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Abstract: A Legendre function expansion method is proposed to solve the simplified Fokker-Plank equation to study the 

dynamics of a macrospin under spin-torque-driven magnetic reversal at finite temperature. The first and second eigenvalues 

(λτ0)1 and (λτ0)2 as functions of I/Ic and Hk are obtained, in agreement with the previous results using the Taylor series expansion 

method. The Legendre function expansion method compared with the Taylor series expansion method has faster convergence 

properties and clear physical means. Besides, it is found that in some case, especially the second eigenvalue (λτ0)2 can become 

complex, that means that the probability density P not only decays with time, but also oscillates with time. 
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1. Introduction 

In the spin-torque-induced switching the write and read 

time is essential. [1-3] There are two aspects which will affect 

the reversal time τs. First, the initial position of the magnetic 

moment is thermally distributed at the time the reversal field 

or current is applied, causing a variation in switching time. 

Secondly, during reversal, thermal fluctuation would modify 

the orbit, [4-7] causing additional fluctuation for τs even for 

identical initial conditions.  

The dynamics of a macrospinunder spin-torque-driven 

magnetic reversal has been extensively studied. [8-9] In the 

limit of uniaxial anisotropy only and with finite temperature at 

large drive amplitude I >> Ic0, with I being the current passing 

through the junction, Ic0 the zero-temperature spin-torque 

current instability threshold, the "long-time" super-threshold 

asymptotic form for the probability of not switching at time t 

can be expressed as: 
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    (1) 

(for I >> Ic0, Er << 1 and ξ >> 1) where ξ = mHk/2kBT is the 

normalized thermal activation energy barrier height, m is the 

total magnetic moment of the free layer, and Hk the uniaxial 

anisotropy field. τI = τ0/ (I/Ic0-1) is the characteristic time scale 

for spin-torque-induced reversal, τ0 = 1/γHkα is the natural 

unit of time with γ ≈ 2µB/ℏ as the gyromagnetic constant, and 

α the LLG damping coefficient. The comparison of Eq. (1) 

with experimental results suggests the presence of sub volume 

magnetic excitations which often dominate the switching 

process and which degrade the spin-torque switching 

efficiency. [9]  

He et al. presented a Fokker-Plank formulation for the full 

problem including both thermalized initial condition and 

reversal orbit with estimates for the reversal time and its 

distribution. [10] In the case of uniaxial anisotropy they 

reduced the Fokker-Plank equation (FPE) to an ordinary 

differential equation in which the lowest eigenvalue λ1 

determines the slowest switching events. They calculated λ1 

using both analytical and numerical methods. It is found that 

the previous model [Eq. (1)] based on thermally distributed 

initial magnetization states can be accurately justified in some 

useful limiting conditions. 

In this paper we use the simplified FPE to study the switch 

time at the finite temperature by solving the eigenvalue 

equation derived from FPE.  
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2. Theoretical Demonstration and 

Formula Derivation 

2.1. Simplified Fokker-Plank Equation 

Fokker-Plank equation describes the time-dependent 

evolution of the ensemble-average probability distribution of 

a system in a given environment and initial condition. [10] For 

a macrospin, one defines a probability density function P (nm, 

t) = P (θ, ϕ, t) that is the time-dependent probability of finding 

the macrospin in the solid angle of sinθdθdϕ with a spherical 

coordinate set (θ,ϕ) describing the magnet's direction, nm. The 

Fokker-Plank equation describes the dynamic flow of this 

probability as a function of space (on the surface of a unit 

sphere) and time in the form of: 

2 0
P

D P
t

∂ + ∇ ⋅ − ∇ =
∂

J              (2) 

where 

md
P

dt
=

n
J                    (3) 

is the ballistic (zero-temperature) part of the probability 

current and D∇2
P = ∇⋅JD is the diffusive part of the 

probability current, with JD = D∇P. The constant D is the 

diffusion rate in the probability phase space, D = γαkBT/m 

[10]. dnm/dt is determined by the LLG equation including the 

spin-torque term, 
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where ns is the unit vector of the magnetization direction in the 

pinned layer. Eqs. (1), (2) and (3) give a set of partial 

equations that describes the magnetic moment dynamics at the 

finite temperature in the spin-torque condition. The problem 

can be solved numerically in principle, here we refer a 

simplified solution of the set of Fokker-Plank equations [11].  

Consider an ensemble time-dependent magnetization 

probability density P (nm, t). The unit vector of magnetic 

moment nm is characterized by the polar angle (θ,φ). Before 

the magnetic field and the current are turned on, the 

probability density takes the equilibrium value. For a uniaxial 

anisotropy situation,  

( ) ( )2
0 exp sin , 0 2

,0
0, 2

m

P
P

 − ≤ ≤= 
< ≤

ξ θ θ π

π θ π
n       (5) 

where P0 is the normalization factor, determined by. 

0
sin 1P d =∫

π
θ θ

 

The probability current is derived by the LLG Eq. (4), 

( )m
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where Hs is the spin torque term, 
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I is the current density, p is the spin polarization coefficient, 

q is the electron charge. In the simplified treatment of the 

Fokker-Plank equation [10], it is assumed that the magnetic 

field H and ns are parallel to the anisotropy axis, i.e., He = 

(H+Hkcosθ) ez and ns = ez where Hk = 2K/Ms.  

In the polar coordinate, 
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1 22
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From Eq. (6) J has only eθ and eφ components, i.e. J2 and J3, 

J1 = 0. 
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           (9) 

Due to the axial symmetry J2 and J3 are only functions of θ, 

and let. 
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        (10) 

We obtain the second term in Eq. (1), 
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where x = cosθ. 

In the polar coordinate, 
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Because P is only function of θ, we obtain the third term in 

Eq. (1), 
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P
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Then Eq. (1) reduces to. 
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Eq. (14) can be solved by the method of separation of 
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variables. Let P (x, t) = f (t) u (x), it is easy to see that f (t) = 

exp (-λt) and u (x) satisfies. 
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Eq. (15) can be written as. 
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The original Fokker-Plank equation (2) is now reduced to 

the standard eigenvalue problem. If determining eigenfunction 

F (x) = Fn (x) and eigenvalue λ = λn from Eq. (17) for n = 1, 2, 

3,…, and the general solution of Eq. (14) is. 
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where the coefficients in Eq. (18) are determined by the initial 

condition Eq. (5), 
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Expand the function F (x) in Eq. (17) with the Legendre 

functions Pm (x) defined in the region [-1, 1], [12] 
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Insert Eq. (20) into Eq. (17), multiply pn (x) on the both 

sides, and integrate x from -1 to 1. From the right side it 

obtains. 
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from the left side it obtains the integration, 
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which includes two terms. The first term (differs from a 

negative symbol) is 
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By use of the paper [12]. 
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Eq. (24) becomes. 
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The second term in Eq. (23) becomes. 
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and by use of the paper [12]. 
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Finally the integration (29) becomes. 
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Therefore, the matrix elements of the secular equation 

include two parts: the diagonal parts, Eq. (26); the diagonal 

and non-diagonal parts, Eq. (31). 

It is noticed that the right side part of the secular equation 

Eq. (21) is dependent on n, so it is not the standard eigen-value 

equation AX = cX. Take the normalized Legendre functions 

pm (x) instead of Pm (x), 

( ) ( )2 1

2
m m

n
p x P x

+=            (32) 

so that. 

( ) ( )
1

1
m n mnp x p x dx

−
=∫ δ            (33) 

Using the normalized Legendre functions pm (x), it can 

obtain the secular equation AX = cX, the matrix elements of 

the equation, the diagonal term Eq. (25) becomes n (n+1)δnm, 

and the non-diagonal term Eq. (31) becomes 
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2.2. Secular Equation of Dimensionless form 

Multiplying the numerator and denominator of the 

eigenvalue c, Eq. (16) by (H+Hk), and using. 

( )
0

1
kH H= +αγ

τ                (35) 

we obtain. 

( )0 kc m H H= +λτ β             (36) 

where τ0 is a time unit, H and Hk are the internal magnetic field 

and anisotropic magnetic field, respectively. 

Divide the whole secular equation by. 

( )km H H= +ξ β                (37) 

the eigenvalue in the Eq. (17) becomes c = λτ0, a 

dimensionless quantity. 

In the new secular equation, the parameters become. 

, 1k s

k k c

H H H I

H H H H I

−′ ′= − = = −
+ +

η ζ      (38) 

Meantime, the diagonal term n (n+1)δnm should be divided 

by ξ, Eq. (37). 

From the above discussion it found that the temperature 

relation is only included in the diagonal matrix elements, 

divided by ξ, Eq.(37). If we take m = 4π×10
-24

 Vsm, H = 10
6
 

A/m, Hk = 10
4
 A/m, then it can obtain ξ = 9.2×10

5
/T (K). 

Hence, the diagonal matrix elements are of 10
-6×T order of 

magnitude, the effect of temperature is very small. 

2.3. Some Physical Quantities 

Magnetic moment m = µ0MV, where µ0 is the vacuum 

magnetic permeability, M is the magnetization, and V is the 

volume of the free layer. We take M = 10
6
 A/m, V = 10

-23 
m

3
, 

obtain m = 4π×10
-24

 Vsm. 

Spin torque field. 

2
s

Ip
H

e m

 =  
 

ℏ

α
               (39) 

where I is the current driving the spin reverse, p is the spin 

polarization coefficient, α is the damping coefficient. We take 

I = 1 mA = 10
-3

 A, p = 1, α = 0.02, m = 4π×10
-24

 Vsm and 

using ℏ/2e = 3.28×10
-16

 Vs, obtain Hs = 1.3 ×10
6
 Am

-1
. 

Time unit, from Eq. (35), 1/τ0 = αγ(H+Hk). taking H = 10
6
 

Am
-1

, Hk = 10
4
 Am

-1
, α = 0.02, and using γ = 176 GHz/T, 

obtain 1/τ0 = 4.47GHz, and τ0 = 0.22 ns. 

Intrinsic threshold current. 

( )2
c k

e
I m H H

p

  = +  
  ℏ

α
           (40) 

where Hk is the internal anisotropic field Hk = K/Ms << H. We 

take p = 1, α = 0.02, m = 4π×10
-24

 Vsm, obtain Ic = 0.766 mA. 

2.4. Convergence of the Expansion Method 

There are input parameters: η' and ζ' (Eq. (38)) and 1/ξ (Eq. 

(37)). As a test, we take η' = -0.01 and ζ' = 2.0, 1/ξ = 0.01, 

calculate the eigenvalues λτ0 for different numbers of the 

expansion Legendre functions N, the results are listed in Table 

1. 

Table 1. Eigenvalues as functions of the number of expansion basis N. 

N 40 60 80 100 200 

(λτ0)1 1.77373 1.86045 1.86045 1.86045 1.86045 

 0.19432     

(λτ0)2 2.07068 2.10930 2.10930 2.10930 2.10930 

 0.79618     

From Table 1 we see that: 

1. The lowest eigenvalue is 1.86045, which is in agreement 

with the value in Ref. [12]. When N = 40, the lowest two 

eigenvalues are complex, the second rows are their 

imagine parts. 

2. When N ≥ 60, the two lowest eigenvalues are real, and 

become convergent to five decimal place. Afterward, we 

will take N = 100 in our calculation. In Ref. [12] they 

expand F (x) via Taylor series, F (x) = Σnanx
n
, the 

convergent results are obtained for larger N = 300. 

3. The corresponding eigenvectors include about 50 lowest 

basic functions (Legendre functions) to five decimal 

places. 



59 Xia Jianbai and Wen Hongyu:  Simplified Fokker-Plank Equation Treatment of Finite-temperature Spin-torque Problems  

 

3. Calculation Results 

3.1. Effect of (I/Ic-1) 

There are three parameters η', ζ' (Eq. (38)), and 1/ξ (Eq. 

(37)), dependent on H, Hk, and Hs (I/Ic-1). Take η' = -0.01, 1/ξ 

= 0.01; η' = -0.01, 1/ξ = 0.1; and η' = -0.1, 1/ξ = 0.01, and 

calculate the first and second eigenvalues as functions of ζ' = 

I/Ic-1, the results are shown in Figs. 1 and 2, respectively. 

 

Figure 1. First eigenvalues (λτ0)1 as functions of I/Ic-1 for three cases: η' = 

-0.01, 1/ξ = 0.01; η' = -0.01, 1/ξ = 0.1; and η' = -0.1, 1/ξ = 0.01. 

Figure 1 shows that the (λτ0)1 increase with I/Ic-1 linearly 

except near the zero. For different parameter η' and 1/ξ there 

are difference between three curves, but the difference is 

small. 

 

Figure 2. Second eigenvalues (λτ0)2 as functions of I/Ic-1 for three cases: η' = 

-0.01, 1/ξ = 0.01; η' = -0.01, 1/ξ = 0.1; and η' = -0.1, 1/ξ = 0.01. 

Similar to (λτ0)1 (Figure 1), the (λτ0)2 increase with I/Ic-1. It 

is noticed that the uppermost curve for η' = -0.1, 1/ξ = 0.01 is 

not smooth, because for 0.3 ≤ I/Ic-1 ≤ 0.7, the (λτ0)2 becomes 

complex, Figure 2 only shows their real parts. It is not 

surprising that the eigenvalues and their corresponding 

eigenvectors of the secular equation with real and 

non-symmetric coefficients are possible to be real or complex. 

It means that the probability density P not only decays with 

time, but also oscillates with time if the eigenvalue is complex. 

In the region 0.3 ≤ I/Ic-1 ≤ 0.7 the eigenvalues (λτ0)2 are listed 

in Table 2. 

Table 2. The eigenvalues (λτ0)2 in the region 0.3 ≤ I/Ic-1 ≤ 0.7. 

I/Ic-1 0.3 0.4 0.5 0.6 0.7 

Real 

(λτ0)2 
0.82427 1.10233 1.38818 1.67779 0.96949 

Imagine 

(λτ0)2 
0.11294 0.16191 0.18160 0.17500 0.13333 

3.2. Effect of Hk 

Fix the I/Ic-1 = 0, 0.5, 1.0, 1.5, and 2.0, and 1/ξ = 0.01, 

calculate the eigenvalues (λτ0)1 and (λτ0)2 as functions of η', 

the results are shown in Figs. 3 and 4, respectively. From Eq. 

(28) we see that η' is proportional to Hk, if assuming that H+Hk 

= constant. 

 

Figure 3. (λτ0)1 as functions of -η', for I/Ic-1 = 0., 0.5, 1.0, 1.5, and 2.0, and 

1/ξ = 0.01. 

From Figure 3 we see that (λτ0)1 decrease with -η' (Hk, if 

H+Hk = const.), except for I/Ic = 1.0. The whole trend is in 

agreement with Fig. 1 in Ref. [12]. 

 

Figure 4. (λτ0)2 as functions of -η', for I/Ic-1 = 0., 0.5, 1.0, 1.5, and 2.0, and 

1/ξ = 0.01. 
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From Figure 4 we see that (λτ0)2 increase with -η' (Hk, if 

H+Hk = const.). Some curves are also not smooth, because the 

eigenvalues are complex, the curves only show the real parts 

of (λτ0)2. For I/Ic = 1.5, the complex (λτ0)2 exists in the region 

-0.07≤η'≤-0.19. For I/Ic = 2.0, the complex (λτ0)2 exists in the 

region -0.13≤η'. For I/Ic = 2.5, the complex (λτ0)2 exists in the 

region -0.19≤η'. 

4. Summary 

We proposed a Legendre function expansion method to 

solve the simplified Fokker-Plank equation to study the 

dynamics of a macrospin under spin-torque-driven magnetic 

reversal at finite temperature. We obtained the first and second 

eigenvalues (λτ0)1 and (λτ0)2 as functions of I/Ic and Hk. The 

Legendre function expansion method compared with the 

previous Taylor series expansion method has faster 

convergence properties and clear physical means. Besides, it 

is found that in some case, especially the second eigenvalue 

(λτ0)2 can become complex, that means that the probability 

density P not only decays with time, but also oscillates with 

time. 
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