles to establish normalized information measures for 

persistent dynamic units within regions of the genome, as 

well as for the genome as a whole. Moreover, the human 

genome is self-organized network working towards one 

common agenda, population survival.  



 American Journal of Physics and Applications 2019; 7(2): 61-67 66 

 

Acknowledgements 

The authors would like to acknowledge the continuing 

support of the National Human Genome Center, and the 

Computational Physics Laboratory, at Howard University, as 

well as, the editorial services of Dr. Philip Kurian. This 

research was supported in part by the National Institutes of 

Health grant number G12 RR003048 and G12 MD007597 

from NIMHD, NIH to the RCMI program at Howard 

University.  

 

References 

[1] Bigham, A. W., and F. S. Lee (2014). Human high altitude 
adaptation: forward genetics meets the HIF pathway. Genes 
Dev. 28, 2189-2204.  

[2] Fan, S., M. E. Hansen, Y. Lo, S. A. Tishkoff (2016) Going 
global by adapting local: A review of recent human 
adaptation. Science 354, 54-59. 

[3] Barreiro, L. B., and L. Quintana-Murci (2010) From 
evolutionary genetics to human immunology: how selection 
shapes host defence genes. Nat. Rev. Genet. 11, 17-30. 

[4] Akey, J. M. (2009) Constructing genomic maps of positive 
selection in humans: where do we go from here? Genome Res. 
19, 711-722. 

[5] Quintana-Murci, L. (2016) Genetic and epigenetic variation of 
human populations: An adaptive tale. C. R. Biol. 339, 278-
283. 

[6] Hoban, S., et al. (2016) Finding the Genomic Basis of Local 
Adaptation: Pitfalls, Practical Solutions, and Future 
Directions. Am. Nat. 188, 379-397. 

[7] Lindesay, J., T. E. Mason, W. Hercules, G. M. Dunston (2018) 
Mathematical modeling the biology of single nucleotide 
polymorphisms (SNPs) in whole genome adaptation. ABB 9, 
520-533. 

[8] International HapMap Consortium (2003) The International 
HapMap project. Nature 426, 789-796. 

[9] MacArthur, J., et al. (2017) The new NHGRI-EBI Catalog of 
published genome-wide association studies (GWAS Catalog). 
Nucleic Acids Res. 45, D896-D901. 

[10] Li, M. J., L. Y. Wang, Z. Xia, M. P. Wong, P. C. Sham, J. 
Wang (2014) dbPSHP: a database of recent positive selection 
across human populations. Nucleic Acids Res. 42, D910-S916. 

[11] Herman J. R., N. Krotkov, E. Celarier, D. Larko, G. Labow 
(1999) Distribution of UV radiation at the Earth’s surface 
from TOMS-measured UV-backscattered radiances. J. 
Geophys. Res. Atmospheres 104, 12059-12076. 

[12] Globe Task Team (1999) The Global Land One-Kilometer 
Base Elevation (GLOBE) Digital Elevation Model, version 
1.0. https://www.mgdc.noaa.gov/mgg/topo/globe.html. 

[13] World Health Organization (2008) World Malaria Report 
2008. Geneva World Health Organization, Switzerland. 

[14] Lindesay, J., T. E. Mason, W. Hercules, G. M. Dunston (2014) 
Development of genodynamics metrics for exploring the 
biophysics of DNA polymorphisms. J. Comput. Biol. 

Bioinform. Res. 6, 1-14. 

[15] Bigham, A. W., et al. (2009) Identifying positive selection 
candidate loci for high-altitude adaptation in Andean 
populations. Hum. Genomics 4, 79-90. 

[16] Bigham, A., et al. (2010) Identifying signatures of natural 
selection in Tibetan and Andean populations using dense 
genome scan data. PLoS Genet. 6, e1001116. 

[17] Peng, Y., et al. (2011) Genetic variations in Tibetan 
populations and high-altitude adaptation at the Himalayas. 
Mol. Biol. Evol. 28, 1075-1081. 

[18] Simonson, T. S., et al. (2010) Genetic evidence for high-
altitude adaptation in Tibet. Science 329, 72-75. 

[19] Yi, X., et al. (2010) Sequencing of 50 humans exomes reveals 
adaptation to high altitude. Science 329, 75-78. 

[20] Semenza, G. L. (1999) Perspectives on oxygen sensing. Cell 
98, 281-284. 

[21] Ivan, M., et al. (2001) HIFα targeted for VHL-mediated 
Destruction by Proline Hydroxylation: Implications for O2 
Sensing. Science 292, 464-468. 

[22] Jaakkola, P., et al. (2001) Targeting of HIFα to the von- 
Hippel-Landau Ubiquitylation Complex by O2-regulated Proyl 
Hydroxylation. Science 292, 468-472. 

[23] Bacon, N. C., et al. (1998) Regulation of the Drosophila 
bHLH-PAS protein Sima by hypoxia: functional evidence for 
homology with mammalian HIF-1 alpha. Biochem. Biophys. 
Res. Commun. 249, 811-816. 

[24] Rezvani, H. R., A. N. Nissen, G. Harfouche, H. deVerneuil, A. 
Taieb, F. Mazurier (2011) HIF-1a in epidermis: oxygen 
sensing, cutaneous angiogenesis, cancer, and non-cancer 
disorders. J. Invest. Dermatol. 131, 1793-1805. 

[25] Rezvani, H. R., et al. (2011) Loss of epidermis hypoxia- 
inducible factor-1 alpha accelerates epidermal aging and 
affects re-epithelialization in human and mouse. J. Cell Sci. 
154, 4172-4183. 

[26] Rosenberger, C., et al. (2007) Upregulation of hypoxia- 
inducible factors in normal and psoriatic skin. J. Investig. 
Dermatol. 127, 2445-2452. 

[27] Bedgoni, B. and M. B. Powell (2009) Hypoxia, melanocytes 
and melanoma – survival and tumor development in the 
permissive microenvironment of the skin. Pigment Cell 
Melanoma Res. 22, 166-174. 

[28] Giatromanolaki, A. and A. L. Harris (2001) Tumor hypoxia 
signaling pathways and hypoxia inducible factor expression in 
human cancer. Anticancer Res. 21, 4317-4324. 

[29] Gorlach, A. (2014) “Hypoxia and Reactive Oxygen Species” 
Hypoxia and Cancer: Biological Implications and Therapeutic 
Opportunities. Ed. G. Meililo. New York: Springer Science + 
Business Media, 65-90. 

[30] Rezvani, H. R., et al., (2007) Hypoxia-inducible factor-1α, a 
key factor in the keratinocyte response to UVB Exposure. J. 
Biol. Chem. 282, 16413-16422. 

[31] Kietzmann, T. and A. Gorlach (2005) Reactive oxygen species 
in control of hypoxia-inducible factor-mediated gene 
expression. Semin. Cell Dev. Biol. 15, 474-486. 



67 Tshela E. Mason et al.:  Genodynamics: A New Biophysical Approach to Modeling Adaptation in Human Populations 

 

[32] Michiels, C., E. Minet, D. Mottet, M. Raes (2002) Regulation 
of gene expression by oxygen: NF-kappaB and HIF-1, two 
extremes. Free Radic. Biol. Med. 33, 1231-1242. 

[33] Gerald, D., et al. (2004) JunD reduces tumor angiogenesis by 
protecting cells from oxidative stress. Cell 118, 781-794. 

[34] Bell, E. L., B. M. Emerling, N. S. Chandel (2005) 

Mitochondrial regulation of oxygen sensing. Mitochondrion 5, 
322-332. 

[35] Kwon, S. J., J. J. Song, Y. J. Lee (2005) Signal pathway of 
hypoxia-inducible factor-1 alpha phosphorylation and its 
interaction with von Hippel-Landau tumor suppressor protein 
during ischemia in MiaPaCa-2 pancreatic cancer cells. Clin. 
Cancer Res. 11, 7607-7613. 

 


