
 
American Journal of Physics and Applications 
2016; 4(1): 12-19 
Published online February 23, 2016 (http://www.sciencepublishinggroup.com/j/ajpa) 
doi: 10.11648/j.ajpa.20160401.13 
ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online)  

 

 Review Article  

Atomic Data and Laser Transitions in as - Like Gallium 

Amal Ibrahim Refaie1, Mohammed Nour El-Din2, Lamia Mohammed Ahmed2, Sami Allam1 

1Physics Department, Faculty of Science, Cairo University, Cairo, Egypt 
2Physics Department, Faculty of Science, Benha University, Benha, Egypt 

Email address: 
lamia_walid2001@yahoo.com (L. M. Ahmed) 

To cite this article: 
Amal Ibrahim Refaie, Mohammed Nour El-Din, Lamia Mohammed Ahmed, Sami Allam. Atomic Data and Laser Transitions in as - Like 

Gallium. American Journal of Physics and Applications. Vol. 4, No. 1, 2016, pp. 12-19. doi: 10.11648/j.ajpa.20160401.13 

 

Abstract: Fine structure calculations of the energy levels, the wavelengths, the oscillator strengths, log gf and the transition 
probabilities for transitions among the terms belonging to 1s2 2s2 2p6 3s2 3p6 3d104s2ns, n=5-6, 1s2 2s2 2p6 3s2 3p6 3d104s2np, 
n=4-6, 1s2 2s2 2p6 3s2 3p6 3d104s2nd, n=4-6 and1s2 2s2 2p6 3s2 3p6 3d104s2nf, n=4-6 configurations of As (III) have been calculated 
using configurations interaction Cowan atomic structure code. Our calculated values for the above mentioned quantities have 
been compared with the corresponding experimental data and other theoretical calculations where a satisfactory agreement is 
found. We also report on some unpublished values for energy levels, oscillator strengths and transition probabilities for As like 
gallium. These atomic data are taken as the basis for studying laser transitions between levels of As(III). Excitation rate 
coefficients of As like gallium are calculated using the analytical formulas of Vriens and Smeets (1980) and with considering 
using the collisional radiative model code CRMO of Allam (2006). A simple modification to these formulas has been included by 
introducing effective quantum numbers. The energy values, the radiative data and rate coefficients are then used to calculate the 
population densities by solving the coupled rate equations. Among these calculations positive gain coefficients are found at three 
selected values of electron temperature, namely 7.087 eV, 14.147 eV and 21.261 eV which are displayed as a function of the 
electron impact density. 

Keywords: Energy Levels, the Average Center of Mass Energy (Eav), the Spin-Orbit Interaction (ξ), Nist,  
the Oscillator Strength (ƒ), Rate Coefficients, Level Population, Maximum Gain Coefficient(αmax) 

 

1. Introduction 

Spectroscopic data of Gallium [1, 2] and Gallium-like ions 
[3-5] may be of interest for plasma investigations in controlled 
thermonuclear fusion experiments. Recently, multicharged ion 
spectra of the Gallium isoelectronic sequence (Z˃35) have 
been analyzed. In particular, spectra of the Rb(VII) ion 
emitted from sparks and laser-produced plasmas have been 
investigated [6]. At the same time there are extensive 
experimental and theoretical spectroscopic studies for the 
Gallium like ions. The first six elements of the gallium 
sequence have been calculated using the multiconfiguration 
optimized potential model [7]. 

Gallium isoelectronic sequence has been studied for some 
transitions using the configuration interaction approach [8]. 
Multiconfiguration Dirac-Fock calculations on 
multi-valence-electron systems have been also performed for 
Ga-like ions [9]. In addition, spectra of the gallium-like ions 

excited by low-inductance sparks and laser-produced plasmas 
were observed [10]. Oscillator strengths for excitations of As 
I-III are calculated using a semiemprical analytic 
independent-particle-model [11]. Also the energy levels and 
observed spectral lines of Krypton, Kr I through Kr XXXVI 
have been studied [12]. 

The configuration interaction (CI) approach has been used 
to account for electron correlation effects. To visualize these 
effects we also include some single configuration results. Two 
self-consistent-field methods are used to generate orbitals 
required to construct a multiconfiguration wave function. One 
of them is the Hartree-Fock method with taking into account 
the relativistic corrections (HFR) and the other one is also 
Hartree Fock method but without considering the relativistic 
corrections. 

The level population can be calculated by solving the 
coupled rate equations for the various levels in As (III) [13-17]. 
The electron collisional excitation rate coefficients are 
calculated according to the analytical formulas of Vriens and 
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Smeets [18]. Inversion factors are calculated after electron 
collisional pumping and the gain coefficients for those 
transitions that have positive population inversion have 
evaluated [19]. Fine structure energy levels, wavelengths, log 
gf, oscillator strengths, and transition probabilities needed in 
calculations have been calculated using Cowan atomic 
structure code with relativistic corrections [20-22] for 
transitions among the terms belonging to 1s2 2s2 2p6 3s2 3p6 

3d10ns, n=5-6, 1s2 2s2 2p6 3s2 3p6 3d10np, n=4-6, 1s2 2s2 2p6 

3s2 3p6 3d10nd, n=4-6 and1s2 2s2 2p6 3s2 3p6 3d10nf, n=4-6 
configurations of  As like gallium. 

It is found that COWAN code in addition to parametric fit 
approach is a useful tool for heavy many electron systems 
where intravelence electron correlation plays an essential role. 
The purpose of this paper is to report new calculations 
involving higher energy levels, wavelengths, oscillator 
strengths and transition probabilities that are not calculated 
before beside the precalculated data to indicate the reliabilities 
of the new ones by making comparisons with the available 
theoretical and experimental data. 

2. Method of Calculations 

Theoretical treatment of an atom containing N electrons 
requires first of all knowledge of a suitable Hamiltonian 
operator. An appropriate operator may be obtained by 
summing the one electron operator over all N electrons, and 
adding a term for electrostatic coulomb interactions among 
electrons [21] 

H = Hkin + Helec-nucl + Helec- elec + HS-O 

= 
2

1 1 1 1

2 2
( )( )

n N N N

i i i i i

i i i j i ii ij
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r l s

r r
ξ

= = > = =
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where ri = ir  is the distance of the ith electron from the 

nucleus, ij i jr r r= −  is the distance between the ith and jth 

electron, and ξ(ri) is a radial proportional factor. It should be 
noticed that in a multi-electron atom, other magnetic 
interactions may be considered such as: orbital-orbital, 
spin-spin, and spin-other orbit interactions. But these 
interactions are usually much less important than the 

spin-orbital interaction, thus they can be neglected. Each 
electron in a many electron atom is considered to move in a 
central potential independently of the others [23], at least in 
the first approximation. The ith electron may then be described 
by the function Ψα(i) which is given in terms of a product of 
radial, spherical harmonic and spin wave functions:- 

( ) ( ) ( ) ( , ) ( )
s s

m

n m m n i i i mi i R r Y iαψ θ ϕ χ= Ψ = ℓ

ℓℓ ℓ ℓ       (2) 

where Rnℓ (ri) is the radial function, ( , )m

i iY θ ϕℓ

ℓ
 is the 

spherical harmonic function, ( )
sm iχ  is the spin function, n is 

the principal quantum number, mℓ is the z-component of the 
electron orbital angular momentum quantum number, and ms 
is the z-component of the electron spin quantum number. 

For N-electrons, the Pauli principle requires that each set of 
quantum numbers: α, β, γ, …….ν should be different from 
one electron to other. This means that a simple N-electron 
wave function will consist of a direct product of 
single-electron wave functions: 

(1) (2) (3)..................................... ( )Nα β γ νψ ψ ψ ψ  

The Pauli principle can be included in a more general 
symmetry principle, produced by Heisenberg and Dirac. Slater 
showed that this requirement could be satisfied by a 
normalized determinatal product wave function of the form:-  

(1) (2) ........ ( )

(1) (2) ( )1
( , ,........ )

.......!

(1) (2) .......... ( )

N

N

N

N

α α α

β β β

ν ν ν

ψ ψ ψ
ψ ψ ψ

ψ α β ν

ψ ψ ψ

=  (3) 

In practice the linear combinations of such determinant 
functions for single configurations are formed which are 
angular eigenstates in an appropriate coupling scheme and 
these form the basis states for the multi-configuration 
expansions. 

The matrix elements of the Hamiltonian between 
determinant functions can be reduced to one and two electron 
terms so that for states B and B′ [21, 22]: 

[ ( ) ( )] ( )k k

av BB k i j k i j i i

ijk i

B H B E f F g G dδ ζ′′ = + + +∑ ∑ℓ ℓ ℓ ℓ ℓ                       (4) 

where Eav is the central field energy. Furthermore, modest ad 
hoc scaling adjustments are applied to the F, G, and d to allow 
for configurations omitted from the multi-configuration 
expansion. The wave functions obtained from equation (3) are 
used to calculate the excitation energies of the fine structure 
levels, the oscillator strengths and the transition probabilities. 
The calculations are carried out in intermediate coupling 
scheme. A choice of nomenclatures is possible in seeking to 
assign angular quantum numbers as identifiers of the 
intermediate coupling numerical Eigen states. Since only 
parity and total angular momentum observables commute 

with the Hamiltonian, other quantum number assignments are 
approximated one. In these assignments we are led by angular 
momentum coupling schemes appropriate to the dominant 
parts of the Hamiltonian. One of them is known as the 
LS-scheme when the electrostatic terms dominate and the 
other is known as the jj-scheme when relativistic terms 
dominate. The code identifies the energy Eigen states by 
dominant component in its expansion in a particular basis.  

The radial function is obtained as the solution of the 
following equation [21, 22]: 
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The solution of the above Schrödinger equation (the radial 
wave function Rnl(r) is analogous to the behavior of legender 
Pnl(r) for which we have 

0

∞

∫ Pnℓ (r) Pn`ℓ (r) dr = δnn`; ℓ +1 < n` ≤ n 

where Vi is the central potential seen by the ith electron and εi 
is the single particle energy. An optimized potential is 
obtained variationally. It is noticeable that the present code 
uses the Relativistic Hartree Fock method of Cowan [20]. 

2.1. Spontaneous Transitions Between Degenerate Levels 

The radiative decay rate between degenerate levels p and q 
is given by [24]: 

2 3
2
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q

pq

pq q

mo
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= < >∑

ℏ
       (5) 

where mp and mq are the magnetic orbital quantum numbers of 
the involved levels, e is the electron charge, c is the speed of 
light, w  is the angular frequency of the transition photon, and

o
ε  is the vacuum permittivity. 

The decay rate can be made more symmetrical by 
introducing an additional summation over mp and dividing by 
the statistical weight gp=2jp +1 of the upper level: 

Apq = 
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The radiative life time τp of an excited atomic state p is 
related to the atomic transition probability Apq by: 

τp = 1 / ∑ Apq                (7) 

where, the sum is extended over all the lower states which can 
be reached from the upper state by radiative decay. 

2.2. Oscillator Strengths 

The oscillator strength or f-value describes what fraction of 
the energy of the classical oscillator should be ascribed to a 
given transition [24]. For transitions from an upper level p to a 
lower level q, the emission f-value, fpq is given by the 
following relation. 

Apq = -3fpq γ                   (8) 

where: 
2 3

36 o

e w

mc
γ

πε
=  

is defined as the classical transition probability. While for an 
upward transition from level q to level p, the absorption 
f-value, fqp, is defined by: 

gqfqp = - gp fpq                (9) 

The explicit expressions for the transition probability Apq in 
terms of the emission and the absorption oscillator strengths 
are given by the following relation: 

2 3 2 3
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2.3. Calculation of Rate Coefficients 

The collisional excitation is the mechanism used routinely 
in all running lasers to excite an electron from the fundamental 
level to the upper laser level (i.e. to pump the laser). The 
collisional excitation is accomplished by high temperature 
free electrons in plasma that collide with ions. Vriens and 
Smeets [18] (1980) construct analytic semiempirical formula 
for the excitation rate of coefficient from lower level p to 
upper level q for hydrogenic atoms. This formula is given by 
the following:- 
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Where, both electron temperature, kTe and the Rydberg 
energy, R are in eV, Epq = Eq-Ep is the energy difference 
between the two levels and fpq is the absorption oscillator 
strength. The values of the parameters Γpq, ∆pq, Apq and Bpq 
are obtained in detail from ref. [18]. 

For a hydrogen atom p and q are the principal quantum 
numbers. For atoms or ions with a single electron outside 
closed shell the principle quantum numbers are replaced by 
effective quantum numbers in the above mentioned equations, 
i.e. 

* eff

pi

R
p Z

E
=  and * eff

qi

R
q Z

E
=        (12) 

where Epi and Eqi are the ionization energies of the lower and 
upper levels respectively and Zeff is the effective nuclear 
charge. Excitation rate coefficient can be calculated with the 
aid of a computer program of Allam (CRMO) [25], which has 
been developed for collisional radiative models calculations. 

2.4. Calculation of Level Population 

The level population Nq are calculated by solving the 
coupled rate equations (26) 

d e d e

q qp e qp qp e p ipq p pq p pq

p q p q q p j i p q q p
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where Nq and Np is the population of the level q and p, 
espectively, Aqp is the spontaneous decay rate from level q to 
level p, Ce

qp and Cd
pq are the electron collisional excitation and 

de-excitation rate coefficient, respectively, and, Ne is the 
electrons densities 

2.5. Inversion Factor and Gain Coefficient 

In high temperature plasma, Doppler broadening is 
expected to be the main source of line broadening. Under 
these conditions the gain coefficient is given by [27]: 

3
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where F is the inversion factor and it is given by:  
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where Nq/gq and Np/gp are the reduced populations of the 
upper and lower level respectively. When the quantity 
between parentheses is positive, i.e. (Nq/gq) > (Np/gp), there is 
population inversion between the two levels. This will lead to 
positive inversion factor (F) and positive gain coefficient, and 
hence, to a possible laser emission. 

3. Results and Discussion 

3.1. Energy Levels 

In general, with one electron outside a closed shell, 
correlation in the core is negligible [28]. The energy of the 
electronic configurations are obtained by adjusting the 
scalling parameters Eav and ζi (ri) that are shown in tables 1. 
The energy levels for As-like gallium have been tabulated in 
tables 2. Our calculations of energy levels have been 
compared with data relative to NIST From the comparison we 
found that all the calculated energy levels are almost the same 
to the values of Nist [29]. 

Table 1. Radial function parameters for Gallium-like ions in units of 1000 

cm-1. 

Configuration Parameter 
Ion 

As III 

4s24p Eav 1.9600 

 ζi (ri) 1.9600 

4s25p Eav 131.9407 

 ζi (ri) 0.4827 

4s26p Eav 174.2346 

 ζi (ri) 0.1856 

4s24f Eav 164.1104 

Configuration Parameter 
Ion 

As III 

 ζi (ri) -0.0100 

4s25f Eav 188.4820 

 ζi (ri) 0.0003 

4s26f Eav 201.0537 

 ζi (ri) 0.0002 

4s25s Eav 106.6940 

4s26s Eav 162.8890 

4s24d Eav 117.7068 

 ζi (ri) 0.0372 

4s25d Eav 165.6740 

 ζi (ri) 0.0340 

4s26d Eav 189.2677 

 ζi (ri) 0.0130 

Table 2. Energy levels in cm-1 for As III calculated by COWAN code in 

Comparison with Nist [29] experimental values. 

Levels Energy NIST Dev. % Relative to NIST 

4s24p(2P1/2) 0.00 0.00 0 

4s24p(2P3/2) 2940.00 2940.00 0 

4s25s(2S1/2) 106694.00 106694.00 0 

4s24d(2D3/2) 117651.00 117651.00 0 

4s24d(2D5/2) 117744.00 117744.00 0 

4s25p(2P1/2) 131458.00 131458.00 0 

4s25p(2P3/2) 132182.10 132182.00 -7.57E-05 

4s26s(2S1/2) 162889.50 162889.50 0 

4s24f(2F7/2) 164095.40 164107.00 7.07E-03 

4s24f(2F5/2) 164130.40 164115.00 -9.38E-03 

4s25d(2D3/2) 165623.00 165623.00 0 

4s25d(2D5/2) 165708.00 165708.00 0 

4s26p(2P1/2) 174049.00   

4s26p(2P3/2) 174327.40   

4s25f(2F5/2) 188481.40   

4s25f(2F7/2) 188482.50   

4s26d(2D3/2) 189248.20   

4s26d(2D5/2) 189280.70   

4s26f(2F5/2) 201053.30   

4s26f(2F7/2) 201054.00   

It is clear, from table (2) that we have get a good agreement 
with the with Nist [29] experimental values. 

3.2. Wavelengths, Oscillator Strengths and Transition 

Probabilities 

In tables 3 we have tabulated our calculated wavelengths, λ 
(Å), the absorption oscillator strength, ƒ, log(Gƒ) and the 
radiative decay rates, A, for all allowed electric dipole 
transitions among As III. 

Table 3. Wavelengths, log gf, oscillator strengths and radiative decay rates for As III. 

λ (Å) upper levels lower levels Log(G ƒ) ƒ A(s-1) 
528.41 4s26d(2D3/2) 4s24p(2P1/2) -1.289 2.57E-02 3.08E+08 

536.65 4s26d(2D5/2) 4s24p(2P3/2) -1.04 2.28E-02 3.52E+08 



16 Amal Ibrahim Refaie et al.:  Atomic Data and Laser Transitions in as - Like Gallium  
 

λ (Å) upper levels lower levels Log(G ƒ) ƒ A(s-1) 
536.75 4s26d(2D3/2) 4s24p(2P3/2) -1.994 2.53E-03 5.88E+07 

603.78 4s25d(2D3/2) 4s24p(2P1/2) -0.747 8.95E-02 8.20E+08 

613.91 4s26s(2S1/2) 4s24p(2P1/2) -1.325 2.36E-02 4.19E+08 

614.37 4s25d(2D5/2) 4s24p(2P3/2) -0.499 7.92E-02 9.33E+08 

614.69 4s25d(2D3/2) 4s24p(2P3/2) -1.453 8.80E-03 1.55E+08 

625.20 4s26s(2S1/2) 4s24p(2P3/2) -1.031 2.33E-02 7.95E+08 

849.97 4s24d(2D3/2) 4s24p(2P1/2) 0.354 1.13E+00 5.23E+09 

871.05 4s24d(2D5/2) 4s24p(2P3/2) 0.599 9.93E-01 5.82E+09 

871.76 4s24d(2D3/2) 4s24p(2P3/2) -0.356 1.10E-01 9.68E+08 

937.26 4s25s(2S1/2) 4s24p(2P1/2) -0.524 1.50E-01 1.14E+09 

963.82 4s25s(2S1/2) 4s24p(2P3/2) -0.235 1.46E-01 2.09E+09 

1199.01 4s26f(2F5/2) 4s24d(2D3/2) -0.732 4.63E-02 1.44E+08 

1200.34 4s26f(2F7/2) 4s24d(2D5/2) -0.577 4.41E-02 1.54E+08 

1200.35 4s26f(2F5/2) 4s24d(2D5/2) -1.878 2.21E-03 1.02E+07 

1411.82 4s25f(2F5/2) 4s24d(2D3/2) -0.253 1.40E-01 3.12E+08 

1413.66 4s25f(2F7/2) 4s24d(2D5/2) -0.098 1.33E-01 3.33E+08 

1413.68 4s25f(2F5/2) 4s24d(2D5/2) -1.4 6.63E-03 2.22E+07 

1478.56 4s26p(2P3/2) 4s25s(2S1/2) -3.048 4.47E-04 6.83E+05 

1484.67 4s26p(2P1/2) 4s25s(2S1/2) -3.35 2.23E-04 6.75E+05 

1730.40 4s26d(2D3/2) 4s25p(2P1/2) -0.609 1.23E-01 1.37E+08 

1751.36 4s26d(2D5/2) 4s25p(2P3/2) -0.359 1.09E-01 1.59E+08 

1752.35 4s26d(2D3/2) 4s25p(2P3/2) -1.313 1.22E-02 2.65E+07 

1764.40 4s26p(2P3/2) 4s24d(2D3/2) -2.493 8.03E-04 1.72E+06 

1767.30 4s26p(2P3/2) 4s24d(2D5/2) -1.539 4.81E-03 1.54E+07 

1773.11 4s26p(2P1/2) 4s24d(2D3/2) -1.796 4.00E-03 1.70E+07 

2152.42 4s24f(2F5/2) 4s24d(2D3/2) 0.572 9.33E-01 8.97E+08 

2155.80 4s24f(2F5/2) 4s24d(2D5/2) -0.575 4.43E-02 6.37E+07 

2157.43 4s24f(2F7/2) 4s24d(2D5/2) 0.726 8.87E-01 9.53E+08 

2822.44 4s26f(2F5/2) 4s25d(2D3/2) -0.124 1.88E-01 1.05E+08 

2829.17 4s26f(2F7/2) 4s25d(2D5/2) 0.03 1.79E-01 1.12E+08 

2829.23 4s26f(2F5/2) 4s25d(2D5/2) -1.271 8.93E-03 7.43E+06 

2926.97 4s25d(2D3/2) 4s25p(2P1/2) 0.393 1.24E+00 4.83E+08 

2982.76 4s25d(2D5/2) 4s25p(2P3/2) 0.64 1.09E+00 5.47E+08 

2990.35 4s25d(2D3/2) 4s25p(2P3/2) -0.315 1.21E-01 9.03E+07 

3181.52 4s26s(2S1/2) 4s25p(2P1/2) -0.293 2.55E-01 1.68E+08 

3256.54 4s26s(2S1/2) 4s25p(2P3/2) -0.002 2.49E-01 3.13E+08 

3923.41 4s25p(2P3/2) 4s25s(2S1/2) 0.281 9.55E-01 2.07E+08 

3970.57 4s26d(2D5/2) 4s24f(2F7/2) -1.526 3.72E-03 2.10E+06 

3976.10 4s26d(2D5/2) 4s24f(2F5/2) -2.828 2.47E-04 1.04E+05 

3981.24 4s26d(2D3/2) 4s24f(2F5/2) -1.682 3.46E-03 2.19E+06 

4038.12 4s25p(2P1/2) 4s25s(2S1/2) -0.033 4.63E-01 1.90E+08 

4374.76 4s25f(2F5/2) 4s25d(2D3/2) 0.61 1.02E+00 2.37E+08 

4390.89 4s25f(2F7/2) 4s25d(2D5/2) 0.764 9.68E-01 2.51E+08 

4391.09 4s25f(2F5/2) 4s25d(2D5/2) -0.537 4.84E-02 1.67E+07 

6579.29 4s26d(2D3/2) 4s26p(2P1/2) 0.448 1.40E+00 1.08E+08 

6687.49 4s26d(2D5/2) 4s26p(2P3/2) 0.696 1.24E+00 1.23E+08 

6702.05 4s26d(2D3/2) 4s26p(2P3/2) -0.259 1.38E-01 2.04E+07 

6881.82 4s25p(2P3/2) 4s24d(2D3/2) -1.025 2.36E-02 3.33E+06 

6926.14 4s25p(2P3/2) 4s24d(2D5/2) -0.074 1.41E-01 2.93E+07 

7242.70 4s25p(2P1/2) 4s24d(2D3/2) -0.348 1.12E-01 2.85E+07 

8470.91 4s26f(2F5/2) 4s26d(2D3/2) 0.607 1.01E+00 6.27E+07 

8493.80 4s26f(2F7/2) 4s26d(2D5/2) 0.761 9.62E-01 6.66E+07 

8494.30 4s26f(2F5/2) 4s26d(2D5/2) -0.54 4.81E-02 4.43E+06 

8742.86 4s26p(2P3/2) 4s26s(2S1/2) 0.422 1.32E+00 5.78E+07 

8960.98 4s26p(2P1/2) 4s26s(2S1/2) 0.11 6.44E-01 5.35E+07 

11488.44 4s26p(2P3/2) 4s25d(2D3/2) -0.597 6.32E-02 3.20E+06 

11601.74 4s26p(2P3/2) 4s25d(2D5/2) 0.353 3.76E-01 2.80E+07 

11868.03 4s26p(2P1/2) 4s25d(2D3/2) 0.088 3.06E-01 2.90E+07 

62011.70 4s25d(2D5/2) 4s24f(2F7/2) -0.387 5.13E-02 1.19E+05 

66997.23 4s25d(2D3/2) 4s24f(2F5/2) -0.576 4.42E-02 9.87E+04 

125274.19 4s26d(2D5/2) 4s25f(2F7/2) -0.127 9.33E-02 5.28E+04 

130412.27 4s26d(2D3/2) 4s25f(2F5/2) -0.3 8.35E-02 4.93E+04 
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3.3. Excitation Rate Coefficients 

Excitation rate coefficients (cm3 sec-1) as a function of 
electron temperature (eV) for 4s24d(2D3/2)-4s25p(2P1/2), 
4s24d(2D3/2)-4s25p(2P3/2) and 4s24d(2D5/2)-4s25p(2P3/2) 
transitions, in case of As(III), are given in Figure (1) only for 
transitions where population inversion occur. 

 

Fig. 1. Exitation rate coefficients of As(III). 

 

Fig. 2. Reduced populations for selected levels of As(III) at electron 

temperature 21.261 eV. 

 

 

 

3.4. Level Population 

The level population for 4s24d(2D3/2), 4s24d(2D5/2), 
4s25p(2P1/2) and 4s25p(2P3/2) levels are calculated at electron 
temperatures equal to 7.087 eV, 14.147 eV and 21.261 eV. The 
behavior of the reduced population is illustrated in figure (2) at 
electron temperatures equal to 21.261 eV. 

The behavior of level populations of the various ions can be 
explained as follows: in fig (2), the 4s24d(2D3/2) and 
4s24d(2D5/2) levels cannot decay fast to the 4s25p(2P1/2) and 
4s25p(2P3/2) levels. So by time the population of 4s24d(2D3/2) 
and 4s24d(2D5/2) levels become greater than the population of 
4s25p(2P1/2) and 4s25p(2P3/2) levels. Therefore the population 
inversions occur between these two levels. In general the 
behavior of population in finger (2) can be explained as 
follows: in the case of collisional pumping, at low densities, 
the reduced populations increase as functions of electron 
density. This is due to the increase in the collisional excitation 
rates with density [13-17]. At high electron density, where the 
collisional excitation rates exceed the radaitive decay rates, 
the reduced populations are independent of electron density 
and are approximately equal. The population inversion is 
largest where the electron collisional de-excitation rate for 
upper level is comparable to the radiative decay rate for this 
level approximately equal. 

3.5. Gain Coefficient 

As a result of population inversion there will be a positive 
gain in the laser medium. Equation (14) has been used to 
calculate the gain coefficient for the Doppler broadening of 
various transitions in As(III). 

Our gain results for: 4s25p(2P1/2)- 4s24d(2D3/2), 4s25p(2P3/2)- 
4s24d(2D3/2) and 4s25p(2P3/2)- 4s24d(2D5/2) transitions, as a 
function of the electron density for As (III) at electron 
temperatures 7.087 eV, 14.147 eV and 21.261 eV, are 
tabulated in table (4) which contains the parameters for the 
laser medium and the laser transition. That is to say the 
wavelength λ (Å) of transition, the life time of the upper laser 
levels τq (ns), the lifetime of the lower laser level τp (ns), the 
plasma electron density Ne(cm-3), the plasma electron 
temperature Te(eV), and the maximum gain coefficient 
α(cm-1). The behavior of the laser gain as function of electron 
density at electron temperature 7.087 eV, 14.147 eV and 
21.261 eV shown in figures (3 - 5). 

Table 4. Parameters of the most intense laser transition in As(III). 

Laser transition τq(ns) ττττp (ns) Te (eV) λ (Å) Ne(cm-3) αmax (cm-1) 

4s25p(2P1/2) 4s26d(2D3/2) 4.60E+00 1.62E-01 7.087 eV 7.242 E+03 1.74E+15 6.56E+00 

4s25p(2P3/2) 4s26d(2D3/2) 4.18E+00 1.62E-01 7.087 eV 6.881 E+03 1.74E+15 1.15E+00 

4s25p(2P3/2) 4s26d(2D5/2) 4.18E+00 1.72E-01 7.087 eV 6.926 E+03 1.59E+15 1.05E+01 

4s25p(2P1/2) 4s26d(2D3/2) 4.60E+00 1.62E-01 14.147 eV 7.242 E+03 2.11E+15 2.13E+01 

4s25p(2P3/2) 4s26d(2D3/2) 4.18E+00 1.62E-01 14.147 eV 6.881 E+03 2.11E+15 3.85E+00 

4s25p(2P3/2) 4s26d(2D5/2) 4.18E+00 1.72E-01 14.147 eV 6.926 E+03 2.11E+15 3.52E+01 

4s25p(2P1/2) 4s26d(2D3/2) 4.60E+00 1.62E-01 21.261 eV 7.242 E+03 2.32E+15 2.95E+01 

4s25p(2P3/2) 4s26d(2D3/2) 4.18E+00 1.62E-01 21.261 eV 6.881 E+03 2.32E+15 5.40E+00 

4s25p(2P3/2) 4s26d(2D5/2) 4.18E+00 1.72E-01 21.261 Ev 6.926 E+03 2.32E+15 4.93E+01 
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Fig. 3. Gain coefficient of laser transitions via electron collisional excitation 

pumping at electron temperature equal to7.087 eV 

 

Fig. 4. Gain coefficient of laser transitions via electron collisional excitation 

pumping at electron temperature equal to 14.147 eV. 

 

Fig. 5. Gain coefficients of laser transitions via electron collisional excitation 

pumping at electron temperature equal to 21.261 eV. 

The above three figures for gain coefficient show that the 
population inversions occur for several transitions in As (III). 
However, the largest gain has been existed for the 
4s25p(2P3/2)- 4s26d(2D5/2) transition producing gain value 
of 4.93E+01 (cm-1) with wavelength of 6.926 E+03 (Å). Our 
calculations show, under favorable conditions, that a 
significant laser gain transitions can be achieved in As-like Ga. 
The behavior of the gain coefficients α (cm-1) as a function of 
electron density (cm-3) can be explained as follows: at low 
electron density, the gain increases approximately as the 
electron density increases. This means that the fractional 
populations increase linearly with the electron density due to 
the increase of the collisional excitation rate [30, 31]. The 
maximum gain occurs at about the density where collisional 
depopulation of the level becomes comparable to radiative 
decay. At (1015≤ Ne≤1016), the upper level population 
increases slower than Ne while the lower level populations 
continue to increase together with Ne and therefore, the 
inversion factor (F), begin to decrease and the gain coefficient 
decrease. 

4. Conclusion 

It is clear that the present calculations of energy levels and 
wavelengths show good agreement with the corresponding 
available both theoretical and experimental data. We have 
obtained some new unpublished energy levels, wavelengths 
and transition probabilities for these ions. These extensive and 
the more definitive results may be useful in thermonuclear 
fusion research and astrophysical applications. 

The population of each level in As-like gallium is 
calculated and used to calculate the gain coefficient. The 
values of the maximum gain coefficients ranges from 
1.15E+00 to 4.93E+01 (cm-1). Our calculations may give an 
attribute in the production of laser by collisional pumping 
under actual experimental conditions. In this case additional 
processes, such as radiative, dielectronic recombination, and 
perhaps resonances can significantly affect level populations 
which needs a future study. 
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