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Abstract: In wireless sensor networks, the load imbalance will seriously affect the performance of the whole networks, such 

as local traffic overload, congestion, idle resources and other problems. In this paper, a novel fuzzy neural network algorithm is 

proposed to solve the problem. First, the problem of load balancing in context-aware wireless sensor networks is analyzed, and 

the mathematical model is built up. Second, a load balancing optimization algorithm is brought combing neural network and 

fuzzy theory, and the whole process is also illustrated including learning, association, recognition and information processing. 

Third, through analyzing and studying a case, a load balancing problem is solved by simulation and comparison to show the 

potential of the proposed method. Last, some interesting conclusions and future work are indicated at the end of the paper. 
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1. Introduction 

The research on load balancing in wireless sensor networks 

has never stopped. Han (2016) introduced a traffic load 

balancing framework for software-defined radio access 

networks powered by hybrid energy sources [1]. Baranidharan 

(2016) put forward DUCF, a distributed load balancing 

unequal clustering in wireless sensor networks using fuzzy 

approach [2]. Tall (2016) introduced a self-optimizing load 

balancing with backhaul-constrained radio access networks 

[3]. Fahimi (2016) implied a joint spectrum load balancing 

and handoff management in cognitive radio networks by a 

non-cooperative game approach [4]. Kim (2016) indicated a 

self-organizing spectrum breathing and user association for 

load balancing in wireless networks [5]. Glabowski (2016) 

concerned the modelling load balancing mechanisms in 

self-optimising 4G mobile networks with elastic and adaptive 

traffic [6]. Wang (2015) extended the dynamic load balancing 

with handover in hybrid Li-Fi and Wi-Fi networks [7]. Kim 

(2016) made an energy-efficient load balancing scheme to 

extend lifetime in wireless sensor networks [8]. Various 

frameworks and methods have been proposed to solve the 

problem of load balancing and its derivations in wireless 

networks to a certain extent. 

By proposing the route optimization mechanism and the 

design of multicast routing protocol, some progress has been 

made in how to achieve load balancing. Xing (2016) built a 

load balancing-based routing optimization mechanism for 

power communication networks [9]. Yadav (2015) discussed 

DLBMRP, a design of load balanced multicast routing 

protocol for wireless mobile Ad-Hoc network [10]. Zhang 

(2015) built a load balancing in IP networks using generalized 

destination-based multipath routing [11]. Ren (2016) 

presented a fault-aware load-balancing routing for 2D-mesh 

and torus on-chip network topologies [12]. Later, people also 
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proposed a simple fault tolerance, memory, key value storage, 

energy sensing and other methods, making the load balance in 

the power communication network and on-chip network to be 

expanded. Trajano (2016) developed a two-phase load 

balancing of in-memory key-value storages using network 

functions virtualization (NFV) [13]. Xie (2016) evaluated a 

simple fault-tolerant method to balance load in 

network-on-chip [14]. Deng (2016) concerned a QoS-aware 

and load-balance routing for IEEE 802.11s basing 

neighborhood area network in smart grid [15]. Ricciardi (2016) 

modeled a hybrid load-balancing and energy-aware RWA 

algorithm for telecommunication networks [16]. Various 

methods have been put forward, which provide the study of 

load balancing with more ways and inspiration. 

In cellular networks, the control of load balancing also 

enables people to make progress in location awareness and 

power control. Aguilar-Garcia (2016) implied an improving 

load balancing techniques by location awareness at indoor 

femtocell networks [17]. Shin (2016) gave a power control for 

data load balancing with coverage in dynamic Femtocell 

networks [18]. Farazmand (2016) extended a coalitional 

game-based relay load balancing and power allocation scheme 

in decode-and-forward cellular relay networks [19]. Ali (2016) 

described load balancing in heterogeneous networks based on 

distributed learning in near-potential games [20]. 

At the same time, in the context-aware wireless sensor 

network, the problem of load balancing should be solved 

based on the global congestion awareness level and the 

previous discussion on the relevant aspects. Ramakrishna 

(2016) discussed GCA, a global congestion awareness for 

load balance in networks-on-chip [21]. Yan (2016) reviewed 

an enhanced global congestion awareness (EGCA) for load 

balance in networks-on-chip [22]. Aguilar-Garcia (2016) 

offered a context-aware self-optimization evolution based on 

the use case of load balancing in small-cell networks [23]. 

Sarma (2016) studied the deciding handover points based on 

context-aware load balancing in a WiFi-WiMax 

heterogeneous network environment [24].  

In wireless sensor networks, the load imbalance will 

seriously affect the performance of the algorithm, resulting in 

local traffic overload, congestion, idle resources and other 

issues. In order to solve the problem of load balancing in 

context-aware wireless sensor networks, a fuzzy neural 

network algorithm is introduced in this paper. And the 

algorithm is improved by merging the rules weight and 

capturing the importance decision of a certain rule, and a 

weight checking method is proposed. Finally, the feasibility 

and potential of the algorithm are verified by experiments.  

2. Context-Aware in Wireless Sensor 

Networks 

In context-aware wireless sensor networks based on fuzzy 

neural networks, a load balancing optimization algorithm is 

linked to the travel alternatives features. And the perceptions 

of input are patterned as uncertain sets for the vagueness, and 

they can become fuzzy sets indefinitely. The scheme is shown 

in Fig. 1. 

 
Fig. 1. A context-aware wireless sensor networks based on fuzzy neural networks. 

It is supposed that they prefer to selecting simple rules 

rather than putting the utility function to the most complicated 

position, as the travels come to a decision. So, rules are 

applied into modeling decision steps and depicting attitudes 

on the choice of those shown possible or ambiguous 

perceptions. 

The variations xi, i = 1, 2, 3, ..., n-1, n, and yj, j = 1, 2, 3, ..., 

m-1, m, stand features of the set’s alternatives of choice and 

the predilection of alternative j. And sets are uncertain, for 

example Pi, i = 1, 2, 3, ..., n-1, n, and Qj, offer linguistic 

values in system attribute of ith and of the tastes about 

alternative j. 
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Because an element x could not be included in one set only, 

and between *P  there exists an intersection, the perceptions 

of input, and many premise rules. And a rule may come to a 

degree which reflects the likeness at that time, between the 

personal perceptions and the premise of rule. Setting of a rule 

k, leads to the uncertain preference 
*k

j
Q  with regard to 

alternative j. The composition mechanism includes the 

uncertain preferences 
*k

j
Q  from all k rules that were invoked 

and computes all the uncertain preference 
*

j
Q  of alternative j 

applying the aggregation operator: 

* * *( ) ( ) ( )k k
j j j

kQ Q Q
k k

H y H y H yρ = =∑ ∑           (1) 

The Given uncertain set 
*

j
Q  stands all the preference of 

alternative j, and because of a given attributes set, the 

mechanism of defuzzification is applied into deriving a crisp 

action (selection). They thought that the gravity center of the 

set of preference, and centroidj is deputy of the alternative j’s 

attractiveness. They make a suggestion that two methods 

should be applied for translating the attractiveness into 

selection. Probabilistic rule presumes that the gravity center, 

centroidj, stands the systematic section of the alternative j’s 

utility. So the alternative j’s utility for individual n is offered 

by: jn jnU centoid θ= + , in which θ  is a term of error. This 

model’s interpretation is that the gravity center captures all the 

alternative’s attractiveness, when the term randomly captures 

noise in the behavior of human, losing rules, etc. 

An alternative attributes, in a specific situation, may not 

mate to the rules’ premises on the base of rule particularly. 

The reasoning mechanism permits for correcting the 

consequence of rules based on the factual input. 

In terms of a rule k with multidimensional conditions 
k

ρ , 

the losing ability of the rule k is given as the definition 

1,...,

k ki

i n

q q
=

= ∏                   (2) 

The function of membership or resulting outputs’ 

possibility distribution *P
 
is linked to the linguistic label Q ‘s 

possibility distributions in the consequence of rule and the 

likeness between input *P  and consistent label P in the rule 

‘s premise. The similarity degree between input *P  and rule 

premise, which is often called as rule firing, is computed by 

applying the operator of max–min: 

max min( ( ), ( ))P Px X
q H x H x∗

∈
=            (3) 

The function of membership of the output 
*Q  is gained by 

applying the encoding scheme of correlation-product, and it 

protects the membership function of set Q’s shape in the result 

of a rule: 

* ( ) . ( )QQ
H y q H y=                     (4) 

In which 
ki

q  is computed by using Eq (2) to the ith rule 

premise. 

The exertion of the reasoning mechanism decreases the 

rules’ number which is asked on the base of rule because the 

premises are only typical attributes’ labels and they don’t have 

to stand all input values which are possible. 

3. Fuzzy Neural Networks Algorithm 

3.1. The Algorithm Structure 

Fuzzy set theory was brought in by Zadeh (1965) as an 

ordinary way to show the diverse of inherent uncertainty in 

human systems. Zadeh (1973) said that men have capabilities to 

make important and precise statements about a system 

diminishes’ behavior decreases, when this system’s complexity 

increases. He came up with the use of fuzzy sets and approximate 

reasoning approaches to make model of such systems. 

In fig 1, nodes in layer 1 are nodes of input. And in the 6th 

layer, there are nodes of output. In layer 2, node functions of 

linguistic values on the variables of input are donated by 

uncertain sets. In layer 1, each input node is linked to 

corresponding linguistic values which are in layer 2. In the 

same way, in layer 5 nodes operate as linguistic values on the 

nodes in layer 6 which are output of layer 5. In layer 3, nodes 

stand for rule nodes, and every rule node is linked to the nodes 

which are in layer 2 and stand the premises of rule. To the 

nodes which are in layer 5, they stand for its result, via a node 

which is in layer 4 and dispenses a weight to every rule. 

Vague sets are generalization of crisp sets. Those members 

belong to uncertain sets which are with a possibility degree or 

membership degree. The membership's grades have values in 

the interval [0, 1], and stand for the degree by which an 

element is similar to or consistent to the concept come up by 

the uncertain set. A uncertain set P is defined on a universe 

discourse X and can be signified by a pair of sets which is 

ordered as 

{( , ( )) | }P

XP x H x x X= ∈                   (5) 

In which, ( )P

XH x  shows element x’s membership to the 

uncertain set P. 

Rule P, original estimates of the rule weights 
k

ψ  and 

parameter φ  and γ  of the functions’ membership are all 

required for weight correction. Rules are originally presumed 

to be of same importance. And all 
k

ψ  are made equal to one. 

Original values about parameter φ
 

and parameter γ  can be 

estimated by applying the learning procedure which is 

self-organized.  

An optional way for the decision of the rule base, is given 

as appropriate estimations of the values about the parameters 

φ  and γ . The uncertain rule generator is a repetitive process 

that pursues to recognize the optimum result of a given rule k. 

Therefore some measure of effectiveness can be chosen. In the 

following description, all the number of choices is maximized 

and the choices are accurately predicted. Each rule k is tested 

in turn and its optimal output is recognized by testing all 

possible combinations. 
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3.2. Solving Step 

And the model inputs *P  stand for the perceptions of 

individuals. And they are matched with each rule premises k. 

An inference scheme is called approximate reasoning. And it 

is then applied to deduce the resulting consequence 
*

k
Q , 

assuming the perception is *P . Rules are come up at the same 

time. And a composition mechanism counts the implications 
*

k
B  to a fuzzy preference 

*Q , with respect to its membership 

function. Final crisp choice arises from the defuzzification of 

preference 
*Q . 

The diverse elements will be discussed below and which is 

about the uncertain decision making mechanism. It is 

presumed that the fuzzy membership functions applied in 

making the rules are come up by bell shaped functions which 

are defined by breadth (standard deviation) γ , their center 

(mean) φ  and have the form 

2

2

( )
( ) exp

x
H x

φ
γ

 −= − 
 

               (6) 

The framework can be enlarged to illustrate rule weights 

which make model of these trade-offs. The trade-offs amongst 

the different rules could be gained by introducing rule weights 

k
ψ , in the collection operation that is applied to gain the fuzzy 

preference 
*

j
Q  which is in the composition mechanism: 

* * *( ) ( ) ( )k k
j j j

k k kQ Q Q
k k

H y H y H yψ ρ ψ= =∑ ∑      (7) 

Fig. 2 shows an example of the fuzzy membership function 

above to stand the next linguistic variables in neural networks: 

Very Low (VL), Low (L), Medium (M), High (H) and Very 

High (VH). For instance, a 32 minutes of network delay is 

belonging to the uncertain set ‘‘medium travel time’’ which is 

with membership 0.7 and to the uncertain set ‘‘high travel 

time’’ which is with membership 0.4. The correction method 

went in two steps: initialization and calculation. 

 
Fig. 2. Example of membership functions of possible linguistic values of travel time. 

3.2.1. Initialization 

The optimization procedure steps are shown below, in 

which cnq(j) indicates the possible result of a rule.  

It should be indicated that, generally, the aim of making the 

most use of the correct predictions’ number might not be very 

suitable and may cause unstable models. Just small correction 

to the inputs may lead to diverse outcomes. 

3.2.2. Calculation 

The procedure calibration is applied to identify the best 

values of the membership function parameters and rules 

weights, so the deviation between model outputs and 

observations is minimized. Following discussion extends their 

method so it can correct both the membership functions, 

parameters and the rule weights at the same time.  

A very minute description of each node function includes 

variables 
k

i
ipt  and 

k

i
otp  for description about the inputting 

to a node and outputting from a node. Superscript k indicates 

the network layer. And subscript i indicates the setting of the 

node in the layer. The discussion presumes in 

multidimensional conditions and results. 

3.2.3. The Neural Network Representation 

The 1th layer in fig 1 is a layer of input variations. First 

layer acts as a data handler, and it is used to transfer its 

inputting to the similar nodes in the 2th layer. 

1 1otp
i i

ipt=  
1 *

i
ipt

i
x=                  (8) 

The 2th Layer is input linguistic value node layer. The 

second layer calculates the membership of the inputting 
*

i
x  to 

the fuzzy sets Pi. 

2 2

, i,j
otp exp(ipt )

i j
=                     (9) 
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1 ipt 2

i,j2

i,j ipt 2

,

(otp )
ipt

( )

i

i j

φ
γ

−
= −                 (10) 

In which the subscript (i, j) means the jth linguistic value 

about the ith input. Assuming the node (i, j) is in the 2th layer, 
ipt

,i j
φ  and 

ipt

,i j
γ  are the parameters of the jth value of the ith 

input variable. 

In this layer, the input membership functions parameters are 

dateless 

2 2

, ,

ipt 2 ipt 2

, , , ,

otp ipt
. .

ipt otp

i j i j

i j i j i j i j

E E

φ φ
∂ ∂∂ ∂=

∂ ∂ ∂ ∂
            (11) 

In which 

2

,

ipt

,

ipt1 2
2(otp )ipt ,

 
ipt 3

( )
,

i j

i j

i i j

i j

φ

γ γ

−∂
=

∂
 

2 2

, ,

ipt 2 ipt 2

, , , ,

ipt otp
. .     

otp ipt

i j i j

i j i j i j i j

E E

γ
∂ ∂∂ ∂=

∂ ∂ ∂ ∂
 

2

,

ipt

,

ipt1 2
2(otp )ipt ,

          
ipt 3

( )
,

i j

i j

i i j

i j

φ

φ γ

−∂
=

∂
 

2

, 2

,2

,

otp
exp(ipt )  

ipt

i j

i j

i j

∂
=

∂
 

3 3

2

,2 2
( , ) ,( , ) ( , ), ,

ipt ipt
otp         

otp otp∈Γ ≠

∂
= =

∂ ∏
k

k k

v

v v i ji j i j

φ
φ φ

 

'
( , )

3

32 2

, ,

ipt
.     

otp otp
i j

k k

ki j i j

E δ
∈Γ

∂∂ =
∂ ∂∑  

In the 3th layer, every node can compute firing strength of 

every rule in the 3th layer. 

3 3otp iptk k=  ∏
Γ∈

=
kji

jik

),(

2

),(

3 otpipt
           (12) 

In which 
k

Γ  is the gathering of nodes (i, j). And the second 

layer stands for linguistic values which is used in the previous 

part of rule k. 

In this layer, there exists no appropriate parameter. The 

error which spreads to the preceding layer is counted as 

   
ipt

and   1
ipt

  ,. 
3

4

3

3
43

3 k

k

k

k

k
kkk

otp

otp ψψξξ =
∂
∂=

∂
∂=      (13) 

Where 

4 3

3 4

3 3

ipt
. .

ipt

k k

k k

k k

otp

otp
ξ ξ∂ ∂

=
∂ ∂

 

3.2.4. Training the Neuro-Fuzzy Decision Model 

Assuming the transformation above, the model can be 

corrected by applying regular skills from the nervous network. 

The nodes in the conventional NN structures accept inputting 

from nodes at the procedure layer and often apply a logic 

activation role to count their outputting. The inputting and 

outputting functions applied in the uncertain determination 

making representation, which are different from those applied 

in traditional NN models. The resultant connectionist model 

offers a handy framework for both showing the concurrent 

results and working of rules. It describes the devised selection 

model, and training (applying an introduction of the general 

delta rule). In order to train the network, a fault function needs 

to be spelled out, such as 

* 2

n 1 1

1
( ( ) ( ))

2 i

N m

i

i

E y n y n
= =

= −∑∑                (14) 

In which 
* ( )
i

y n  is the model outputting for inspection n, 

where n is the observations number, and m is the model 

outputs number. 

Therefore, the aim in training stage is to recognize values of 

k
ψ , φ  and γ  which curtail the fault E. During training, 

there is difference between model outputting and observations 

and the difference is computed and the resulting fault is spread 

from the outputting layer to the hidden, until it gets to the 

inputting layer. The learning algorithmic rule renews the 

parameter values,
k

ψ , φ  and γ  by the formulation. 

, ,

,

, ,

,

( 1) ( )

( 1) ( )

( 1) ( )

k k

k

i j i j

i j

i j i j

i j

E
i i

E
i i

E
i i

ψ ψ η
ψ

φ φ η
φ

γ γ η
γ

∂+ = + −
∂

∂+ = + −
∂

∂+ = + −
∂

（ ）

（ ）

（ ）

              (15) 

In which i indicates the training repetition and η  is the rate 

of learning. 

3.2.5. Evolution 

The standardization framework shown above can be 

summarized to consist of correction which is applied to stand 

the inputting perceptions too. But, a severe problem in the use 

of nervous networks to complicated problems is linked to the 

network’s size, i.e., to the amount of the network parameters 

which will be identified. A lot of parameters may lead to 

network memorizing but not studying. Network record shows 

that the network fit to the data well, may not really seize the 

mechanism that depicts the system’s behavior that produces 

the data set. In consequence, even though the model presents a 

proper performance when is utilized to train data set, and does 

not perform well certainly with other data sets.  



11 Wencheng Zuo et al.:  A Load Balancing Optimization Algorithm for Context-Aware Wireless  

Sensor Networks Based on Fuzzy Neural Networks 

4. Numerical Experiment 

4.1. Problem Description 

Here a numerical example was exploited to validate the 

proposed model. In this case, wireless sensor networks are 

used in the information collection and control of greenhouse 

environment. Hence a single greenhouse can become a 

wireless sensor network measurement and control area, and 

the wireless networks composed of different sensor nodes take 

advantages over a simple sensor in the measurement of soil 

moisture, soil composition, pH value, precipitation, 

temperature, air humidity, air pressure, light intensity, and 

CO2 concentration. And actuator fan, motor, valves and other 

low voltage low current, and the biological information 

acquisition method are all applied to the wireless sensor nodes, 

providing us with a scientific basis for the precise control of 

greenhouse. Additionally, the sensor, the greenhouse 

standardization, the implementation data, and the gateway can 

work together to achieve an integrated control for different 

network devices. 

_ _
_ _

car car c Acc C cen C t
V c Acc C centr C tς ς ς ς ς∆ ∆= + ∆ + + + ∆  

Grounded on the designs above, the rule base includes a 

sum of twenty rules. Some rules represent the differentia in 

time of travel between network notes, some rules represent the 

differentia in expense between the two ways, other rules 

represents the time of network access.  

So, the all number of parameters to be corrected consists of 

fifteen rule weights, fifteen pairs of parameters and of the 

membership functions which represents the uncertain sets that 

is applied in the premises of rule and the membership 

functions that represents the labels which is used in the rule 

result and ten more pairs of parameters. Assumed that the 

specimen includes only 355 observations, so as to prevent 

overfitting/memorizing, solely the twenty rule weights were 

corrected by applying the arranged framework. 

4.2. Results and Analysis 

The parameters’ values about the linguistic labels were 

decided all alone. The parameters φ  and γ  of the rule 

premises’ labels were determined by dividing the inputting 

and outputting spaces into a prearranged number of regions 

and meditating φ  to be each region’s center and γ  to attach 

importance that permits a wise overlapping between continual 

fuzzy sets. Fig. 2 tally up the fuzzy sets above which are used 

in the test, while  

The linguistic labels were linked, and they seemed on a 

range from 0 to 1. 0 shows no preference and 1 intense 

preference. Fig. 3 shows the load parameters of membership 

functions for rule premises (attributes). 

 
Fig. 3. Load parameters of membership functions for rule premises (attributes). 

The performance of uncertain decision making model was 

illustrated as the one that was with the conceivable choice rule 

and optimal weights. A dualistic was reckoned with the under 

after requirement. And it was contrasted to a utility 

maximization model which was based on the formulation 

above. 

_ _car car t Acc C cV q t Acc C cς ς ς∆ ∆= + ∆ + + ∆  

All the variations are defined earlier. TRN stands the 

transfers’ number for the option of networking. Fig. 3 sums up 

the estimation’s results. 

The load performance, with respect to accurate predictions’ 

number, is somewhat worse than the fuzzy-based model’s 

performance. The load foresaw 222 observations contrasting 

to the 264 that was rightly with optimum weights, as shown in 

fig. 4, with soil moisture, pH value, temperature, air humidity, 

light intensity, and CO2 concentration. 
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Fig. 4. Load statistics that is in parenthesis L(0)=62.9. 

Fig. 5 sums up the Load statistics that is in parenthesis 

L(0)=62.9 from different approaches to the proposed model 

and contrasts it to the consistent consequence which is from 

the uncertain model with best weights. The consequences are 

in favor of the conclusion above. Moreover, with respect to the 

personal estimation consequences (evaluation at each 

repetition of the approach of cross-validation and leaving one), 

the uncertain model shows a more stable behavior.  

_ _rail Acc R TRNV Acc R TRNς ς= +  

In the Fig. 5, fan represents the fan motor, water pump can 

provides water for green house, and light for illumination. 

 
Fig. 5. The approach results of cross-validation and leaving one. 

The application of proposed model as a way of good of 

fitting could be deceptive. The Fig .6 is grounded on the 

application of the intended users number, E(Nij), who truly 

employed alternative i but was dispensed by the model to j 

alternative, as shown in Fig. 5.  

If the center value really caught the under selection 

mechanism and individuals preferences, then the individual 

attributes’ contribution should be tiny. So, the hypothesis is 

verified by 
_ _ 0car t Acc R c Acc C TRNς ς ς ς ς ς∆ ∆= = = = = = . In 

which Pn(j) is the possibility that individual n picks the 

alternative jth, and yin =1 if i is chosen else yin =0. 

Fig.6 below sums up the consequence applying this 

performance measure. 

_ _rail Acc R TRNV Acc R TRNς ς= +  

Now to pay our attentiveness to the explanation of the 

center of the preference set to be as a method of the all 

attractiveness of the consistent alternative. In order to verify 

this hypothesis, the following test will be performed. A logic 

model is corrected. Systematic utilities of the model consist of  

all the attributes which is applied above with the adding of the 

alternative’s corresponding center. 

The Fig. 6 shows the learning errors of fuzzy neural 

networks, where fan represents the fan motor, water pump 

can provides water for green house, and light for illumination. 

The uncertain model which is with the optimal weights 

displays better than other models still. 
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Fig. 6. Learning errors of fuzzy neural networks. 

In order to verify the hypothesis, the statistic -2(L( Rς ) – 

L( uς )) is applied. bR are the reckoned modulus of the finite 

model. The finite model links to the possible choice rule with 

consistent center. And uς  is the reckoned module of the 

unbounded neural networks with the complete set of 

parameters or attributes.  

Fig. 7 sums up the comparison of different neural networks. 

The data above is v
2 

distributed with u RK K K= − , in which 

KR and Ku. are the freedom of parameters in the model. The 

crucial value is 263, and the 92% level for six degrees is 

freedom. Therefore, the invalid hypothesis is not refused at the 

92%. 
 

 
Fig. 7. Comparison of different neural networks. 

It is clear that the statistical tests’ results are in favor of the 

explanation that the preference set center is a measure all 

attractiveness of the consistent alternative (in the condition of 

optimum weights). But the conclusions above are not right if 

the uncertain model with weights alike to one is applied. In 

this condition, the likelihood in the extensive model, is 221.1. 

The result of fuzzy weighted neural networks is 210.5 better 

than critical 2ϑ  of 210.6 in crisp neural networks. And the 

invalid hypothesis is dumped for optimal scheme of fuzzy 

weighted neural networks. 

4.3. Further Discussion 

In this part, several model’s performance are compared 

which is developed in section 3, gaining conclusions according 

to the weights importance, assessing the conclusive choice rules 

and probabilistic impact, and making a comparison between 

the proposed model and traditional choice model in reference 8. 

The comparison of learning errors by applying the procedure is 

described in Fig.8. 

Fig. 8 sums up the consequences from the use of the model 

applying weights similar to one and best weights separately. In 

both conditions, the rule base is unchanged. The matrix of rule 

is performed better in the condition of optimum weights. The 

model is with rule weights similar to one showing poorly in 

terms of the network alternative.  
 



 American Journal of Neural Networks and Applications 2016; 2(2): 6-16 14 

 

 

 
Fig. 8. Comparison of learning errors. 

The connected total mistake is high, too. The model is with 

the corrected rule weights increasing its performance by 

paying more attention to the network mode. The rightly 

predicted network choices raised from 14.2% in the condition 

of weights identical to one to 61.1% with optimum weights. 

These consequences clearly show the significance of allotting 

weights to the rules. Furthermore, the error value before and 

after correction, shows the lack of applying the number of 

proper prophecy as a standard in the generation of rule.  

The probabilistic choice rule is also enlarged by making 

definition of the utility, Uipt, of individual n and an alternative 

i as 

_ 0ipt centr i i iptU centroidς ς θ= + +  

The motive for this method is the understanding that both 

type of the fuzzy fallibility of the behavior of human in 

modeling choice behavior must be taken into consideration. 

The first type is linked to ambiguity in the awareness and 

treating of information that is human reasoning feature. In the 

model shown here this type of ambiguity is seized by the 

uncertain framework. The second type of ambiguity is linked 

to arbitrariness in action and the tastes changeability and 

individuals’ experiences and is gained by the fault term. 

In the Fig. 9, the max loads of several references 2, 8, 16 

and proposed model are compared in Fig 9 form soil 

moisture, pH value, temperature, air humidity, light 

intensity, and CO2 concentration. 

 
Fig. 9. Max load comparison of different models. 
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Apparently the proposed model gets the most max load 

capability in all 4 models. The reckoned models for the center 

of mass homologous to weights identical to one and optimum 

weights help to sum up load decision. To assess and make a 

comparison of the load performance, it is preferable to apply 

one of the sample subset into the design set, and take the 

remainder as the test set.  

For practice, the proposed approach, for a specimen size of 

observation N, is used by testing the model N times. And each 

time a specimen of N -1 observation applies. The ith 

observation did not consist of the specimen, and the tested 

model is then applied to train the neural networks to make the 

load balance consistent to the ith observation or the ith 

estimation. The goodness of fit is counted from the 

consequences of the training process of the neural networks, 

and on the observation, all sensor data was not applied for its 

test.  

Additionally, the consequence from the use of the proposed 

approach verifies the conclusions come up earlier. The model 

which is with the optimum weights is steadier and shows 

better load balancing performance, particularly, in terms of 

the alternative with the smaller share of load capability. 

Moreover, probabilistic choice rule is better than the 

deterministic one, from both an ideological and a performance 

viewpoint. 

5. Conclusion 

The article extended a load balancing optimization 

algorithm for context-aware wireless sensor networks based 

on fuzzy neural networks. The model’s performance was 

verified by a study of a mode choice case. The consequence of 

the case study is in favor of the presented hypotheses. But the 

consequence of the utilization shown in this article illustrates 

that the approach has the potential to capture stable state and 

long steady behavior. The approach application to actual 

matters is ungainly at present and many problems have to be 

resolved, though the consequences are bright and approximate 

reasoning framework has demonstrated excellent flexibility in 

carrying on the decision process. Moreover, perform 

evaluation and hypothesis testing lack systematic methods, 

which is in need of further investigation. 

In future work, the amount of parameters to be regulated is 

larger and larger, and it will increase with the amount of 

alternatives. This may result in over fit, except that proper data 

sets are available. Additionally, more fuzzy operators’ 

behavioral interpretation will be used in the composition stage 

and approximate reasoning, more complete model and 

approach will be chosen, and the comparison of membership 

functions and different rules will be made for deeper study. 
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