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Abstract: To date the prospects for using the accumulated over many years mathematical and software for the modeling of 

telecommunications with the Poisson input flow are under a big question. The matter is that a new fractal queuing theory is 

already on the threshhold. This article formulates and solves the problem of application of a queuing system model with a 

Poisson incoming flow for the purposes of server modeling described by QS with self-similar incoming traffic of the "fractal 

Brownian motion" type (according to Norros). Based on the results of the morphological analysis, the Norros model was 

decomposed into Poisson components connected by a scalable recurrence scheme. The variance of the number of packets in 

the server, raised to the power determined by the Hurst parameter acts as the similarity coefficient of fractal and Poisson QSs. 

The method for rescaling Poisson solutions into fractal solutions was constructed on the basis of the similarity coefficient. 

According to this method in order to find the fractal delay of access, the Poisson delay should be multiplied by the similarity 

coefficient, and to estimate the probability of packet loss, it is necessary to extract a root of degree equal to the similarity 

coefficient from classical exponential losses. The scope of the re-scaling method focuses on the pre-project stages of creating 

telecommunications, where there is no need for high accuracy of simulation results. 

Keywords: Self-Similarity, Norros Model, Hurst Parameter, Similarity Coefficient, Recurrence Model,  

Two-Parameter Exponential Distribution, Access Delay, Loss Probability 

 

1. Introduction 

Despite the immense popularity of researching the self-

similar properties of packet traffic and the duration (more 

than two decades) of its study, we have to admit that many 

questions and tasks are not yet detailed to the level of applied 

engineering [1, 2]. This was the reason for the shortage of 

common universally accepted methods for modeling, 

calculating and predicting QoS of self-similar traffic, simple 

enough, accurate and convenient to use. In particular, for the 

preparation of business plans and investment projects of 

infocommunications on an IP platform, express methods and 

compact analytical models for servicing self-similar traffic 

are needed. 

Many modeling tools (MT) of infocommunications, which 

were initially oriented to the Poisson incoming flow, are of 

little use in the case of heavy traffic. Therefore, the task of 

renovating the Poisson-oriented mathematical and software 

MT, developed for many years under the conditions of non-

Poisson, in a particular case self-similar traffic, remains 

topical. 

In this paper, we formulate the problem of restructuring 

queueing system with self-similar traffic (in the treatment of 

Norros [3]) for separation of transparent components with a 

Poisson incoming flow [4]. 

The relevance of the issues covered in this article from this 

theoretical point of view is dictated by a large or infinite 

variance of self-similar random processes, but with a 
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practical need for simple analytical methods for estimating 

QoS indicators of infocommunications on an IP platform in a 

self-similar traffic environment. 

2. Problem Definition 

The known formula for the average waiting time of the 

packet in the queue to the server simulated by the

/ /1/fB G ∞ QS for an arbitrary ( G ) law for the distribution 

of the servicing time of the self-similar incoming ( fB ) 

traffic of the "Fractal Brownian Motion" (FBM) [3, 5] is 

(1 )
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where: H  − Hurst index, which characterizes the degree of 

self-similarity of the incoming flow; 
22 / 1d C

b
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= +  − factor, determined by the coefficient C
b  of 

variation of service time;  

ρ λV / C λ h= = − server utilization factor, as a function 

of the λ  intensity of the incoming flow, the average packet 

processing time h  (transmission), average packet volume V  

and bit rate C , 1ρ< . 

In addition to ( 0,5 1H< < ) self-similar traffic, formula (1) 

for 0,5H = generalizes the well-known Poisson models of 

mean waiting time in the buffer [4], corresponding to:  

− for C
b = 0 − QS / /1/M D ∞ with deterministic service; 

− for C
b = 1 − QS / /1/M M ∞  with exponential service ; 

− for an arbitrary C
b − QS / /1/M G ∞  type. 

Required: 

− to transform the packet delay formula (1) into terms and 

notations of classical QS with a Poisson ( )M incoming 

stream;  

− to construct a similar Poisson approximation for 

calculating the probability of loss of a fractal-type packet. 

3. Related Work 

Numerous approaches to the estimation of QoS indicators 

of a network of self-similar traffic are known [1, 6]. The 

authors of this article adhere to the approach [5, 7], based on 

the preservation of earlier investments in queuing theory by 

adapting traditional modeling methods to the conditions of 

self-similar traffic. By making minor modifications, it 

becomes possible to reuse the methods and tools of 

telecommunication modeling that were developed in the past 

and with which the experience has been accumulated. 

Innovative ideas for solving the problem of high-quality 

servicing of "heavy" traffic should be expected from the 

fractal queuing theory, [1, 2]. However, the developed 

analytical fractal models (statistical and integro-differential) 

are still far from the engineering level of detailing, and the 

corresponding simulation models still do not allow solving 

the problem of slow convergence of estimates of random 

variables with a large variance. 

In the problems of modeling the decreasing complexity, no 

special problems are visible, because generalized distribution 

functions of random variables (for example, gamma 

distribution, Erlang distribution, Weibull distribution and 

others [8]), if necessary, are easily transformed into a simpler, 

classical exponential distribution. The situation is more 

complicated with the solution of inverse problems, when it is 

necessary to simulate the process of servicing self-similar 

traffic using Poisson's tools. 

The prototype of the approach [5, 7] can be the method [9] 

of equivalent replacements used by telephone engineers for 

an approximate transition from queuing systems with 

waiting, systems with repeated calls or systems with bypass 

directions and overload to a simple, well-studied the 1-st 

Erlang formula. 

A similar method for transforming QSs with self-similar 

traffic into QS with fractal traffic can be constructed on the 

principle of similarity of systems [10], which assumes the 

reduction of the initial problem of unorganized complexity to 

the problem of organized simplicity. For practice, this is 

identified with the integration of the new MT from the 

existing set of simpler, well-known and well-developed 

software subsystems with the possibility of subsequent 

rescaling of the resulting solution under the initial conditions 

of the fractal modeling problem. 

As the operational model, Little's formula [4] is used in 

this paper to link streaming, capacitive and time indicators 

and is a paradigm of the family of models that is valid for 

any QS, any nature of the flow of applications, any 

distribution of service time and any service discipline. A key 

element of the Little's model is the Norros model [3] for 

estimating the average queue length. 

4. Recurrent Delay Model 

4.1. Features of the Chosen Approach 

A fractal (self-similar) process is usually understood as a 

random process whose statistical characteristics manifest the 

properties of scaling, long-term dependence, and slowly 

decreasing dispersion [2].  

The specifics of fractal structures [1, 2] are known: 

− invariance with respect to the change in scale and size, 

which is an inherent property of self-similarity; 

− fractional, not integer dimension;  

− the presence of the word fractal in addition to the value 

"fractal" ("fractional"), as well as the values "recursive";  

− the possibility of mathematical formalization of scale 

invariance (scaling) by power laws with fractional exponents, 

which are known as "generators" of self-similarity;  

− presence of fragments, like an entire figure - in the 

structural plan. 

Practical implementation of the chosen approach will consist 

in the composition of functions of new QoS-models from the 

available set of simpler Poisson models, and the simulation 

technology is reduced to the rescaling of Poisson solutions. 
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4.2. Integer Case 

Let us analyze the formula for the average length of the 

queue, which, according to Little 

L Wλ= ⋅                                          (2) 

We introduce the auxiliary index series 

1,2,3,..., ,...n                                      (3) 

and for each index of the sequence (3), proceeding from the 

formula (1) (for the sake of simplicity we choose the 

exponential service, 1d = ), by induction we calculate Table 1. 
Table 1. Morphological analysis of the function (1) for integer values of exponents a and b . 

Index n  
Exponents 

Hurst parameter H  Average queue length 
a  b  

1 2 1 0,5 2 / (1 )
1

L ρ ρ= −  

2 3 3 0,75 3 3/(1 )
2

L ρ ρ= −  

3 4 5 0,833.. 4 5/ (1 )
3

L ρ ρ= −  

… … … … … 

n  1n +  2 1n −  1 0,5/ n−  1 2 1/ (1 )n nL
n

ρ ρ+ −= −  

 

Table 1 shows that the function (1) is endowed with a 

recurrent structure with the following properties: 

− for the selected (in the 4th column) values of the Hurst 

parameter, the average queue lengths 1
L , 2

L ,…. L
n , (in the 5th 

column) form a geometric progression, i.e. a numerical 

sequence, each of whose numbers is equal to the previous 

one, multiplied by a constant for a given progression number
q , which is the denominator of the geometric progression, 

1
1

nL L q
n

−= ⋅ ;                                       (4) 

− the first member of the progression 

2 / (1 )
1

L ρ ρ= −                                   (5) 

has a simple physical meaning, namely the average queue 

length in the QS buffer / /1/M M ∞ [4];  

− denominator of progression 

2(1 )
q D

ρ
ρ

= =
−

                                (6) 

is the variance D [4] of the number of packets in the QS 

/ /1/M M ∞ ; 

− denominator of the progression to the power of ( 1)n−  

1 : :
/ /1 / /1 1

nq m L L L L
fB M M M n

− = = =           (7) 

is a similarity coefficient m , i.e. multiplicative factor, which 

is the ratio of the average queue lengths of the fractal QS 

/ /1/fB M ∞  and the Poisson QS / /1/M M ∞ ; 

− the square of the n -th member of the geometric 

sequence is equal to the product of the adjacent ( 1)n − -th and 

( 1)n+ -th members. 

Proceeding from formulas (2) and (4), the average delay 

(1) of access to the server is represented as the n -th 

(common) geometric progression member 

1
1

nW W q
n

−= ⋅ , 
1

1,2,3...
2(1 )

n
H

= =
− ,           (8) 

the first member of which 1
1

W h ρ / ( ρ)= ⋅ −  corresponds to the 

average waiting time of the packet in the QS buffer

/ /1/M M ∞ .  

The index n is derived from the Hurst parameter and is 

defined as the nearest integer from (8). 

Comparing the original fractional-power function (1) with 

its recurrence analog (8), we can verify that they are 

completely identical for integer values 1,2,3...n =  

Example 1. Given: server load ρ = 0.75; exponential ( d = 

1) maintenance; average packet processing time h = 1 ms; 

self-similar incoming traffic with Hurst parameter H = 0.75. 

It is required to evaluate QoS-indicators using the recurrence 

model described above. 

Consistently is determined the following: 

1) serial number n  (row index) 
1 1

2
2(1 ) 2(1 0,75)

n
H

= = =
− −  ; 

2) the first member of the progression 

1

2 / (1 ) 0, 75 0, 75 : (1 0, 75) 2, 25L ρ ρ= − = ⋅ − = ; 

3) denominator of progression 
0,75

12
2 (1 0,75)(1 0,75)(1 )

q
ρ

ρ
= = =

− −−
; 

4) similarity factor 1 2 112 12nm q − −= = = ; 

5) average queue length 1 2 12, 25 12 27
2 1

nL L q − −= ⋅ = ⋅ = . 

In conclusion, according to Little's formulas [4], there are:  

6) the average number of packets in the systems: 

2 2 0, 75 27 27,75N ρ L= + = + =  (QS / /1/fB M ∞ ), 

1 1 0,75 2, 25 3N ρ L= + = + =  (QS / / 1 /M M ∞ ), 

7) average access delay 

2 2 2/ / 1 27 / 0,75 36W L h Lλ ρ= = ⋅ = ⋅ =  ms (QS / /1/fB M ∞ ), 

Engineering interpretation of calculation results: − the first member 2,25
1

L = of the progression corresponds 
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to the average length of the QS queue / /1 /M M ∞ with a 

Poisson incoming flow, for which H = 0.5; 

− the denominator q  of the progression mathematically 

corresponds to the growth rate of the progression, and 

physically the variance 12D q= = of the number of packets in 

the QS / /1/M M ∞  with the Poisson incoming flow; 

− the average queue length 1
L of the QS queue with the 

Poisson incoming flow (QS / / 1 /M M ∞ , H = 0.5) is 

slightly larger than 2 packets, and the standard deviation of 

the number of packets in the system 12 3,46Dσ = = ≈ ; 

− for the accepted conditions, the average queue length of 

the QS queue with the self-similar (H= 0.75) incoming flow 

exceeds that for Poisson traffic (H = 0.5) by more than an 

order of magnitude; 

− since the similarity factor is 12m= , then for an 

equivalent replacement of the QS buffer / /1/fB M ∞  (with 

self-similar incoming traffic), 12 QS buffers / /1/M M ∞  

with Poisson traffic are required; 

− by capacity (the number of packets being processed + 

waiting), the QS / /1/fB М ∞  exceeds the QS / / 1 /M М ∞  by 

almost an order of magnitude ( 2 1/ 27,75 : 3N N = 9,25)= ; 

− other things being equal, self-similar traffic proves to be 

more resource-intensive and less qualitatively served in 

comparison with Poisson traffic. Therefore, to maintain the 

quality of service of self-similar incoming traffic 

corresponding to Poisson, it is required to increase the 

server's performance by more than an order of magnitude. 

Thus, the fractal mean delay of access to the server can be 

represented as the product of Poisson components: 

1
12

nW W h N D −= = ⋅ ⋅ ,                         (9) 

the average number of packets in the system by the variance 

of the number of packets with the additional presence of the 

average processing time h and the Hurst parameter H. 

4.3. The Similarity Coefficient 

As follows from (7), the similarity coefficient of fractal (1) 

and recurrent (8) or (9) models:  

− is mathematically represented as a power function of the 

utilization factor and the Hurst parameter H  

1nm D −=
1

2(1 )

n
ρ
ρ

 
 
 
 

−
=

−
, 

1

2(1 )
n

H
=

− , 0,5 1H≤ < ;  (10) 

− physically represents the variance D of the number of 

packets in the network, ( 1n − )-fold multiplied in accordance 

with a given value of the parameter H ;  

− in the operational plan is the coefficient of 

multiplying the average length of the "exponential" queue 

1
L up to the size of the queue L

n of Norros QS

/ /1/fB M ∞ , 1
L m L
n

= ⋅ ; 

− in accordance with Little is true (correct) and for the 

average waiting time for the packet, 1
W m W

n
= ⋅  ;  

− scale-invariant ( 1m = ) with respect to the Hurst 

parameter when loading at the point of the "golden" section 
* 0,382ρ ≈ ;  

− as will be shown below, it is correct for any real values 

of the Hurst H  parameter and the progression n  index ; 

− it is graphically represented by a family of curves 

(Figure 1) in the range of the load change of 40% ≤ ρ ≤ 95% 

of the server for different values of the Hurst parameter,
0,5H ≥ . 

 

Figure 1. The similarity coefficient, as a function ( , )m H ρ  of the Hurst 

parameter and the load. 

Analysis of the family of curves (Figure 1) shows that the 

similarity coefficient m : 

− for Poisson traffic by definition, is 1 (see the lower 

horizontal line); 

− for self-similar traffic (see area H > 0.5 and 0,4ρ ≥ ) is 

always greater than 1;  

− being a function ( , )m H ρ , it has a threshold character. 

Up to some threshold value *ρ  this function is relatively 

constant, but then it increases without limit. If necessary, 

the threshold value ρ* can be determined from equation 

(10); 

− shows the multiplicative effect of the growth of the 

queue, due to the non-linear influence of factors (Hurst 

parameter and load) on packet delay and queue. 

Table 2. Coefficient of similarity m  depending on load and degree of self-similarity. 

Server load ρ  
The value of the similarity coefficient m  for the Hurst parameter Н 

The average length 1L of the Poisson queue 
0,5 0,75 0,8333… 0,875 

0,6 
1 

3,75 14,1 52,7 0,9 

0,8 20 4.102 8.103 3,2 

 
Table 2 shows that knowing the average length 1

L  of the 

"exponential" ("Poisson") queue and the similarity coefficient

m , it is easy to find the average buffer capacity L
n  under 

conditions of self-similar traffic. 
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Example 2. Suppose given: server load ρ = 0,8; the value 

of the Hearst parameter obtained by apreliminary modeling is
H = 0.875; calculated by the formula (10), the similarity 

factor m  = 8000. To find the buffer capacity L
n for self-

similar traffic, it is sufficient to rescale the "Poisson" solution 

by multiplying L
n = 1

L . m  = 3,2.8000 = 25600 (packets). 

The presence of pure self-similar traffic in the multi-flow 

makes it difficult to select a work point (Figure 1). For 

example, if we limit the maximum allowable value m to 

tenfold ( m = 10) by exceeding the "Poisson" length of the 

queue, then for H = 0.7 the system can be loaded no more 

than ρ* ≤ 84%, for H = 0.8 no more than 63%, for H = 0.9 

the allowable load threshold is lowered to 48%. Exceeding 

this threshold ρ* will lead to an uncontrolled increase in the 

length of the queue. 

The recurrent delay model (8), (9) is characterized by 

power law dependence, it is recursive computationally, it is 

invariant with respect to dimension n , it is endowed with the 

similarity property with the similarity coefficient m , but it 

cannot be recognized as a "full" fractal model, because it is 

built only for integer index values n . 

4.4. The Case of Fractional Indices 

Interpolation of the integer recurrence model (8), (9) in the 

case of a fractional index n implies the presence in the 

numerical sequence Wn , in addition to members with integer 

indices , , ..
1 2 3

W W W  as well as delays with a fractional index, 

for example, 1,9W  and 4,144W . 

By a fractional geometric progression we mean such a 

sequence of numbers (members of the progression) in which 

each successive number is obtained from the previous one by 

multiplying by the denominator ɶq  of the progression, which 

is the denominator of the integer progression q raised to the 

power 1/τ , 

1/ɶq q τ= ,                                    (11) 

where: 1/τ  is the step of crushing, 1τ > . 

When crushing, the interval between adjacent points of the 

numerical axis is reduced by a factor of τ . To n  integer 

points, intermediate points ( 1) (1 ) /n τ τ− ⋅ −  are added, with a 

fractional index. 

For example, if you set step 1/τ  = 0,001 to 5 integer 

points, intermediate points (5 1)(1 0,001) / 0,001 3996− − =  will 

be added, and the denominator of the integer progression, 

initially equal, say, q  = 2, will decrease to the value ɶq  = 

1,000693 for a fractional progression. With decreasing pitch 

1/τ , the density of the covering of the segment [0,5... 1) of 

the numerical axis Н increases, the interpolation error → 0. 

Table 3, obtained for exponential service ( d = 1), average 

packet processing time h  = 1 ms, server load ρ = 0.6 and 

changing incoming self-similar traffic ( H – var) reflects the 

behavior of the recurrence model parameters for integer and 

fractional index values n  from the interval (1-2,01) with a 

step of crushing 1/τ  = 0,01. 

Table 3. Coefficient m  of similarity and average delay Wn , depending on fractional index n . 

Hurst parameter H  Index n Coefficient of similarity  Average access delay 
n

W  

0,5 1 1 1,5 

0,50495 1,01 1,01330 1,52 

0,50980 1,02 1,02678 1,54 

....... .... ....... .... 

0,74747 1,98 3,65216 5,48 

0,74874 1,99 3,70076 5,55 

0,75 2 3,75 5,62 

0,75124 2,01 3,79989 5,7 

Note: The first line corresponds to a Poisson flow, the delay of which was calculated by the formula 5,1)6,01/(6,01)1/(
1

=−⋅=−⋅= ρρhW

 
ms (QS ∞/1//MM ). 

The penultimate line (H= 0.75) corresponds to the integer case ( n = 2). The remaining values of Table. 3 correspond to a fractional "non-Poisson" problem. 

The "fractional" calculation algorithm starts with the 

Hearst parameter H set by the conditions. Next, in sequence, 

the fractional index n~ , the similarity coefficient m , and the 

average access delay nW are calculated as the n~-th member 

of a fractional geometric progression. According to the 

obtained results, based on the known formulas of Little and 

Kleinrock, it is easy to define: the average queue length

nWL ⋅λ= , the average time nWhT += of the packet stay in 

the server, and the average number of packets in the server 

TN ⋅λ=ˆ . 

Example 3. Under the conditions of Table. 3 the 

"fractional" algorithm takes the form:  

1) the value of the Hurst parameter is set, for example, H

= 0.74874; 

2) the corresponding value of the index n~  is calculated 

taking into account the fragmentation of the interval 

)74874,01(2

100

)1(2

~

−⋅
=

−⋅
=

H
n

τ
≈199; 

3) there is a denominator of the integer progression (in 

fact, the variance) 

)6,01()6,01(

6,0

2)1( −⋅−
=

−
=

ρ
ρ

q  = 3,75; 

4) there is a denominator of a fractional progression 

01,075,3/1~ =τ=qq  = 1,0133; 

5) the similarity coefficient is determined 

)100199(
0133,1

)~(~ −=−= τn
qm ≈ 3,70; 
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6) the average access delay is 5,17,31 ⋅=⋅= WmnW ≈5,55 

ms. 

It should be noted that the value 

=−−=−= 1)1/(5,0
75,3

1 Hn
qm 3,7 is the same for both integer 

and fractional cases, which indicates the invariance of the 

similarity coefficient. 

The choice of the step size 1/τ of the fragmentation in the 

delay nW computation problem under consideration is not a 

critical problem and can in general be excluded from 

consideration due to the invariance of the similarity 

coefficient m with respect to the step 1/τ  

( ) τττ
τ

)1(

)1(

1 −=

−

=−=






n

q

n

q
n

qm
.               (12) 

Indeed, when the interval between integer points is 

fragmented (the step 1/τ decreases), the numerator τ⋅− )1(n  

and denominator τ of the exponent (12) change in different 

directions and, mutually compensating each other, leave the 

value of the similarity coefficient m  at the same level. 

From this it follows that the integral recursive model (8, 

(9) turns out to be correct also for the case of a fractional 

index n , which allows us to understand index n  not only as 

integer values, but also as fractional ones. 

In practical terms, finding the "fractal" access delay for the 

initial data of the previous example for a given value of the 

Hurst parameter, for example, H = 0.74874, will be reduced 

to a preliminary finding of the average "exponential" delay 

( 1
W = 1.5 ms), variance ( q = 3.75) and their subsequent 

multiplication taking into account the exponent ( 1−n ) 

55,5
198997,1

75,35,1
1

1
≈−⋅=−⋅= n

qW
n

W  ms,     (13) 

where 98997,1)74874,01(:5.0)1/(5,0 =−=−= Hn  is the 

fractional index. 

5. Approximation of Probability of Loss 

5.1. Choice of Distribution Law 

To estimate the probability of packet loss, in practice it is 

customary to use the complementary distribution function 

(CDF) )(xF  of the random variable x  [8]. A valid choice of 

the distribution law (distribution function) of the server 

access delay for the purposes of analytical modeling of server 

networks is a complex independent task. 

It is known that the largest volume of information of the 

first approximation can be obtained from the modeling 

results of design situations on exponential models, which are 

characterized by: compactness, flexibility, reproducibility, 

simplicity of machining, the need to collect a small amount 

of initial primary statistics, high accuracy (while observing 

the accepted exponential assumptions), the possibility of 

obtaining fairly simple analytical results in an explicit form. 

It is generally accepted that the possibilities of one-

parameter probabilistic exponential models with a simple 

Poisson flow are limited to short-term correlation 

dependencies and are unsuitable for modeling of heavy 

traffic [1, 2]. 

Less than can help the heavy-tailed distributions, such as 

the distribution of Pareto or Weibull. At the pre-project stage 

of creating telecommunications, sufficient statistical data has 

not yet been accumulated and a problem of a well-founded 

task (choice, assignment) of the numerical value of the form 

parameter arises. 

Desirable mathematical properties is to the distribution 

function of a two-parameter exponential distribution (TpED) 

[11, 12], which unites a wide family of exponential 

distributions of the form 

)/(exp1)(
2e

TxxF α−−= ,                       (14) 

where: T −scale parameter; 
α − shape parameter, which for heavy-tailed distributions, 

α > 1. 

The classical exponential one-parameter distribution (at α  

= 1) [8] turns out to be a TpED special case (14) 

)/(exp1)(
e

TxxF −−=                        (15) 

Interpretation of the parameter α  is diverse. In the 

mechanical aspect, the parameter α can be interpreted as the 

degree of deformation of a simple Poisson process under the 

influence of an external action (the second Poisson process). 

In the functional plan α  it is, a kind of, the second parameter 

of scale, which strengthens the influence of the main one T . 

Physically, the parameter α  shows how many times the 

operation of a real system will be slowed down compared to 

the idealized mode. Depending on the choice of the nature of 

the random variable, this can be extended to buffer capacity, 

access delay, and so on. 

5.2. Approximation of the Distribution Function 

To adapt (14) to the conditions of the problem of 

estimating the probability of packet loss, we perform the 

following:  

- we give to the parameter α a sense of the similarity 

coefficient m  ;  

- suppose, 0≈h , since for heavy traffic the average 

waiting time W  is significantly higher than the average 

packet processing time h  ;  

- we choose the ideal delay 1
W  as the scale parameter. 

As a result, the approximation CDF (in the standard of 

TpED) takes the form 























⋅
−≈

1

exp)(
Wm
xxF                              (16) 

Figure 2 shows how "heavier" the tail of the TpED-

distribution with increasing values of the similarity coefficient 
m . In the limit, for ∞→m , the probability of the packet loss 

tends to 1. The dashed line corresponds to the classical one-

parameter exponential distribution of the form (15). 
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The distribution (16), preserving the exponential structure, 

acquired heavy-tailed properties. In comparison with (15): 

the TpED scale parameter (delay) became larger by a factor 

of m , the variance by a factor of 2
m , the probability of 

packet loss (the probability that the random variable will 

exceed a standard value x ) by ]1/)/11(exp[ Wmx −⋅  times. 

For the initial data of Example 3, using (8), (16) and other 

mentioned above formulas, Table 4 is calculated, which 

shows that replacing the self-similar traffic by the Poisson 

one leads to an increase in the access delay for a few 

milliseconds, and the probability of packet loss by more than 

three orders of magnitude. 

Table 4. QoS-indicators of compared systems (for the parameter x  = 10 ms). 

Incoming traffic Similarity coefficient m  Ideal Delay, 1
W , ms, Real Delay W ms Loss probability 

Poisson 

Self-similar 

1 
1,5 

1.5 0,0013 

3,75 5,625 0,1690 

 

 

Figure 2. Complementary distribution function for packet loss. 

CDF (16) is fundamentally different from CDF (15), 

although, at first glance, it cannot be said. It can be assumed 

that after multiplying the parameters 1
Wm ⋅ , we get a new 

parameter of the scale of the "lightly-trailing" ("shortly 

extended") exponent of the form (15), and the self-similarity 

effect is absent. But this cannot be accepted. Of course, the 

similarity (in probability of packet loss) of the external forms 

(15) and (16) is obvious, but not more. In fact, the systems 

were compared that differ in principle (in m times) speed 

(reactivity) and performance. All mentioned above is 

confirmed by Figure 2.  

Due to the validity of the identity, 

( ) ( ) 1/
exp exp / exp /1 1

1

 
 
 
 
 
 

 
 

− = = −⋅
mx m x W x W

mW
,   (17) 

indicating the invariance of the CDF to the location of the 

index m , the following decisive rule can be formulated: "To 

obtain an estimate from above of the probability of packet 

loss in a Fractional Brown Motion - type environment, it is 

necessary to extract the root of the degree equal to the 

similarity coefficient m from the exponential losses 

calculated in the conditions of processing Poisson traffic."  

For the initial data of Example 3, using formula (17), Table 

5 is calculated, which shows that the probability of packet 

loss is a very critical design factor in comparison with the 

average access delay. 

Table 5. Probability of loss depending on the similarity coefficient m . 

Similarity Coefficient, m  Probability of Packet Loss 

1 0,0013 

2 0,0356 

3 0,1083 

4 0,1888 

5 0,2635 

11 0,5454 

21 0,7279 

5.3 Comparison with the Weibull Distribution 

Keeping the properties of the classical exponential 

distribution, the two-parameter exponential distribution 

simultaneously acquires the Weibull distribution traits [8] 

( )




−≈ c

WxxwF
1

/exp)( ,                     (18) 

where c  is the parameter of the Weibull distribution form. 

Comparing the CDFs (16) and (18), it is easy to establish 

the equivalence condition in the form of a connection 

equation between the parameter c of the Weibull 

distribution form and the similarity coefficient m of the 

recurrence model 

)
1

/ln(

ln
1

Wx

m
c −= , 1

/Wxm < .                  (19) 

The limiting condition for the applicability of (19) is the 

similarity coefficient m should not exceed the coefficient 

1
/Wx  of temporary reservation (the latter can be treated as 

the ratio of the transaction time-out, the maximum 

allocated for the transaction of the time interval, to the 

average time). 

It is not difficult to show that the proposed recursive QoS 

model and the method of rescaling Poisson solutions into 

fractals based extend to a more general case of non-

exponential service ( 1≠d ). In the latter case, instead of QS 

(a single-server QS with a Poisson input flow and 

exponential service), will appear QS ∞/1// GM  (with a 

Poisson incoming flow and arbitrary service). 
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6. Conclusions  

While the fractal queuing theory is at the embryonic level 

of development, the authors of this article aimed to 

maximize the use of the "Poisson" mathematical and 

software developed over many years for approximate 

calculation of QoS server metrics with self-similar 

incoming traffic. 

By morphological analysis, became possible to transform 

the Norros fractional model for the average queue length into 

a recurrent structure (8), extracting from it Poisson 

components (average queue length and variance of the 

number of packets), and also the similarity coefficient (10) of 

fractal and Poisson stochastic structures. 

The similarity coefficient is a new concept that is a scale 

factor that has the form of a nonlinear function of the server 

load and the Hurst parameter and allows to establish a 

correspondence between the parameters of the Poisson and 

fractal systems. 

To assess the probability of packet loss, an additional 

function of the two-parameter exponential distribution (16) is 

applied, successfully combining the advantages of 

exponential and heavy-tailed distributions. 

On the basis of the similarity coefficient, a simple method 

for rescaling Poisson solutions into fractal solutions was 

constructed. According to this method, to find the fractal 

delay, it suffices to multiply the exponential delay by the 

similarity coefficient, and to find the probability of packet 

loss, extract from the exponential losses the root of the 

degree equal to the similarity coefficient. 

Numerical studies have shown that the resource 

requirements of self-similar traffic is much higher than the 

analogous Poisson index, and the probability of packet loss 

is a more critical design factor than the average access 

delay. 

The proposed method of rescaling "Poisson" solutions into 

"fractal" solutions requires further development, since covers 

a far from complete list of QoS parameters of modern 

infocommunications and models of self-similar traffic, the 

thesaurus of which, in addition to fractional Brownian 

motion (FBM), includes fractal Gaussian noise (FGN), 

chaotic maps (Chaotic Map) models based on the technique 

of "Dynamic Markov Modeling" (DMM), etc. 
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