
 

American Journal of Physics and Applications 
2017; 5(6): 80-83 

http://www.sciencepublishinggroup.com/j/ajpa 

doi: 10.11648/j.ajpa.20170506.11 

ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online)  

 

A Method for Deriving Quantum Dynamic Equations from 
Classical Mechanics 

Hua Ma 

The College of Science, Air Force University of Engineering, Xi’an, People’s Republic of China 

Email address: 

 

To cite this article: 
Hua Ma. A Method for Deriving Quantum Dynamic Equations from Classical Mechanics. American Journal of Physics and Applications.  

Vol. 5, No. 6, 2017, pp. 80-83. doi: 10.11648/j.ajpa.20170506.11 

Received: August 14, 2017; Accepted: September 6, 2017; Published: October 11, 2017 

 

Abstract: Based on the operator theories and Hamiltonian canonical equation, an operator based quantum dynamics equation 

is established, which has the same effect as the Hamiltonian equation in describing the state evolution of quantized dynamical 

systems. As the reasonable verification of this equation, Schrodinger equation can be derived theoretically, and the variational 

principle properties of quantum mechanics are revealed. This work will help to promote the development of quantum theory and 

to perfect the axiomatic system of quantum mechanics. 
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1. Introduction 

The variational principle is the general principle of 

scientific principles in calculus variation, and thus for the 

discovery of functional extremes, depending on the 

development of these functions [1-3]. All laws of physics can 

be mathematically described by self adjoint operator as a 

variational principle. In classical mechanics, these expressions 

are called Hamiltonian principles, which were first proposed 

by William Ron Hamilton in 1833. Hamiltonian mechanics is 

a theory developed as a new development of classical 

mechanics. It predicts the same result of non-classical 

mechanics. It employs a variety of mathematical formalisms 

that provide a more abstract understanding of the theory. It is 

pointed out that the dynamics of a physical system is a single 

function basis by a functional variational problem on 

Lagrange, which contains information about all of the 

physical system and the force acting on it [1, 4, 5]. 

Quantum mechanics is a branch of physics as the 

fundamental theory of nature at small scales and low energy 

levels of atoms and subatomic particles, which gradually arose 

from Max Planck's solution to the black-body radiation 

problem and Albert Einstein's interpretation of the 

photoelectric effect. Early quantum theory was profoundly 

reconceived in the mid-1920s. The reconceived theory is 

formulated in various specially developed mathematical 

formalisms. The sign of perfection and trend of quantum 

mechanics is the introduction of wave function, Max Born's 

statistical interpretation, and the establishment of Schrodinger 

equation [6, 7]. 

Schrodinger equation is the mathematical equation that 

describes the way that the quantum wave function, which 

plays the same role for a quantum system as that Newton's 

laws of motion play in the mechanics of everyday objects. 

Schrodinger equation comes from Erwin Schrodinger, when 

he first derived these formulas and applied them to the 

behavior of an electron. As a mathematical formulation for 

studying quantum mechanical systems, it is considered a 

central result in the study of quantum system and its derivation 

was a significant landmark in developing the theory of 

quantum mechanics [8-10]. 

Today, Quantum mechanics has entered the axiomatization 

system, especially having perfect combinations with classical 

mechanics. In recent years, many scholars have studied and 

put forward a rich new ideas about the derivation, explanation, 

solution, and the expansion of applications focusing on the 

quantum dynamic equations [11-14]. However, how the 

Schrodinger equation is established is still a mystery, and still 

a suspense about constructing the axiomatic system of 

quantum mechanics. Historically, many physicists tried to 

give different derivations: Erwin Schrodinger established it by 

operating harmonic equation, Heisenberg explained its 
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variational nature by matrix mechanics, Richard Feynman 

proved the equivalence between it and path integral mechanics, 

and later it was attempted to derive by group theory [6-8, 10]. 

All these works contain the components of conjecture and 

analogy, and there are still some deficiencies in the 

construction of axiomatic system of Quantum mechanics. It's 

really hard to theoretically deduce the formula, just as Richard 

Feynman says: It is not possible to derive it from anything you 

know. It came out of the mind of Schrödinger [15]. 

After years of thinking, I have finally found a scheme for 

deriving the Schrodinger equation, which is based on the 

quantization hypothesis and the Hamilton principle. In the 

derivations, it was found that the Hamiltonian canonical 

equation can be handled by operator, so as to obtain a 

generalized dynamics equation based on operator description, 

which has a broader physical connotation and can be used as 

the basis of the Schrodinger equation. In the follows: firstly, 

from Hamiltonian mechanics, establish the general quantum 

dynamics equation using operator methods and quantization 

hypothesis; then, derive the expression of momentum operator 

based on the quantum hypothesis; and finally, apply the 

momentum operator expression to the general quantum 

dynamic equation to derive Schrodinger equation. 

2. Deduction of the General Quantum 

Dynamic Equation 

2.1. Quantization Hypothesis 

Quantization hypothesis, established by Max Planck, Albert 

Einstein, and De Broglie et al., which can be summarized as: 

for a quantum system, energy, momentum and other quantities 

are restricted to discrete values, and objects have 

characteristics of wave-particle duality [6, 7]. In following 

derivations, some basic ideas were adopted as the foundations. 

First, the assumption of quantum states: Quantum systems 

behave some states, which are represented by wave functions. 

Second, the statistical explanation on wave functions: Wave 

functions have complex-valued probability amplitudes, from 

which the probabilities for the possible results of 

measurements made on the system can be calculated. Third, 

the mathematical approach based on the operator theory: Any 

observable physical quantities, i.e. position, momentum, 

energy, angular momentum etc., should be associated with a 

self adjoint linear operator [16]. The operators must yield real 

eigenvalues, since they are values that may come up as the 

result of the experiment. As the results, the physical operators 

must be Hermitian in Hilbert space. 

In accordance with the above assumptions and 

requirements, the wave function must be square integrable 

meaning in region R with N-dimensional coordinate vector q: 

2
N * N

R R
( , ) ( , ) ( , )= < ∞∫ ∫q t d q q t q t d qψ ψ ψ        (1) 

And the normalization condition results in: 

* N

R
( , ) ( , ) 1=∫ q t q t d qψ ψ            (2) 

The ideas expressed by Eqs. (1) and (2) will be used as the 

basis for the following derivations. 

2.2. The Time Dependent Differential Form of Hamiltonian 

Canonical Equation 

In Hamiltonian mechanics, a classical physical system is 

described by a set of canonical coordinates (q, p) and 

Hamiltonian H, where q and p are default as vectors in full text. 

The time evolution of a dynamical system is uniquely defined 

by Hamiltonian canonical equation [1, 4, 5]: 

∂= −
∂

d
p H

dt q
, 

∂=
∂

d
q H

dt p
            (3) 

In actual physical processes, momentum and coordinates 

are functions of time: 

( )=p p t , ( )=q q t                (4) 

So, Hamiltonian H can be expressed as: 

( ( ), ( ))=H H q t p t              (5) 

And thus its differential is: 

( )
∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂
H H H dq H dp

dH dq dp dt
q p q dt p dt

     (6) 

Taking Hamiltonian canonical Eq. (3) into Eq. (6), it reads: 

( )= − +dp dq dq dp
dH dt

dt dt dt dt
           (7) 

2.3. Derivation of the Quantum Dynamical Equation in the 

Form of Operator 

Introducing operators ˆ→q q  and ˆ→p p  into Eq. (7), 

and using ≅  denote the equivalence relation between two 

operators, which means that the two operators with different 

expressions have the same effect when they act on a wave 

function based on the quantum hypothesis. So, operator based 

Eq. (7) is: 

ˆ ˆ ˆ ˆˆ ( )≅ − +dp dq dq dp
dH dt

dt dt dt dt
               (8) 

The right term of Eq. (8) can be simplified as: 

[ ]
2 2

2 2

ˆ ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ,− + = − =dp dq dq dp d d

dt qp pq dt q p dt
dt dt dt dt dt dt

    (9) 

where [,] is commutation operator. Bringing Eq. (9) into Eq. 

(8), and performing integrate operation on both sides of Eq. 

(8): 

[ ] [ ]
2

2
ˆ ˆ ˆ ˆ ˆ, ( , )≅ =∫ ∫ ∫

d d d
dH q p dt q p dt

dt dt dt
       (10) 
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Then, comes to: 

[ ]ˆ ˆ ˆ,≅ d
H q p

dt
               (11) 

The formula (11) means that, Hamiltonian operator Ĥ  is 

equivalent to the operator [ ]ˆ ˆ,
d

q p
dt

. So, when they act on 

the wave function ( , )q tψ , ≅  in formula (11) can be replaced 

by = , that is 

[ ]ˆ ˆ ˆ( , ) , ( , )= d
H q t q p q t

dt
ψ ψ             (12) 

From Eqs. (3) to (12), no constraints are applied, which is in 

fact equivalent to the Hamiltonian canonical equation. 

Hamiltonian canonical equation is the general dynamic 

equation for motion systems. The equation (12) should be the 

general dynamic equation for quantum systems, because it is 

established by introducing the operator method and the 

quantization hypothesis on the basis of the Hamiltonian 

canonical equation. 

3. Deduction of Schrodinger Equation 

Based on the quantization hypothesis, momentum operator 

can be derived, and Schrodinger equation can be established 

from Eq. (12). 

3.1. Derivation of Momentum Operator 

According to quantization hypothesis, the energy and the 

momentum for a quantum system can be expressed as: 

ωℏ=E , kp ℏ=              (13) 

where E and p is energy and momentum under particle view, 

respectively; ω  and k is the angular frequency and wave 

vector under wave view, respectively; ℏ  is Planck's constant 

divided by 2π. 

The simplest wave function is a plane wave with the form in 

position space: 

i( )
( , ) A

− − ⋅= t k r
r t e

ωψ                (14) 

where A is the amplitude, k is the wave vector, and ω is the 

angular frequency, of the plane wave. According to 

Quantization hypothesis, the wave vector of a free particle 

with energy E and momentum p is: 

i
( )

( , ) A
− − ⋅

= ℏ
Et p r

r t eψ             (15) 

The expectation value is the average measurement of an 

observable physical quantity, so the momentum p can be 

obtained by P̂  acting on the wave function in region R: 

* 3

R

ˆ( , ) ( , )= ∫p r t P r t d rψ ψ              (16) 

Bringing Eq. (15) into Eq. (16), it reads: 

i i
( ) ( )

* 3

R

ˆ[A (A )]
− ⋅ − − ⋅

= ∫ ℏ ℏ
Et p r Et p r

p e P e d r      (17) 

Taking observation on Eq. (17), it can be concluded that: if 

and only if 

ˆ i= − ∇ℏP                  (18) 

the Eq. (17) can hold on, where ∇ is the Hamiltonian operator. 

Adopting the principle of generality, the expression of the 

momentum operator as expression (18) can be generalized to a 

general form, which is useful in the following deduction of 

Schrodinger equation. 

3.2. Derivation of Schrodinger Equation 

In real manifold space, the operator of q is r̂ , and [ ]ˆ ˆ,r p  

can be derived based on Eq. (18): 

[ ]ˆ ˆ, I(i )= ℏr p                 (19) 

where I is unit matrix. In the nonrelativistic case, the 

commutation operator of coordinate and momentum is 

associated with scalar wave functions, so matrix I can be 

substituted by 1, here: 

[ ]ˆ ˆ, (i ) i= =ℏ ℏ
d d d

r p
dt dt dt

          (20) 

Taking Eq. (20) into Eq. (12) with considering 
∂→
∂

d

dt t
 

for ( , )r tψ , get: 

ˆ ( , ) i ( , )
∂=
∂
ℏH r t r t

t
ψ ψ             (21) 

which is just the Schrodinger equation. 

To be noted that, in the above derivations, there are two 

places where the theory is not rigorous: one is the expression 

of the momentum operator, and the other one is how the 

commutation matrix of momentum and coordinate is reduced 

to scalar form. However, the conclusions of the two 

derivations are entirely correct and have been confirmed by 

history and experiments, so it is reasonable to establish 

Schrodinger equation through Eq. (12). 

4. Conclusion 

By introducing the operator method and the quantization 

hypothesis, the general dynamic equation for quantum 

systems was established based on Hamiltonian canonical 

equation, so it can be used as the basic laws of motion for 

quantum systems. Compared with the Schrodinger equation, 

this equation has a more general form, and the Schrodinger 

equation can be derived from which. It not only indicates the 

intrinsic unity of classical mechanical system and quantum 

mechanics, but also reveals that the current quantum 
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mechanics has more deep rules needed to be further explored. 

For instance, in some other quantum systems, the motion law 

of the quantum system is no longer described by the 

Schrodinger equation if the commutation relation between 

position and momentum is in other forms. 

By analyzing the momentum operator based on the 

quantization hypothesis, Schrodinger equation can be derived 

from the general dynamic equation, certifying the validity of 

the general quantum mechanical formula established here. 

This work reveals the nature of the variational principle of the 

dynamics of the quantum system, and thus promotes the 

perfection of the axiomatic system of quantum mechanics. 

The establishment of the general quantum dynamic equation 

from classical mechanics, as well as the application in 

deriving Schrodinger equation, are expected to open up a new 

dynamics system, using which to describe the evolution law of 

quantized and non-quantized dynamical systems in a unified 

way. 
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