
 

American Journal of Physics and Applications 
2015; 3(2): 60-62 

Published online March 23, 2015 (http://www.sciencepublishinggroup.com/j/ajpa) 

doi: 10.11648/j.ajpa.20150302.17 

ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online) 

 

Linear Momentum Conservation in the Motion of Electric 
Charges 

Farrin Payandeh 

Department of Physics, Payame Noor University (PNU), Tehran, Iran 

Email address: 
payandehfarrin92@gmail.com 

To cite this article: 
Farrin Payandeh. Linear Momentum Conservation in the Motion of Electric Charges. American Journal of Physics and Applications.  

Vol. 3, No. 2, 2015, pp. 60-62. doi: 10.11648/j.ajpa.20150302.17 

 

Abstract: In this letter I will discuss the linear momentum conservation for an electric charge which is moving in a magnetic 

field. This will enrich the knowledge of undergraduate physics students, about the important concept of conservation of linear 

momentum, in classical electrodynamics. 
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1. Introduction 

In Newtonian mechanics, the law of conservation of 

momentum can be derived from the law of action and 

reaction, which states that every force has a reciprocating 

equal and opposite force. Under some circumstances one 

moving charged particle can exert a force on another without 

any return force [1-6]. Moreover, Maxwell's equations, the 

foundation of classical electrodynamics, are Lorentz-

invariant. Nevertheless, the combined momentum of the 

particles and the electromagnetic field is conserved. 

Two electric charges 1
q  and 2

q  corresponding to masses 

1
m  and 2

m  are supposed to be moving with velocities 1
v
�

 

and 2
v
�

 in 3-dimensional space. As it is known from 

electromagnetism, reciprocal electric and magnetic forces are 

exerted on these two charges. According to this situation, the 

linear momentum conservation for particles in Coulomb 

potentials has been investigated and solved [7-11]. However 

in magnetic fields, this concept still appears to be obscure, 

since despite of the fact that the exerted magnetic forces on 

the charge are equal, they are not aligned in a same direction. 

To obtain the conservation of linear momentum in this 

situation, it is sufficient to apply the Lagrangian mechanics. 

Assume G  to be a function of i
t , i

p  and i
q  such that 

( ), .,
i i i

tG p qG=                               (1) 

So the time derivative of this function becomes 

d
.
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The Hamilton equations imply that 
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According to (2) we have 
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Let us notate 

{ }, ,
i i i i

G H G H

q p p q
G H

∂ ∂ ∂ ∂
∂

−≡
∂ ∂ ∂

 

which is the Poisson’s bracket. If G  is not an explicit 

function of time, then 

{ }d
, .

d

G
G H

t
=                            (5) 

In the case of a vanishing Poisson’s bracket, G  is a 

constant of motion in this physical system. Now to see what 

really happens in this physical process, in the next section, 

we deal with the conservation of the linear momentum for 



 American Journal of Physics and Applications 2015; 3(2): 60-62  61 

 

these charges by writing the usual Hamiltonian of two 

moving electric charges in a magnetic field. 

2. Obtaining the Conservation of 

Momentum 

Let us write the Hamiltonian for a two-particle system, 

consisting of the electric charges 1
q  and 2

q . As we know, the 

Hamiltonian of a charged particle in a magnetic field 

is

2
1

2

e
H p A

m c

 = + 
 

�

�

 , which for a two-particle system 

becomes 
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To obtain the vector potentials
12

A
�

 and
21

A
�

 , let us note 

that
12

B
�

 , i.e. the magnetic field felt by 1
q  which is produced 

by 2
q  is (see figure 1) 
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Figure 1. The vector difference between to moving charges 1
q  and 2

q , 

respectively of velocities 1
v  and 2

v . 

Therefore according to the relation between the magnetic 

field and vector potential, AB ×= ∇
� ��

, one obtains 
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and similarly 
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Substituting (9) and (10) in (6) we have 
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Now we interpolate this relation in the Poisson’s bracket { },p H
�

, where 1 2
p p p= +� � �

. We get 

{ } { } ( ) ( ) ( )1 2 1 2

1 2 = ,   ˆ, , i

i i i i i i i

H H H H
p e

q p q p q

p p p p p
p H

q
H p

p

∂ ∂+ +
= = − = − −

∂∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂ ∂

� � �

� �

� �

�

                           (12) 

in which î
e  is a unit vector along i

p
�

 and the index i  indicates 

six independent components of 1
p
�

 and 2
p
�

; 

1 1 1 2 2
, , , ,

x y z x y
p p p p p  and 2 z

p .) 

As it is seen, the Poisson’s bracket (12) contains only the 

derivatives of Hamiltonian with respect to the generalized 

coordinates. Therefore one can omit the 

terms
2

2

1

2

2

1

 and  
2 2

p p

m m
in (11), i.e. 
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Substituting 1 1 1
p m v=� �

 and 2 2 2
m vp =� �

 in above expression we get: 

1

3 3 3

2 1 2

2 2
2 2

1 2 1 2 1 2 2 1 2

10 0 1 2 20 1

1 1
.

4 4

2 .

2 2 4

v v v v

r r r

q q q q q q
H

m r rc cmrcπε πε πε
   

+ +   − − −
=

  

� � � �

� � � � � �

                                   (14) 

Now in order to simplify our results, we notate 
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Consequently (14) becomes 
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3. Discussion and Conclusion 

An interesting point in the above Hamiltonian is its 

symmetry with respect to exchanges between 
1
r
�

 and
2

r
�

. Now 

expanding the Poisson’s bracket (12) we get 
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If the above differentiations are done with respect to the 

indexes 1 and 2, then one observes that
21

,  ...
H H

x x

∂ ∂
∂

= −
∂

. This 

is of course observable from the equation of symmetry. 

Hence we have 
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, 0,p p H+ =� �

 

or 

( )1 2 1 2
          

d
0           const.,

d
pp p p

t
⇒+ = + =�� � �

 

which means that for a two-electron system (or for two 

charges 1
q  and 2

q  in general), the conservation of linear 

momentum is retained, despite the fact that they are not 

subjected to centripetal forces. Therefore once can observe 

that, when no central force is applied on charges, the linear 

momentum is still conserved. This interesting conclusion 

extends the usual domain of linear momentum conservation 

and this is what we were looking into in this paper. 
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