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Abstract: One of the key elements in supplay cahin management is accurate information. Decision makers are aware of 
inaccuracies in inventory levels and, therefore, routinely conduct inventory reviews to correct the discrepancies between IT 
records and actual inventory. Several studies have investigated error sources and the cumulative effect of errors on holding costs, 
shortage costs, order-up-to levels and time between inventory counts. In most works, the errors were independent of the demand, 
which is neither realistic nor accurate. Here we use familiar inventory errors and information scenarios already proposed in 
several previous papers. We offer a model that considers the correlation between inventory errors and demand. The effect of the 
relationship between the random variables is tested in the context of several different scenarios. Each scenario contains a 
different level of information about the underlying demand and inventory errors. We then analyze the effect of changes of the 
covariance on the cost and time between inventory counts in each scenario. Using these results we formulate the value of 
information and its dependence on the covariance. We use analytical methods to draw conclusions regarding single parameter set 
cases and a numerical full factorial study for average multiparameter cases. In both settings, we show that the value of 
information decreases as the covariance increases. Moreover, the reduction is more significant when the information scenario 
makes less assumptions. The same behavior is observed in stock review frequency. As covariance increases, the optimal number 
of periods between inventory reviews drops sharply. Finally, we propose several simple methods for proactive error correction. 
We show that without prior knowledge, these methods perform better than the basic information scenario. Using these results we 
are able to formulate recommendations for businesses with different profiles of correlation between demand, and demand and 
errors, e.g., automated warehouses with weak correlation compared to grocery stores. 

Keywords: Supply Chain Management, Inventory Control, Information Technology 

 

1. Introduction 

Data collection and its processing into useful information 
that supports decision making is a fundamental activity in 
supply chain management (SCM). With perfect information, 
the only obstacle to optimal supply chain (SC) operations is 
the complexity of the optimization problems involved. 
Nevertheless, and despite the fact that most SCM literature 
assumes perfect inventory information, it is hard to even 
imagine a SC where decision makers have access to perfect 
information. Obtaining information is costly and obtaining 
perfect information is very costly. 

Inventory inaccuracy has been studied in a number of 
papers, each concentrating on a different set of factors that 
contribute to lowering the overall SCM costs. Atali et al. [1], 
Kok and Shang [2] and Avrahami et al. [Avrahami et al. [3] 
present the idea that actual inventory levels differ from the 
information technology (IT) records and, therefore, decisions 
that are made using this wrong IT record are inaccurate. The 
model proposed by these researchers considers three sources 
of errors. The cumulative effect of these errors makes the 
SCM more unpredictable and the overall costs much higher. 
One generally accepted fact is that an inventory count sets the 
errors to zero and the IT record reflects the actual inventory. 
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Radio frequency identification (RFID) technology, advanced 
as a way to circumvent these error sources and help monitor 
other sources, will most likely eliminate the need for inventory 
counts. RFID technology, however, has a price tag. The 
conclusion these researchers reach is that most of the cost 
reduction can be obtained without using RFID technology. 
Although their work contributes greatly to understanding 
SCM, there are several assumptions that do not hold in the real 
world. 

The remainder of this work is organized as follows. We 
review the relevant literature and in Section  1.3 we formulate 
the research objectives. In Chapter  2 we reconsider relevant 
SCM concepts, statistics and previous papers. Chapter 3 
presents the multivariate normal distribution extension. 
Chapter  4 contains analytical and heuristic problem solution 
approaches. In Chapter  5 we discuss the numerical study and 
in Chapter  6 we present the results. Finally, in Chapter  7 we 
draw conclusions and propose questions for future works. 

2. Literature Review 

In this section we review the most relevant works that deal 
with the value of information. The papers are grouped into 
several categories. Each category describes a different aspect 
of the value of information. 

2.1. General Literature Review 

Lee and Ozer [4] examined the ongoing research and 
opportunities for further research on the value of RFID in 
supply chains. Sometimes companies invest in a new 
technology not because of what the technology can do but 
because of what it promises to do. The goal of their paper is to 
find gaps in knowledge concerning the value of RFID so that 
research community can fill the void left by consultants and 
solution providers, and turn potentials into realizable actions. 

In their literature review on the impact of RFID 
technologies on SCM, Absi, Dauzere-Peres and Sarac [5] 
provide an extensive catalogue of RFID technology 
deployments, analytical models and potential benefits versus 
inventory inaccuracy problems. Simulations and case studies 
are reviewed. Finally, conclusions and future research 
perspectives are presented. 

To test the effectiveness of RFID, Oh-Keun Ha et al. [6] 
conducted a survey in 240 food and beverage enterprises. 
Their goal was to test a list of hypotheses regarding the 
positive connection of RFID and the efficiency of the supply 
chain. 

Huber and Michael [7] discuss product shrinkage in the 
retail supply chain and present data collected through 
semi-structured interviews with RFID vendor representatives. 
They ask whether RFID can be a practical tool for stock 
shrinkage prevention. They saw that the ability to provide 
visibility was key to prevention of theft, misplacement and 
products being lost. Also, the technology’s capacity to 
authenticate products during recalls and acts of fraud, and in 
identifying counterfeits was also shown to be of benefit. 

Fan et al. [8] provide another review of RFID’s potential 

value. They focus on single-item, single-period, centralized 
and decentralized supply chains. Two inventory errors are 
modeled—shrinkage and misplacement—with uniform 
demand. A detailed analytical analysis shows the relationships 
between RFID costs, optimal order quantities and profits.  

2.2. Cooperation in a Multilevel SC 

Gavirneni, Kapuscinski and Tayur [9] analyze the problem 
of a two-level supply chain—a supplier and a retailer. The 
main goal of their paper is to check the levels of cooperation, 
or in other words, the levels of information available to the 
supplier. At first, there is no information available. In the 
second level, the supplier is informed about the retailer’s (s, S) 
policy and the parameters. Moreover, the supplier knows the 
demand that the retailer sees. The last model provides the 
supplier with full information. The result of the numerical 
study shows that the second model is always cheaper than the 
first and the third is cheaper than the second. The researchers 
also compare the models when distribution, holding costs, and 
shortage costs are changed. 

Cachon and Fisher [10] study the value of shared 
information between the supplier and multiple retailers. Their 
goal is to compare the added value of sharing information (not 
only customer demand but also exact inventory levels at each 
retailer) with the improvement in other SC aspects such as 
shortening lead time or decreasing lot sizes. They propose two 
models—traditional information sharing and full information 
sharing. The value of information is the difference between 
the costs. One insight they glean is that by sharing information, 
other improvements (lot sizes, lead time) are partially 
achieved. 

Lee, So and Tang [11] develop a two-stage SC consisting of 
a retailer and manufacturer and analyze the benefits of 
information sharing. Among these benefits are lead time, 
inventory and shortage costs etc. The demand at the retailer in 
each period is a sum of new demand, demand from previous 
periods multiplied by the correlation factor and an inventory 
error that has a normal distribution. Newsvendor formulas are 
used in different information sharing scenarios between the 
manufacturer and the retailer. Finally, in a numerical study, 
they show that the manufacturer can reduce costs if the 
demand correlation over time is high, demand variance within 
each period is high and lead times are long. These properties 
fit the high tech industry. 

Moinzadeh [12] also discuss cooperation between a 
supplier and multiple retailers via an IT system that improves 
decision making. He uses the (Q, R) model for retailers. 
Because the supplier has all the data from the retailers, he tries 
to predict the time when a retailer will place an order. The 
results are then compared with similar configurations but 
without information exchange. 

Gaukler [13] extends the ideas presented in Moinzadeh [12]. 
Here, centralized and decentralized supply chains are 
considered. Two key factors are studied: (1) The influence of 
stockout based item substitutions on profitability of item level 
RFID implementation and (2) the share of the cost that the 
manufacturer and retailers should take on themselves. 
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Ganesh et al. [14] present an extensive analysis of a 
multilevel multi-item system where demand between items is 
correlated and if an item is missing, it can be substituted. 
Demand follows normal distribution and lead time is zero. 
Several information sharing policies are examined with regard 
to a change in degree of substitution and the demand 
correlation coefficient. 

Sari [15] presents a multilevel simulation based model for 
finding the best strategy for cost reduction, and customer 
service level. Several information sharing scenarios between 
levels are examined. The model and the simulation consider 
inventory errors. 

2.3. Backroom and Shelf Concept 

Gaukler, Seifert and Hausman [16] introduced the concept 
of a backroom and a shelf. The backroom is replenished 
according to a regular periodic newsvendor/(s,S)/(Q,R) policy. 
The retail shelf, however, is replenished according to an 
informal rule. This way a measure of efficiency is added. 
Using this measure, they express the efficiency of shelf 
refilling, theft, misplacement and other factors that reduce 
item availability. Then, two types of demand are presented: 
demand that is observed by the retailer and the effective 
demand that the retailer’s shelf can satisfy. They also analyze 
centralized and decentralized systems. For each case, a cost 
function is formulated. The RFID value is found by comparing 
the cost with RFID to a cost without using it. 

Pelton et al. [17] present an interesting idea of retailer stock 
management. Their retailer model consists of a backroom and 
shelves. The backroom is replenished according to a periodic 
review order-up-to policy and the shelf stock is replenished 
continually from the backroom. This study shows that the 
direct effect of more efficient and effective backroom-to-shelf 
replenishment comprises the majority of benefits. So using 
RFID at the last stage is much more profitable. 

The paper by Chuang and Oliva [18] continues previous 
related works on inventory inaccuracy and presents a 
two-stage model with a front shelf and a backroom. Each stage 
is prone to three types of errors. The base model is a 
continuous (Q, R) inventory system. The authors present an 
empirical study with Bayesian computations based on data 
from a global retail chain. Finally, a connection between 
part-time/full-time labor and inventory record inaccuracy is 
shown. 

2.4. IT Information Accuracy and Inventory Errors 

Iglehart and Morey [19] [Iglehart and Morey(1972)] extend 
the classical economic lot size models by considering the 
cumulative effect of the errors between physical stock and 
stock records. The goal is to find a solution for the lot size and 
the lower bound from which it is recommended to order that 
would minimize the total cost per unit time, subject to the 
probability of a warehouse denial between counts being below 
a prescribed level. In addition, the discrepancies in stock 
would be correlated with the demand. According to their 
model, an inventory error occurs in each period. This error is 

modeled as a sum of errors per demand. The renewal process 
and other approximations and theorems are used to find the 
regeneration point or the inventory count period. 

Atali, Lee and Ozer [1] discuss the idea of different error 
sources by proposing a model with demand that can be broken 
down into paying customers, misplacements, shrinkage and 
transaction errors. Distribution of the demand is Poisson and 
the division into different error sources is binomial. Based on 
this, four models are developed with or without RFID 
visibility and with or without proactive inventory correction. 
Dynamic programming is used to find the needed inventory 
levels and the number of periods between inventory counts. To 
calculate the value of visibility, they compare a system that 
uses an informed policy (without visibility) and a system that 
has visibility and follows an optimal replenishment policy. 
Their conclusion is that using RFID with proactive error 
correction, such as misplacement, can substantially decrease 
overall costs of lost sales, inventory and inventory count. 

Kok and Shang [2] deal with the inaccuracy in inventory 
levels that are reported to IT systems. They propose an 
inspection adjusted base stock policy (IABS). For each period, 
IABS determines the order-up-to level and the threshold. The 
threshold and order-up-to level are highly dependent on the 
number of periods from the last inventory review. The 
manager performs an inventory review if the initial inventory 
level is less than the defined threshold. The optimal solution 
for a finite horizon is dynamic programming. Using a 
numerical study, Kok and Shang prove that the policy is 
optimal in a single period and near optimal in an finite horizon. 
They compare the IABS policy and more simple cycle count 
policies that are easier to understand or implement. Finally, 
they provide a list of extensions for further research. 

DeHoratius et al. [20] also discuss the problem of 
discrepancies between the physical inventory and the recorded 
IT value. They present the impact of such errors on costs. 
Moreover, according to their study, most decision making 
software is not robust enough to deal with such inventory 
problems. The primary focus of the work is to develop a 
heuristic that is easy and practical to implement on a finite 
horizon problem. Their method is based on Bayesian updating 
of the retailer’s belief about the true inventory level, 
represented as a probability distribution around the physical 
inventory level. 

The paper by Avrahami, Tzimerman, Herer and Shtub [3] 
can be seen as an expansion of Kok and Shang’s [2] idea of a 
base stock replenishment policy when the manager is aware of 
discrepancies between the IT and actual inventories. They 
consider three sources of errors—shrinkage, misplacement 
and wrong scanning, and their impact on inventory levels. To 
measure the value of information, they present four different 
scenarios, each with its level of information. One is the full 
information scenario when RFID technology is used. As in 
Kok and Shang [2], a cycle count policy is proposed for 
non-RFID scenarios. For these scenarios, the main insight is 
that although knowing the distributions of errors can be the 
cheapest solution but the hardest to achieve, most of the value 
derives from basic information about errors—mean and 
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standard deviation. 
Kok and Shang [21] analyze periodic inventory auditing in 

order to deal with stock inaccuracy. They provide a recursive 
solution to single-stage problems, show more effective 
methods of cycle counts in a two-stage problem and explain 
why cycle counting is needed in all stages, not only in the high 
priority ones. 

Mersereau’s [22] ideas are similar to that of Avrahami et al. 
[3] with respect to several information scenarios and the value 
of having more accurate information. The author uses a 
multiple period lot size problem with one source of stock 
errors. The information scenarios analyzed by him are naive 
(ignorant), informed, heuristic (limited information) and 
RFID-enabled. The proposed model is Bayesian and adaptive. 
A detailed analysis is presented under the assumption of 
exponential distribution. 

3. Research Objectives 

In this work we extend the ideas covered in the literature 
review. We focus on information accuracy and inventory 
errors and concentrate on the infinite horizon periodic 
stochastic lot sizing problem where there are three sources of 
inventory errors:  

1. Shrinkage: A change in the actual inventory that is not 
recorded in the inventory information system. Breakage and 
theft are two typical examples. 

2. Misplacement: A reduction in the available inventory that 
is not a reduction in the actual inventory. As in shrinkage, the 
inventory information system does not reflect misplaced 
articles. 

3. Wrong scanning: A change in the quantity recorded in the 
inventory information system without changes in the actual 
and available inventory. 

We use the following five different information scenarios 
with the correlation of error sources and IT record error 
correction in case of stockout:  

1. No information scenario ( NI ): The decision maker has 
no information about the three sources of errors affecting 
inventory information quality. 

2. Informed scenario ( IN ): The decision maker is aware of 
the three error sources affecting inventory information quality. 
Moreover, he is aware of the distribution of each type of error, 
but is unaware of the realization of these errors. 

3. Informed independent scenario ( II ): Just like the 
informed scenario, but the decision maker knows marginal 
distributions and not the joint distribution. 

4. Static informed scenario ( SI ): The decision maker is 
aware of the three sources of errors affecting inventory 
information quality. Moreover, he is aware of the mean of the 
distribution of each error type, but is unaware of the 
distribution and realization of these errors. This scenario can 
be viewed as the static companion to the informed scenario. 

5. Full information scenario ( F ): The decision maker has 
full information about the error occurrences. The errors 
themselves are not eliminated, but in knowing when the 
realization of the errors occurs, the decision maker can take 

appropriate action. 
The value of information will be defined in Section 0. Using 

this value, we compare the costs of each scenario with the no 
information case and find the marginal benefit of each 
scenario. Finally, we find an optimal time between inventory 
counts for each scenario. 

We use an order-up-to policy and extend the ideas, models 
and mathematical formulations that were proposed in previous 
papers. It is easy to see that if the lead time and fixed order price 
are zero, the optimal policy is base stock. In our case, errors 
contribute to the demand and are accumulated between periods. 
This causes the base stock policy to become a dynamic 
order-up-to policy. We propose two points of extension:  

1. The errors will be correlated – It is reasonable to assume 
that if a product is misplaced from one shelf to another, then 
there is a chance that it will be reported as missing or stolen. 
Moreover, the errors will be correlated with demand. If more 
people arrive on a particular day to shop, then there is more 
disorder and higher error rates are observed. All the above 
errors and the demand will now be distributed multi-normally. 

2. Proactive error correction methods – In many cases, the 
mathematical properties of inventory errors are not available 
and the information scenarios below cannot be applied. We 
propose two easy heuristics that perform better than the No 
Information scenario and do not require any prior knowledge 
about inventory errors. 

(a). IT dtock reset – When a stockout occurs, the decision 
maker updates the IT stock record to zero. 

(b). Demand modification – When a stockout occurs, the 
decision maker increases the mean demand parameter by a 
predefined ratio. 

Both heuristics will be explained in more detail in Chapter 
0. 

3.1. Connection Between Demand and Inventory Errors 

In papers such as Atali et al. [1], different models were 
suggested. Their solution methods are often backward 
induction algorithms. These can lead to performance issues 
when solving large optimization problems. We use the 
multivariate normal distribution to formulate the dependency 
between the demand and all the errors. Our formulation aims 
to be more computationally tractable, empirically yielding 
good results and easier to implement in real-world problems 
than the previously proposed methods in Atali et al. [1] and 
Kok and Shang [2]. There are several reasons why we chose 
the multivariate normal model. The main ones are:  

1. While real data, in the majority of cases, is not exactly 
multivariate normal, the normal density is often a useful 
approximation of the true population distribution because of 
the central limit theorem. 

2. One advantage of the multivariate normal distribution 
stems from the fact that it is mathematically tractable. 

A major contribution of this model to the previously 
proposed one is its ability to use different properties of 
multivariate normal distribution: probabilities, variances, 
marginal distributions. The joint distribution function can be 
quite helpful when calculating the probabilities, integrals and 
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inverse functions of marginal distributions needed in the 
newsvendor problem. 

Of course, this extension will influence the modified 
demand and the cost per period in each scenario. 

3.2. Informed Independent Scenario 

We propose, formulate and check a new information 
scenario that assumes partial knowledge about multivariate 
normal distribution of demand and errors, i.e., the decision 
maker will assume that demand and errors are i.i.d. 

We compare the value of information to the already existing 
information scenarios. 

3.3. Proactive Error Correction When Stockout Is Observed 

 We devise a proactive error correction plan. If a customer 
arrives and no products are available but the IT system reports 
otherwise, then the first thing to do is to set the IT record to 
zero. This action will remove some portion of system 
uncertainty. More corrective actions such as looking for the 
item can be executed but these will cost money employee 
time). The tradeoff of such action will be also examined. Here 
the benefits of multivariate normal distributions will be also 
used for calculation of probabilities and thresholds for 
decision making. 

4. Mathematical Model 

In this section we present the mathematical model to 
support the solution of our problem. 

4.1. Classic Newsvendor Problem 

The classic newsvendor problem is the problem of deciding 
the size of a single order that must be placed before observing 
demand when there are per-unit overage and underage costs, 

oc  and uc , respectively. We denote the order quantity as Q  

and the demand PDF as ( )f x  (with x  indicating equal 

covariances); hence the expected cost, ( )EC Q  per period is:  

0
( ) = ( ) ( )d ( ) ( )d

Q

o u
Q

EC Q c Q x f x x c Q x f x x
∞

⋅ − + ⋅ −∫ ∫   (1) 

Using the CDF of the demand, F , we calculate the optimal 

order quantity *Q  using the closed form solution from [24]:  

*( ) = u

u o

c
F Q

c c+
                (2) 

4.2. Modified Demand in Different Information Scenarios 

Here we present a short summary of equations presented by 
Avrahami et al. [3] that will be widely used and adjusted to 
multivariate demand and inventory errors. Since we assume 
that the overage stock is transferred between subsequent 
periods and there are no lost sales, the overage and underage 
costs are =oc h  and =uc p , respectively. The 

order-up-to-level is denoted as Sn, with the superscript 

designating which scenario is referred to, e.g., NI
nS , IN

nS , 

II
nS , SI

nS , FS  and subscript n  denoting the number of 

periods since the last inventory review. 

4.2.1. No Information Scenario 

When unaware of the errors, the decisions in all periods are 

the same and based on the demand with the CDF of DF . We 

denote this stock level as NIS . 

1= ( ) ( )NI D p
S F

p h

−

+
             (3) 

To calculate the cost of the above decision, we need to 

consider inventory errors S
iE , M

iE  and W
iE , the shrinkage, 

mispalcement and wrong scanning in period i , respectively. 

The cumulative demand, ˆ
nD , that takes the inventory errors 

into account is:  

1

=1 =1 =1

ˆ =
n n n

S W M
n i i i

i i i

D D E E E

−

+ + +∑ ∑ ∑        (4) 

Wrong scanning is summed up to period 1n −  because it 
affects only the IT system and not the actual stock. Therefore, 
it is not felt until the next period. We denote the positive part 

of x , i.e., max( ,0)x  as ( )x + . The cost of the no information 

scenario in period n , NI
nc , when ordering NIS  while the 

demand is D̂  using a modified newsvendor cost equation, is:  

ˆ ˆ
= ( ) ( )d ( ) ( )d E[ ]NI NI D NI D M

n n n nc h S x f x x p x S f x x n h E
∞ ∞+ +

−∞ −∞
⋅ − + ⋅ − + ⋅ ⋅∫ ∫                     (5) 

4.2.2. Informed Scenario 

In the informed scenario, the modified demand takes into account the errors and their corrections using the expected values of 

the errors in period n , E[ ]S
nE , E[ ]M

nE , E[ ]W
nE :  

1

=1 =1 =1

= ( 1) (E[ ] E[ ] E[ ])
n n n

S W M S W M
n i i i n n n

i i i

D D E E E n E E E

−

+ + + − − ⋅ + +∑ ∑ ∑ɶ  
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The stock level in each period, IN
nS , depends on the 

modified demand with the CDF D
nF
ɶ

:  

1= ( ) ( )IN D
n n

p
S F

p h

−

+
ɶ

              (7) 

Cost is calculated using cost equation 5, when replacing 
NI
nS  with IN

nS . 

4.2.3. Static Informed Scenario 

Here we use the expected values of equation 6:  

' = E[ ] E[ ]S M
n nD D E E+ +            (8) 

The decision about the stock levels is made using:  

' 1= ( ) ( )SI D
n n

p
S F

p h

−

+
             (9) 

Again, the cost is calculated using the cost equation from 

equation 5 when replacing NI
nS  with SI

nS . Because this 

scenario is an approximation of the informed case, the stock 
level in this case is not optimal according to the cost function. 

4.2.4. Full Information Scenario 

We assume that full information is achieved using radio 
frequency identification technology (RFID). Although the full 
information eliminates misplacement and wrong scanning, 
shrinkage still occurs. The modified demand, DS , that 
considers shrinkage is:  

= SDS D E+                 (10) 

As in the no information scenario, the stock level in each 

period, FS , is constant:  

1= ( ) ( )F DS p
S F

p h

−

+
             (11) 

The cost, Fc , is calculated using the regular newsvendor 
period cost equation with the addition of the constant price F 
of enabling the RFID technology:  

= ( ) ( )d ( ) ( )dF F DS F DS
c h S x f x x p x S f x x F

∞ ∞+ +

−∞ −∞
⋅ − + ⋅ − +∫ ∫                         (12) 

4.2.5. Value of Information 

An optimal solution for each scenario is achieved in a 
period N  after the previous inventory count. The value of 
information is defined for each scenario and is the difference 
between the cost of an optimal solution and the optimal 
solution of the no information scenario, operating under the 
same conditions, i.e., h , p  etc. 

4.3. Multivariate Normal Distribution 

The multivariate normal distribution is a generalization of 
the univariate normal distribution to two or more variables. It 
is a distribution for random vectors of correlated variables, 
each element of which has a marginal distribution that has a 
univariate normal distribution. It is marked by. 

( ) ( , )X µ Σ∼N                 (13) 

where I nRµ ∈  is a mean vector of X and I n nR ×Σ ∈  is a 

symmetric positive definite covariance matrix. The diagonal 
elements of Σ  contain the variances for each variable, while 
the off-diagonal elements of Σ  contain the covariances 
between variables. 

Density function (please check and confirm) 
The probability density function of the d-dimensional 

multivariate normal distribution is given by:  

1 T 1( ) ( )
21

( , , ) =
(2 ) det

x x

n
f x e

µ µ
µ

π

−− − Σ −
Σ ⋅

⋅ Σ
     (14) 

4.4. Modified Demand Multivariate with Normal 

Distribution Extension 

To integrate the multivariate normal distribution with our 
model, we need to formulate the mean and variance of the 
demand in period n . The general equation of variance, as 
found in [23] (page 193) is:  

( ) ( )
=1 =1=1 =1

<

Var = Var 2 Cov ,
n nn n

i i i j

i ji i
i j

X X X X
 

+ 
 
 

∑∑∑ ∑   (15) 

The actual demand that considers inventory errors:  

1

=1 =1 =1

=
n n n

S W M
n i i i

i i i

D D E E E

−

+ + +∑ ∑ ∑ɶ          (16) 

The demand above participates in all actual cost 
calculations, regardless of the scenario. In addition, our 
extension assumes a connection between demand and errors in 
each period. These, however, are independent between 
periods:  

1

=1Periodn Periods1to(n 1)

=
n

S M S M W
n n n i i i

i

D D E E E E E

−

−

+ + + + +∑��������� �����������

ɶ      (17) 

Marginal distribution of each variable is normal; hence the 
sum is also a random variable with normal distribution and 
variance: 

 
 



 American Journal of Operations Management and Information Systems 2019; 4(1): 1-15 7 
 

 ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1

1 1 1 1 1 1

Var Var Var

2 Cov , Cov , Cov ,
Var =

1 {Var Var Var

2 Cov , Cov , Cov , }

S M
n n

S M S M
n n n n n n

n
S M W
n n n

S M S W M W
n n n n n n

D E E

D E D E E E

D
n E E E

E E E E E E

− − −

− − − − − −

 + + +

  + + + +  


+ − + + +

  + + +
  

ɶ                     (18) 

Where the first two lines refer to period n  and the 

following two lines refer to periods 1 to ( 1)n − . 

The effect of correlation on cost in period n  
We now show how a change in covariance affects the cost 

function in period n . Since we want to get a closed form 

solution, we make a simplifying assumption. 
Assumption 2.1 All the covariances between demand and 

inventory errors in period n  are equal, i.e., we have a 

symmetric matrix:  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

Var Cov , Cov , Cov , Var

VarVar Cov , Cov ,
=

VarVar Cov ,

VarVar

S M W

SS S M S W

MM M W

WW

D D E D E D E D x x x

E x xE E E E E

E xE E E

EE

   
   
   
   
   
   
   
     

 

There are several justifications for this assumption. The 
first one is due to the structure of the variance in equation 18. 
On the one hand, if we allow covariances with opposite signs, 
we have factors that cancel each other out; thus, the overall 
variance will decrease. On the other hand, the positive factors 
will have a symmetric effect on the total variance. In both 
cases, we have no clear conclusion about the effect of 
correlation on a cost. Another justification for this assumption 
is the difference between stock management environments. 

For example, in a grocery store, the more buyers that come, 
the more mess they create and we assume that all the errors are 
correlated in the same way. In an automated warehouse, in 
contract, we expect to have significantly less correlation. 
Finally, the number of combinations for a full factorial 
experiment is expected to be large, which will result in a long 
computing time. 

Using the modified demand from equation 18 and 
assumption 2.1, we can formulate the variance in period n :  

( ) ( ) ( ) ( ) ( ) ( )
[ ] ( )[ ]

Var = Var Var Var 1 Var

2 1 2 2 2 .

S M W
n n n nD D n E n E n E

x x x n x x x

+ + + − +

+ + + + − + +

ɶ

                 (19) 

In order to simplify the calculations below. we denote the 
first part of the equation that does not depend on x  as V . 
The standard deviation is:  

[ ]0.5
= 6n V nxσ +               (20) 

The closed form solution of the newsvendor problem cost in 
period n  as presented by [24]: 

( )= { ( ) ( ) }n n n n n nc p z h p z z zσ φ− ⋅ + + ⋅ Φ +        (21) 

Where: 

nc  = Expected cost in period n  for different information 

scenarios 
p  = Underage cost per unit 

h  = Overage cost per unit 

nσ  = Standard deviation of demand in 20 

nz  = 
( )

n

Q µ
σ
−

, where Q  is an information scenario order 

quantity 
( )nzφ  = PDF of the standard normal distribution applied 

on nz  

( )nzΦ  = CDF of the standard normal distribution applied 

on nz  

Derivative of the cost with respect to the joint covariance 
x  

We would like to understand how a small change in x  
affects the cost in period n . We calculate the derivative 

/nc x∂ ∂ . 

Let’s replace nz  for WHAT:  
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )= ( ) ( ) = ( ) ( )n n n n n n n
n n

Q Q
c p p h z p h z p Q p h z p h Q z

µ µ
σ φ µ σ φ µ

σ σ
 − −
− ⋅ + + + + ⋅Φ − ⋅ − + + + + − ⋅Φ 
  

 

Again, in order to simplify the calculation, we split the equation into three parts:  

( )( ) =a x p Q µ− ⋅ −  

( )( ) = ( )n nb x p h zσ φ+  

( )( )( ) = ( )nc x p h Q zµ+ − ⋅Φ  

( ) ( ) ( )
=nc a x b x c x

x x x x

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

 

1. 
( )

= 0
a x

x

∂
∂

 

2. 
( )( )

= ( ) ( )n n n
n n

n

z zb x
p h z

x x z x

σ φφ σ
 ∂ ∂ ∂∂ + ⋅ + ⋅ ⋅ ∂ ∂ ∂ ∂ 

 

3. 
( )

= ( ) ( ) ( ) n
n

zc x
p h Q z

x x
µ φ ∂∂ + ⋅ − ⋅ ⋅

∂ ∂
 

We now calculate the inner derivatives: 

1. 0.5 0.5 3
= ( 6 ) = 0.5 6 ( 6 ) =n

n
n

n
V nx n V nx

x

σσ
σ

−∂
+ ⇒ ⋅ ⋅ +

∂
 

2. 

2 2

2 2
( ) 21 1

( ) = = = ( )
2(2 ) (2 )

z z
n n

n n
n n n

n

z z
z e e z z

z

φφ φ
π π

− −∂ − ⋅ ⇒ ⋅ ⋅ − ⋅ ∂  
 

3. 1.5
0.5 3

3 ( )
= = ( ) ( 0.5) ( 6 ) 6 =

( 6 )
n

n

n

zQ n Q
z Q V nx n

xV nx

µ µµ
σ

−∂− − ⋅ −
⇒ − ⋅ − ⋅ + ⋅

∂+
 

Using the results above for ( )a x , ( )b x  and ( )c x : 

3

( ) 3 3 ( )
= ( ) ( ) ( ) ( ) =n n n n

n n

b x n n Q
p h z z z

x

µφ σ φ
σ σ
 ∂ − −+ ⋅ + ⋅ − ⋅ ⋅ ∂  

 

( )
3

3 3 ( )
= ( ) ( ) ( ) ( ) =n n n

n n n

Qn n Q
p h z p h z

µ µφ σ ϕ
σ σ σ

− −+ ⋅ ⋅ + + ⋅ ⋅ ⋅ ⋅  

2
3

3 3
= ( ) ( ) ( ) ( ) ( )n n

n n

n n
p h z p h Q zφ µ φ

σ σ
+ ⋅ ⋅ + + ⋅ − ⋅ ⋅  

2
3 3

( ) 3 ( ) 3
= ( ) ( ) ( ) = ( ) ( ) ( )n n

n n

c x n Q n
p h Q z p h Q z

x

µµ φ µ φ
σ σ

∂ − −+ ⋅ − ⋅ − + ⋅ − ⋅
∂

 

Summarizing the results of ( )a x , ( )b x  and ( )c x , we get:  

3 ( ) 3 ( )
= ( ) =n

n
n n n

c n p h n p h Q
z

x

µφ φ
σ σ σ

 ∂ ⋅ + ⋅ + −⋅ ⋅  ∂  
  (22) 

Using this equation, we can predict the fluctuation of costs 
in period n  when all other parameters are known. 

4.5. The Effect of Correlation on the Average Cost 

Regardless of the information scenario (except the full 
information scenario), the decision maker performs inventory 
counts periodically. In Avrahami et al. [3], we saw that the 
average cost per period if the inventory count is performed 
after N periods is:  
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=1=

N

n

n
N

C c

AC
N

+∑
 

Now we want to check how a change in x will affect the 
average cost. We use the result of the derivative from the 
previous section:  

=1

=1

3 ( ) ( )
3( )

= = ( )

N

n N
N n

n

n

n p h z
AC p h

n z
x N N

φ
φ

⋅ + ⋅
∂ + ⋅ ⋅

∂

∑
∑  (23) 

The purpose of the above analysis was to develop an easy 
way to predict the change in the average cost per period using 
linear approximation. In practice, when compared to a real 
calculation, the estimation error was too high and the result, 
not accurate. The assumption is that the second order error is 
also too high. Unfortunately, the analysis of higher derivatives 
is not in the scope of this work and is left for future research. 

5. Problem Solution Approach 

In this section we present the solution approch. 

5.1. Informed Independent Scenario 

The informed independent scenario is very similar to the 
informed scenario but instead of having all the details of the 
multivariate normal distribution, the decision maker knows 
only the marginal distributions. As a result, all calculations are 
made under the assumption that demand and errors are 
independent. Analyzing this case is interesting because 
usually it is harder and more expensive to predict the 
correlation between different sources of errors. Since 
correlation is not causation, the observed correlation between 
two variables might be due to the action of a third, unobserved 
variable. Therefore, the additional work of a professional 
statistician will likely be required in order to estimate the 
covariance. We denote the random variables that represent the 
marginal distributions of the demand, shrinkage, 

misplacement and wrong scanning errors in period n  by Dɶ , 
S

nEɶ , M
nEɶ , W

nEɶ , respectively. Note that we use Dɶ  and not 

D̂  or just D  because we want to emphasize that it, 
combined with the errors, is the demand of the multivariate 
demand with zero correlation between the components. The 
modified demand nD′  that is used for calculating the order 

quantity is:  

1

=1 =1 =1

= ( 1) (E[ ] E[ ] E[ ])
n n n

S W M S W M
n i i i n n n

i i i

D D E E E n E E E

−
′ + + + − − ⋅ + +∑ ∑ ∑ɶ ɶ ɶ ɶ ɶ ɶ ɶ                 (24) 

Note that the random variables in the above equation are 
assumed to have marginal distributions of the original 
multivariate normal distribution. The costs, however, are 
calculated according to correlated demand and errors, which 
cause the scenario to be sub-optimal. 

The stock level in each period depends on the modified 
demand:  

1= ( ) ( )II D
n n

p
S F

p h

′ −

+
           (25) 

The actual cost of the above decisions is calculated using 

equation 5, replacing NI
nS  with II

nS .  

ˆ ˆ
= ( ) ( )d ( ) ( )d E[ ]II II D II D M

n n n n n nc h S x f x x p x S f x x n h E
∞ ∞+ +

−∞ −∞
⋅ − + ⋅ − + ⋅ ⋅∫ ∫                     (26) 

It is important to remember that the variance of D̂  in the 
above equation contains the covariance between inventory errors 

and the demand. This implies that the cost II
nc  is not optimal. 

The intuitive explanation is that this stock level was not 
calculated using all the information about demand and error 

distribution. A more formal justification is that II
nS  is not a 

result of a derivation of the cost function and is not its minimum. 
We can compare the performance of the current scenario 

with previously proposed ones—no information, static 
informed and informed.  

Conjecture 1.1 < < <IN II SI NI
n n n nc c c c   

We can intuitively justify this conjecture by inspecting the 
modified demand in each scenario. The more information we 
have, the more accurate the inventory record order becomes 
and, consequently, we pay less for shortages or stock holding. 
In addition, we justify the above assumption in Section  6.2 
using the numeric study. 

In real-life scenarios, the knowledge of information errors is 

not always available or difficult to calculate. An experienced 
decision maker can make up for the lack of information by 
implementing simple proactive methods. We review two 
methods and compare their performance to the no information 
scenario. In both methods, the decision maker should only be 
alert and ready to react to any abnormal behavior in the system. 

5.2. IT Inventory Reset 

The first method for dealing with inventory inaccuracy is 
simply to update the IT system when stockout occurs. When a 
customer arrives and there are no available items to supply her 
demand, the manager resets the IT stock value to zero. The 
unsatisfied demand is backlogged and a shortage cost is paid. 
An inventory count, however, is performed only after the 
average cost starts to increase. 

5.3. Demand Modification 

Here, instead of resetting the IT stock level when a shortage 
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occurs, the decision maker modifies the demand upward by a 
predefined percent. In essence, he tries to compensate for the 
inventory errors of which he, of course, is not aware. Unlike the 
previous method, when a stockout occurs here, the decision 
maker does not reset the IT stock to zero. As in the IT stock 
reset method, the inventory count is performed only after the 
average cost starts to increase. When it happens, the modified 
demand mean parameter is replaced with the original one. 

In addition, we justify the assumption above in Section  6.2, 
the numeric study chapter. 

6. Results 

6.1. Multiple Regression Analysis 

We start the analysis of the problem with an exploratory 

multiple regression model. We focus on the value of 
information in the informed scenario. We want to know how 
the value of information depends on (and can be predicted 
based on) other parameters. To check this, we use a multiple 
regression model. First, we check model assumptions 
concerning the data structure:  

1. Independence of each data point 
2. Correct distribution of the residuals 
3. Correct specification of the variance structure 
4. Linear relationship between the response and the linear 

predictor 
All of the above were met. 
It is important to note that there were 3,456,000 

observations and only four independent variables with very 
small variances; therefore, the model could be over-fitted. 

Table 1. Multiple regression model: Value of information in the informed scenario. 

 Estimate Std. Error t-value p-value 

Intercept 38.96 0.04 909.4 16< 2 10−⋅  

h  -4.65 0.02 -300.2 16< 2 10−⋅  

p  11.4 0.02 723.2 16< 2 10−⋅  

( )Dσ  -0.95 0.01 -267.1 16< 2 10−⋅  

Joint Cov. ( )x  -16.53 0.03 -501.6 16< 2 10−⋅  

Explained variance ( )2R  0.21 * here it is equal to adjusted 2R  

Model’s F  52.34 10⋅     

Model p-value 16< 2 10−⋅     

 

According to the model, all variables are significant ( )16< 2 10p value −− ⋅ . The obtained equation is as follows:  

= 38.96 4.65 11.4 0.95 ( ) 16.53ValueOfInformed h p D xσ− ⋅ + ⋅ − ⋅ − ⋅                   (27) 

The significance level of the model is also 16< 2 10−⋅ , but 
the model explains only 21% of the variation in the value of 
information. In other words, only 21% of variation is 
explained by the independent variables. Therefore, noting all 
the disadvantages, despite the low p-value, the obtained 
multiple regression model is not a very good model for 
describing the data. It is worth mentioning that a multiple 
regression model with interactions was also tested; however, it 

achieved an explained variance, 2R , of only 0.23 and, 
therefore, was not added to this section. 

6.2. Scenario Comparison 

In this section we review the performance of previously 
presented information scenarios. The comparison is based on 
the value of information, which is the difference between the 
cost of the no information scenario and each of the other 
scenarios. The cost of a specific scenario as a function of a 
single problem parameter is presented here as the average 
across all costs of combinations of other problem parameters 
(for a full factorial analysis, see 

Table 2). The values themselves comply with the values 
discussed in Avrahami et al. [3]. What interests us is the 
dependence of the value of information and covariance. Since 
the contribution of inventory error covariances to variance of 

their sum is linear (see eq. 18), we focus on the simplified case 
2.1. We denote the value of all covariances by x . 

Table 2. Full factorial experiment design. 

h  p  E[ ]D  ( )Dσσσσ  E[ ]S
nE  ( )S

nEσσσσ  E[ ]M
nE  ( )M

nEσσσσ  E[ ]W
nE  ( )W

nEσσσσ  F  C  x  

0.1 1.1 40  1 0.4 0.05 0.004 0.001 0.004 0.001 5 1000 0 
.5 1.4   2 1 0.1 0.006 0.002 0.008 0.002  1500 0.05 
 1.7   3  0.3 0.008     2000 0.1 
.3 2   4  0.5      2500 0.15 
.7 2.5   5        3000 0.2 
 3   6         0.25 
    7         0.3 
    8         0.5 
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h  p  E[ ]D  ( )Dσσσσ  E[ ]S
nE  ( )S

nEσσσσ  E[ ]M
nE  ( )M

nEσσσσ  E[ ]W
nE  ( )W

nEσσσσ  F  C  x  

    9         0.75 
     10          1 

 
Before calculating the average values, we filter out all cases 

where < 0.5
p

p h+
. The first reason for doing so is that if the 

critical ratio is below 0.5, then it is optimal to stock less than 
the mean and if the standard deviation increases, then the 
optimal order quantity decreases [25]. The second reason is 
compliance with the numeric studies and results of Avrahami 

et al. [3].  
Figure 1 describes the dependence of the value of 

information and x . The figure is based on Tables 1 and 2. We 

see the value of information for factor = 0.1h  when x  
varies from 0 to 1. Note that a zero is not present in the vertical 
axis because it is less important in order to understand the 
behavior of different scenarios.  

 

Figure 1. Value of Information by scenario – h=0.1. 

We can clearly see that except for the value of full 
information, the value of information in all scenarios 
decreases as x  increases. The reason for this is that the cost 
of the no information scenario does not increase significantly; 
however, the discrepancy between the modified demand and 
order quantity predicted by the scenarios accumulates over 
time. This discrepancy contributes to the high shortage costs 
and overall scenario cost, and finally, reduces the scenario’s 
value. 

It is easy to understand the behavior of full information 

when looking at variance equation 20. As x  increases, the 
variance increases and, therefore, the cost of no information 
increases. The full information scenario, however, has a 
constant cost that causes the value of full information to 
increase with x . Note that Figure 1 s a numerical justification 
of our conjecture 1.1. 

Another aspect of the value of information is the number of 
periods between inventory counts – N . In Figure 2, we can 
see a sharp decrease in N  as x  increases. 
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Figure 2. Stock review cycle by scenario – h=0.1. 

6.3. Proactive Method Simulation 

Parameter selection 
We compare the performance of the proactive methods 

described in Chapter 0 by running a simulation of the no 
information scenario, IT stock reset and demand modification 
methods. Unlike the full factorial analysis with average-like 
results, here we focus on a single combination of problem 
parameters. We change only h  and p , in order to 

manipulate the different cost factors, and run = 1000J  
repetitions for each combination and each proactive method. 
In each repetition we calculate the period after which the 

average cost starts to increase and the respective method cost. 
Thus, we get J  random cost and period variables. Finally, 
we calculate the mean and standard deviation of the cost and 
number of periods until the inventory count. 

To simulate the behavior of the scenario and the proactive 
methods, we need to generate multivariate normal realizations 
and this requires a positive definite covariance matrix. 
Unfortunately, the parameters that were presented earlier are 
not suitable here. Therefore, in Table 3 below, we present a 
new set of parameters that are used in all the simulations. 

Table 3. Simulation parameters. 

E[ ]D  ( )Dσσσσ  E[ ]S
nE  ( )S

nEσσσσ  E[ ]M
nE  ( )M

nEσσσσ  E[ ]W
nE  ( )W

nEσσσσ  F  C  x  

400 10 4 1 4 1 4 1 5 1000 0.3 

 
The IT stock reset method is quite simple and does not 

require additional input or calibrations during runtime. After 
the realization of the demand and the error, if the available 
stock becomes negative, the IT stock is reset. All the regular 
costs are paid as usual. In the demand modification method, 
when shortage is observed, the mean demand parameter is 
modified upwards. The method requires a predefined 
modification factor. We see that a selection of this factor 
strongly effects the method performance. The mean demand 

parameter is returned to the original value after the method 
reaches the inventory count period. Both methods decide that 
an inventory count is needed after the average period cost 
starts to increase. 

6.4. Simulation Analysis 

Table 4 compares the performance of both methods and the 
no information scenario. The stock modification ratio is 30%. 
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Table 4. Proactive methods of error correction. 

3[0]*h 3[0]*p 3[0]*Ratio 

No information IT Stock reset Demand modification 

Mean Mean Mean Mean Mean Mean 

Cost Periods Cost Periods Cost Periods 

(StD) (StD) (StD) (StD) (StD) (StD) 

2[0]*0.1 2[0]*3 2[0]*0.968 236.16 7.44 83.25 22.48 46.45 39.07 

   (14.76) (0.79) (19.37) (7.39) (10.37) (12.69) 

2[0]*0.1 2[0]*1.1 2[0]*0.917 156.49 12.06 60.9 36.06 40.6 44.9 

   (5.97) (0.81) (14.57) (11.36) (1.45) (7.87) 

2[0]*0.7 2[0]*2 2[0]*0.741 231.68 8.61 185.14 12.11 122.32 21.93 

   (11.25) (0.78) (34.94) (2.85) (7.12) (4.29) 

2[0]*2 2[0]*3 2[0]*0.600 310.3 6.74 290.46 7.61 233.08 10.56 

   (17.32) (0.68) (46.69) (1.37) (12.73) (0.98) 

2[0]*1 2[0]*1.1 2[0]*0.524 193.13 10.76 192.84 11.13 163.41 10.59 

   (7.41) (0.73) (22.5) (1.42) (10.17) (1.54) 

 
In this table we can see that both methods perform better 

than the no information scenario and demand modification 
performs better than IT stock reset. Nevertheless, the closer 
we are to the critical ratio of 0.5, the less improvement we 
have. In addition, we can see that IT stock reset has the highest 
standard deviation of cost. Critical ratios below 0.5 were also 
tested but the heuristics performed worse than the default no 
information scenario. 

6.5. Statistical Justification 

We want to compare two sample means, but before doing so, 
we need to test whether the sample variances are significantly 
different. Homoscedasticity is a very important assumption 
underlying the T  test, because it influences the degrees of 
freedom of the test critical value. If the variances are different, 
we have to estimate each of them and, therefore, we have less 
degrees of freedom. To compare two variances we used the 
Fisher’s F  test that divides the larger variance by the smaller 

one. If the ratio is 1, the variances are the same. To be 
significantly different, the ratio should be significantly bigger 
than 1. To know if we should accept or decline the null 
hypothesis (that the two variances are not significantly 
different), we need to calculate the critical value of F . The 
degrees of freedom for the numerator as well as for 
denominator are calculated in the following way: = 1df n − . 

If the calculated ratio is larger than the critical value, we reject 
the null hypothesis. 

We performed this F  test for all couples of our variables 
using the function var.test in R  and, for each comparison, are 
results showed that all the variances (in each couple) are 
significantly different. 

With these results in hand, we may proceed to performing 
the Student’s T  test with the t.test function in R . Given that 
we already know that all the variances are significantly 
different, we use this function with the parameter 
var.equal=FALSE. 

Table 5. T-test results: No information and IT stock reset. 

h p Ratio t-value df p-value 

0.1 3 0.968 129.7502 1883.479 16< 2.2 10−⋅p  

0.1 1.1 0.917 146.8987 1940.29 16< 2.2 10−⋅p  

0.7 2 0.741 31.7113 1568.931 16< 2.2 10−⋅p  

2 3 0.600 7.2456 1603.76 13= 6.66 10−⋅p  

1 1.1 0.524 -0.4256 1550.084 = 0.6705p  

Table 6. T-test results: No information and demand modification. 

h p Ratio t-value df p-value 

0.1 3 0.968 192.2836 1319.329 16< 2.2 10−⋅p  

0.1 1.1 0.917 280.562 1037.919 16< 2.2 10−⋅p  

0.7 2 0.741 151.6659 1245.982 16< 2.2 10−⋅p  

2 3 0.600 71.5887 1487.807 16< 2.2 10−⋅p  

1 1.1 0.524 57.0582 1994.442 16< 2.2 10−⋅p  
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Table 7. T-test results: IT stock reset and demand modification. 

h p Ratio t-value df p-value 

0.1 3 0.968 49.2213 1505.76 16< 2.2 10−⋅p  

0.1 1.1 0.917 45.8193 1026.475 16< 2.2 10−⋅p  

0.7 2 0.741 52.6895 1077.463 16< 2.2 10−⋅p  

2 3 0.600 36.718 1173.663 16< 2.2 10−⋅p  

1 1.1 0.524 38.7981 1512.039 16< 2.2 10−⋅p  

 
In Table 5, we see that the combination of = 1h  and 
= 1.1p  yield a scenario where the difference between no 

information and IT stock reset is not statistically significant. 
This behavior is expected to be similar in cases where h p≈  
and ratio ≈  1. 

From the Tables 6 and 7, we can conclude that in all cases 
except the one mentioned in the above paragraph, the 
difference between the methods is statistically significant with 
a confidence level of 95%. 

6.6. Modification Factor Selection 

Since we saw that the demand modification method 
performs the best, we want to find the best modification factor. 
This factor is unique for each set of parameters so we could 

select any combination of  and  that provide a critical 

ratio above 0.5. We chose  and  to test the 

performance close to 0.5, where we know it should be the least 
effective. We omit the standard deviation and focus on the 
mean value only. 

Figure 3 was generated by running the demand 
modification method for ratios from 0 to 0.2 with a step of 
0.01. The values of cost per period are averages of = 100N  
simulations. We can see in Figure 3 that the optimal ratio is 
0.04 and the respective cost is 104.5, which is a significant 
improvement over the corresponding value in Table 4. In 
addition, we can see the 25th and 75th percentile of the cost 
for each modification factor. 

 

Figure 3. Modification factor selection. 

7. Conclusions 

In this work we concentrated on the value of information 
accuracy in a SC when working with an IT system. We 
extended the previously proposed models to consider 
correlations between inventory errors and demand. We added 
a new information scenario—the informed independent 
scenario, analyzed its behavior and compared its performance 
to other information scenarios. The correlation was modeled 

using multivariate normal distribution. To improve the 
computation abilities, we rewrote the older tools in the R 
statistical language. We also optimized the tools for parallel 
computing, which allowed almost instant feedback. In 
addition, we provided two proactive methods of error 
corrections and showed, by a simulation, that they perform 
better than the default no information scenario. The results 
were tested using statistical t-test analysis to ensure they have 
the required significance level. 

Clearly, it is worth investing in technology that would 

h p

= 1h = 1.1p



 American Journal of Operations Management and Information Systems 2019; 4(1): 1-15 15 
 

provide visibility in supply chains. When real-time data is not 
available, however, we can construct statistical methods that 
can help overcome the discrepancy between the IT stock level 
and the actual stock. The effectiveness of these models will 
vary depending on the amount of data we assume. 

In addition, when there is no available data to build the 
information scenarios models, we can rely on easy heuristics 
that perform better than the basic model. 
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