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Abstract: The imperceptible identical particle systems such as electron gas in metals have been the concern of experimental 

and theoretical studies mostly aiming to understand the properties of these systems. Hartree-Fock equation of electron gas, a 

fermion quantum plasma, has been established by the method of “equation of motion”, and by using Dirac field. The goal of 

this paper is to establish regarding the same method, the Hartree-Fock equation for a non-neutral plasma of identical ions of 

spin zero at high density and low temperature in a Paul trap, by using the complex scalar field. 
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1. Introduction 

Cooled ions are used as quantum memories [1]. These 

identical ions comply with different statistics according to 

whether it is concerned with fermions or bosons. Hartree-

Fock equation is an approximated equation of the dynamics 

of a system at low temperature [2] [3]. Identical ions are 

trapped in a Paul trap where they are cooled [1]. When the 

spin of these ions is zero, the dynamics of the system at high 

density and low temperature is given by the approximation 

equation which is the concern of this study. We use second 

quantization as the ions are identical [2] and microscopic 

theory because the interaction Coulombian in the boson 

plasma at high density is weak [3]. 

2. Hartree-Fock Equation for a  

Non-neutral Plasma of Spin Zero Ions 

in a Paul Trap 

2.1. Non-neutral Plasma in a Paul Trap 

In 2009, Sebastien Removille developed, in his Ph.D. 

dissertation, an experimental set capable of confining, 

cooling and observing several millions of ions. A linear Paul 

trap of centimetric dimensions has been drawn and made in a 

laboratory to confine ions and to facilitate a very low 

temperature system. Figure 1 shows a principle of linear Paul 

trap composed of six electrodes electrically connected in 

couples to make three pairs. Two pairs of cylindric electrodes 

insure the confinement of the cross movement (X,Y) and one 

pair of electrodes in rings insures the confinement of 

lengthwise movement (endcaps). Cylindrical bars are 

parallely set out and diagonally paired. They are referred to 

as electrodes pair RF and electrodes pair DC. 

 

Source: Sebastien removille’s thesis, 2009 

Fig. 1. Linear Paul trap principle. 

The usual constraints with a drawing of a trap are the 

precision of the parts, that of their position and the 

pertubations of the electrical field created by the environment 

of the electrodes, notably the fixing structure. These traps are 
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used in ultra-vacuum chambers; which requires a choice of 

suitable materials. There is a tendancy within the community 

of ions trappers to use more and more small traps supplied 

with the very high frequency oscillating tension (voltage). On 

top of the integrability of the traps, the issue at stake in this 

tendancy is also to obtain a very important potential stiffness 

and to put ions at the weakest level of vibration [1]. 

 

Source: Sebustein Removille’s thesis, 2009 

Fig. 2. Picture of the trapping and counting system of 2.0 type. 

Figure 3 shows a cloud containing a thousand ions of strontium (Sr��, the time of rest is of 5 seconds. 

 

Source: Sebastien Removille’s thesis, 2009. 

Fig. 3. A negative of a cloud containing a thousand ions. 

2.2. Laser Cooling Technique 

The observation of correlated plasma has always been the 

researchers’ inquiry into the ultra-cold plasmas. One can 

even envisage the quantum degeneration states by 

approaching Fermi’s temperatures, theoretical predictions by 

Dresde’s team demonstrated for instance, that by ionizing a 

perfectly ordered atomic gas, as coming from Mott’s 

transition, it is possible to reach correlated atomic system. 

The same team also predicted that a laser cooling of plasma 

ions allows to execute an optical molass slowing down the 

expansion of plasma and allowed to reach a correlated ionic 

system [4]. 

For reaching a low temperature system, Sebastien used the 

laser cooling. This consists in lightening a cluster of ions by a 

laser practically resonant with an atomic transition. When the 

disagreement is negative, Doppler effect brings the resonant 

the ions whose speed is opposed to the sense of propagation 

of laser. Then, these ions preferentially absorb the photons 

whose quantity of movement is oppose to their speed, and are 
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slow down. In the Paul trap, the ions being confined by the 

electrostatic trap, it is not necessary to create an optical 

molass. The effects of one single beam reduce the speed of 

ions in one sense of space direction, but these ions being 

confined, their total kinetic energy is reduced [1]. 

2.3. Microscopic Theory 

The microscopic theory allows to study the properties of 

the groups of identical particles enclosed in a box or in a trap 

at high density or low temperature [3]. The quantum gas 

being made of indiscernable and identical particles, the use of 

the second quantization method offers a more flexible 

representation that is more concised and neater. The second 

quantization usually considers a group of particles more or 

less independent paired by weak interractions [2]. Particle 

operators which are concerned with second quantization are 

attributable to the quantum theory of fields [5]. The 

application of microscopic theory to the bosons in interaction 

is but satisfafied when there exist a weak repulsive 

interaction between particles or a gas diluated with arbitrary 

repulsive interaction between particles [3]. 

The microscopic theory is applied to a gathering of 

identical ions, at high density, confined in a trap because the 

Coulombian interaction is weak [6]. For electron systems 

there exist two such models; the high-density electron gas, 

and the low-density electron solid. The behavior of the 

electron liquid in the limit of very high densities is simple 

because here the Coulomb interaction represents a relatively 

small perturbation; the average potential energy is small 

compared to the kinetic energy. Where the inter-electron 

properties are well described in the so-called random phase 

approximation (RPA). In the low-density limit, the electron 

behavior is dominated by the Coulomb interaction. The 

region of actual metallic densities is essentially an 

intermediate coupling regime. As such it is for more difficult 

to treat; the kinetic energy and potential energy are 

comparable, and consequently no rigorous approximation 

schemas are applicable. One learns much about the behavior 

of electron metals by considering the RPA, despite the fact 

that it is valid only in the high-density limit [3]. 

The points of microscopic theory are: 

- Particle field: in quantum theory of fields, particles are 

described by means of fields. These fields stand for Klein-

Gordon solutions deriving from a free Lagrangian density 

which is an invariant of Lorentz admitting a positive 

Hamiltonian density [7]. For instance, electrons are described 

by means of Dirac field [2], the neutral bosons of spin zero 

by means of real scalar field [3] , photons by means of real 

vectorial field [8], 1 spin charged bosons by means of 

complex vectorial field [9], spin zero charged bosons by 

means of complex scalar field or charged meson field [10]; 

- Particule operator (boson operator or fermion operator): 

once the particle field is known, it can be transformed into an 

operator; by inverse transform, the field coefficients become 

particle operators which satisfy at equal times commutation 

or anti-commutation relations [3]; 

- Space of system quantum states: any state of a system of 

identical particles can be described as a linear combination of 

many-particle basis states, a basis state can be completely 

specified in terms of the occupation number ��  for each 

member of a complete set of orthonormal single-particle 

states, the set of occupation numbers contains all the 

information necessary to construct an appropriately 

symmetrized or antisymmetrized basis vector. For bosons, �� must be a non-negative integer; for fermions, the Pauli 

exclusion principle restricts �� to be either 0 or 1 [11]. The 

vector space spanned by the set of all basis states is called the 

Fock space. A feature of the Fock space is that the total 

number of particles is not a fixed parameter, but rather is a 

dynamical variable associated with a total number operator 

N; 

- Field operators of annihilation and creation of particle, 

which must satisfy at equal times anti-commutation relations 

for fermions and commutation relations for bosons [3]; 

- Bogoliubov prescription for a system of particles in the 

fundamental state with interaction; 

- Density matrix to a particle, defining the correlation 

between one particle at point �	 and another at point �	
. This 

quantity depends only on the distance |�	
 − �	| between  two 

space points and leads to the long range order, characteristic 

of the existence of a Bose-Einstein condensate or to its 

depletion ; 

- Hamiltonian of the second quantification of particles 

system; 

- Energy calculation of the fundamental state; 

- Spectrum of elementary excitations; 

- Temporal evolution of the Heisenberg field operator, 

allowing to establish, for fundamental state, the Gross-

Pitaevskii equation in case of neutral gas bosons of short 

range interaction; or Hartree-Fock equation for a particles 

system with long range interaction. 

2.4. Complex Scalar Field and Its Quantization 

The expansion of complex scalar field is written as follow 

[10], [7]: 


���� = ������� � ������� ������ + !∗�#���$,         (1) 


∗���� = ������� � ������� �!���� + �∗�#���$.        (2) 

The canonical quantization of complex scalar field consists 

of considering the field ϕ�xμ� and its canonical conjugated *���� defined [12] as
 

*���� =  +ℒ+-.-/ = +0∗��1�+2 ,                     (3) 

and also their complex conjugated 
∗����  and *∗���� , as 

operators which satisfy the following relations of 

commutation at equal times [10]  3
4��	, 5�, *6��	′, 5�8 = 3
49��	, 5�, *6 9��	′, 5�8 = :;<��	 − �	′�,    (4) 3
49��	, 5�, *6��	′, 5�8 = 3
4��	, 5�, *6 9��	′, 5�8 = 0,         (5) 
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�*6��	, 5�, *6��	
, 5�$ = �*6 9��	, 5�, *6 9��	
, 5�$ = �*6��	, 5�, *6 9��	′, 5�$ = 0,       (6) 3
4��	, 5�, 
4��	
, 5�8 = 3
49��	, 5�, 
49��	
, 5�8 = 3
4��	, 5�, 
49��	′, 5�8 = 0.      (7) 

2.5. Boson Operators and Commutation Relations 

By boson operators, we mean the 

operators  a6?kA	B and b4 9?kA	B  and their adjuncts  a69?kA	B and b4?kA	B built from the coefficients of the solutions 

(1) and (2) of Klein Cordon equation. By applying the 

inverse Fourier transform of these solutions bellow [7] , we 

obtain 

a�k� = 1��2π�< I d<x�2kJ eLMN ∂JPAA	 ϕ�xμ�, 
b�k� = 1��2π�< I d<x�2kJ eLMN ∂JPAA	 ϕ∗�xμ�. 

This leads to 

a�k� = ����Q�� � R�N��M� STU�Nμ�TV − ikJϕ�xμ�X eLMN,         (8) 

b�k� = ����Q�� � R�N��M� STU∗�Nμ�TV − ikJϕ∗�xμ�X eLMN.        (9) 

The Fourier amplitudes of the field a (k) and b (k) as well 

as their complex conjugated are interpreted as destruction 

and creation operators which satisfy the following relations 

of commutation at equal time [7] ��6�Y�, �69�Y
�$ = 3!4�Y�, !49�Y
�8 = ;�<��Y − Y
�,          (10) ��6�Y�, �6�Y
�$ = 3!4�Y�, !4�Y
�8 = ��69�Y�, �69�Y
�$ = 3!49�Y�, !49�Y
�8 = ⋯  = 0.             (11) a69�k
�  and b4 9�k
�  are the creation operators of particle 

whereas a6�k�  and b4�k�  are the destruction operators of 

particle. 

2.6. Space of Quantum States of Boson Operators 

The space of states of boson systems is built by acting on 

the state of the Fock vacuum with the boson operators under 

the following conditions [10] [6] [13]: �6�Y�[0 > = 0 =  !4�Y�[0 >, ]0|0^ = 1       (12) 

The Fock base of the space quantum states of the system is 

given by 

∣ ��, ��` = 1���! ��! ��69�bc?!49Bbd∣ 0`,   where ��, �� = 0,1,2,3, …,              (13) 

and ]��, ��|i�, i�^ = ;bc,jc;bd,jd .       (14) 

2.7. Field Operators of Destruction or Creation of Particle 

of Impulsion p at the Point r 

The building of the destruction field operators is simply 

done from a6k and b4k. The development of ∣ r	` is used on the 

base l∣ pA	`n  [3] [13] 

]�	|o	^ = �√q ���A	.r	 = s����.            (15) 

We obtain the field operator of destruction of boson and 

anti-boson by [6] 
 

t4��� = �√q ∑ ?�6� + !4�B���A	.r	� = ∑ ?�6� + !4�Bs����.�    (16) 

The field operator of creation of boson and anti-boson is 

obtained by 

t49��� = v w�6�9 + !4�9x� ]o	|�	^ 
= 1√y v� �z �9 + !4�9��#��A	.r	

�   
= ∑ w�6�9 + !4�9x� s�∗ ���.              (17) 

These operators, with respect to Eqs. (10), (11) and (15), 

satisfy the following relations of commutation at equal times 

[6]
 

3t4���, t49��
�8# = {v?�6� + !4�Bs����� , v w�6�9 + !4�9x� s�∗ ��
�| = 2;�� − �
�,                                           (18) 3t4���, t4��′�8# = 3t49���, t49��′�8# = 0.        (19) 

2.8. Hamiltonian Operator of Non- Neutral Plasma 

The Hamiltonian operator of the boson system in 

interaction is defined in second quantization, and in 

Schrödinger picture by [3] [5] [14] 

}~ = I �<� t49��� � ô�2i + �4��è��� t4��� + �� � �<� �<�
 t49��� t49��
��4�� − �
�t4��
�t4���.      (20) 

2.9. Temporal Evolution of the Field Operator of Zero Spin 

Ion 

The temporal evolution of the field operator  ψ~ ��	, t�  is 

defined [2] [3]
 

:ℏ +�~ �r	,2�+2 = 3t4��	, 5�, }~8.                        (21) 

Equation (21) can be written �15$ 

: +�~ �r	,2�+2 = −3}~, t4��	, 5�8, where ℏ ≡ 1.        (22) 

Let’s calculate the commutation of this Eq. (22) with 

respect to the relations (20) in Heisenberg picture, (18) and 

(19). We use the notations  ψ~�r

� ≡ ψ~��	

, 5� ,  ψ~�r
� ≡ψ~��	′, t� and ψ~�r� ≡ ψ~��	, t� 
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3}~, t4��

�8 = I �<� �t49��� � ô�2i + �4��è��� t4���, t4��

�� 

+ �� � �<��<�
 3t49���t49��
��4�� − �
�t4��
�t4���, t4��

�8.  (23) 

The first term on the right is worth 

I �<� �t49��� � ô�2i + �4��è��� t4���, t4��

��
= I �<�t49��� � ô�2i+ �4��è��� 3t4���, t4��

�8 

+ I �<�3t49���, t4��

�8 � ô�2i + �4��è��� t4��� 

= 0 + I �<� �−�;��′′ − �� � ô�2i + �4��è��� t4��� 

=  − w �6d�j + �4��è��x t4��

�.                        (24) 

The calculation of the second term on the right of Eq. (23) 

gives 12 � �<��<�
 3t49���t49��
��4�� − �
�t4��
�t4���, t4��

�8 
= 12 � �<��<�
t49���3t49��
�, t4��

�8�4�� − �
�t4��
�t4��� 

+ 12 � �<��<�
 3t49���, t4��

�8t49��
��4�� − �
�t4��
�t4��� 

= 12 � �<��<�
 t49����−�;��′′ − �′��4�� − �
�t4��
�t4��� 

+ 12 � �<��<�
 �−�;��′′ − ��t49��
��4�� − �
�t4��
�t4��� 

= − 12 I �<�t49��� �I �<�
  ;��

 − �′��4�� − �
�t4��
�� t4��� 

− 12 I �<�
 t49��
�t4��
� �I �<� ;��′′ − ���4�� − �
�t4���� 

= − 12 I �<� �4��

 − �
�t49��� t4��
′�t4��� 

− 12 I �<�
�4��

 − �
� t49��
�t4��
� t4��

� 

The potential V~�r

 − r
�  concerns the points �

 and �
, hence
 

�� � d<rd<r
 3ψ~9�r�ψ~9�r
�V~�r − r
�ψ~�r
�ψ~�r�, ψ~�r

�8 =− � d<r
V~�r

 − r
� ψ~9�r
�ψ~�r
�ψ~�r
′�.        (25) 

By including Eqs. (25) and (24) in Eq. (23), we obtain 

3}~, t4��

�8 = − w �6d�j + �4��è��x t4��

� − � �<�
�4��

 −�
� t49��
�t4��
�t4��
′�                 (26) 

In Eq. (26), the second term on the right has the following 

form: 

I �<�
�4��

 − �
� t49��
�t4��
�t4��
′� = ∑ �6�9��j �6��6j � �<�
�4��

 − �
� s�∗ ��′�s���
�sj��

�.        (27) 

The member on the right of Eq. (27) contains the products 

of the three bosons operators. In the approximation of the 

first order called Hartree-Fock, we only consider the terms 

including the number operator a6M9a6M . We also preserve the 

terms a6M9a6Ma6� and a6M9a6 �a6M. Eq. (27) becomes therefore [2] [3]  

I �<�
�4��

 − �
� t49��
�t4��
�t4��
′�
≅ I �<�
�4��

 − �
� �t49��
�t4��
�`t4��
′� 

+ � �<�
  �~ ��

 − �
�t4��
� �t49��
�t4��
′�`.        (28) 

Where we have summed the series which appear in the 

expressions of ψ~�r
′� and ψ~�r
�; the terms between brackets 

indicate the probable values in the fundamental state, that is, 

only the terms in a6M9a6M  are retained inside the brackets 

and a6M9a6M is calculated for fundamental state. The first term 

on the right of Eq. (28) represents the direct Coulombian 

action, the second the exchange [2]. 

Equation (28) allows Eq. (26) to be become 

3}~, t4��

�8 ≅ �− ô�2i − �4��è��
− I �<�
�4��


− �
� �t49��
�t4��
�`� t4��

� 

− � d<r
  V~ �r

 − r
�ψ~�r
� �ψ~9�r
�ψ~�r
′�`.       (29) 

In including Eq. (29) into Eq. (22), we obtain the temporal 

evolution of Heisenberg field operator 

: �t4��

��5 = −3}~, t4��

�8 
≅ � ô�2i + �4��è�� + I �<�
�4��

 − �
� �t49��
�t4��
�`� t4��

� 

+ � �<�
 t4��
� �~ ��

 − �
� �t49��
�t4��
′�`.        (30) 

2.10. Hartree- Fock Equation of Identical Ions of Spin 

Zero 

The Heisenberg field operator of spin zero charged 

particle, Eq. (16), may take the form [6] 
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t4��	

, 5� ≡ t4��

� = v �6�s���

�� + v !4�s���

��  

= t4���

� + t4#��

�.                     (31) 

Let’s consider Eq. (30) in the case of positive charged 

particle (boson), 

: �t4���

��5 ≅ � ô�2i + �4��è��
+ I �<�
�4��


− �
� �t4�9��
�t4���
�`� t4���

� 

+ � �<�
 t4���
� �~ ��

 − �
� �t4�9��
�t4���
′�`.        (32) 

We well known, on the hand, that in Hilbert space ���s^ = ��s^,                        (33) 

and �s^ ≡ s��′′�, where ( �

� ≡ ?�

AAAA	, 5 B,         (34) 

on the other hand }~s���′′� = ��s���

�,                           (35) 

or 

:ℏ ��2 s���′′� = ��s���

�.                         (36) 

Equation (36) may take the form 

:ℏ ��2 ∑ �6�s���′′�� = ∑ �6���s���

�,�                 (37) 

or 

:ℏ ��2 t4���

� = ∑ �6���s���

�.�                   (38) 

From Eq. (21), the temporal evolution of t4���

� may take 

the form 

:ℏ ��5 t4���′′� = 3t4���

�, }~8 = −3}~, t4���

�8. 
Taking into account Eq. (37) we obtain 3}~, t4���

�8 = − ∑ �6���s���

�� .       (39) 

Equation. (39) allows Eq. (32) to take the form 

v �6���s���′′�� ≅ � ô�2i + �4��è�� + I �<�
�4��

 − �
� �t4�9��
�t4���
�`� t4���

� 

+ I �<�
 t4���
� �~ ��

 − �
� �t4�9��
�t4���
′�`, 
and 

∑ �6���s���

�� ≅ ∑ �6�� �w �6d�j + �4��è�� + � �<�
�4��

 − �
� �t4�9��
�t4���
�`x s���

� + � �<�
 s���
� �~ ��

 − �
� �t4�9��
�t4���

�` �.                (40) 

We suppose now that s���

� are proper functions of the operator between the hook on the right of Eq. (40) and correspond 

to proper values �� ,[12] then we have
 

��s���

� = � ô�2i + �4��è�� + I �<�
�4��

 − �
� �t4�9��
�t4���
�`� s���

� 

+ � �<�
 s���′� �~ ��

 − �
� �t4�9��
�t4���

�`,                                                                (41) 

hence 

��s���

� =   ô�2i + �4��è�� + I  ��	′  �~ ��

 − �
� v �����
�	 s�∗��
�s���
�¡ s���′′� 

+ �  ��	′ s���′�  �~ ��′′ − �′� ∑ �����s�∗��′�s���′′�.�                                                             (42) 

Equation (42) is the Hartree-Fock equation of spin zero positive boson in the Paul trap. By the same reasoning we obtain for 

spin zero negative boson in the Paul trap, the equation 
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��s���

� =   ô�2i + �4��è�� + I ��	′  �~ ��

 − �
� v ���#�
�	 s�∗��
�s���
�¡ s���′′� 

+ �  ��	′s���′��4��′′ − �′� ∑ ���#�s�∗��′�s���′′�.�                                                                     (43) 

3. Conclusion 

The Dirac field was used to determine the Hartree-Fock 

equation for electron gas which is a fermion quantum plasma. 

We use for identical ions with spin zero the charged mesons 

field. In equations (42) and (43), the exchanges (second term 

on the right) are added to direct Coulombian actions unlike 

the case of fermions. 
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